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Abstract
Research has demonstrated the efficacy of closed-loop
control of anesthesia using the bispectral index (BIS)
of the electroencephalogram as the controlled variable,
and the development of model-based, patient-adaptive
systems has considerably improved anesthetic control.
To further explore the use of model-based control in
anesthesia, we investigated the application of reinforce-
ment learning (RL) in the delivery of patient-specific,
propofol-induced hypnosis in human volunteers. When
compared to published performance metrics, RL con-
trol demonstrated accuracy and stability, indicating that
further, more rigorous clinical study is warranted.

When compared to population-based dosing, patient-
specific drug administration is generally preferred in the
clinical practice of anesthesia. Computer-controlled drug
delivery systems have been investigated as a means of
achieving patient-specific anesthesia, and their use is as-
sociated with a number of favorable patient outcomes,
including decreased intraoperative drug consumption and
shortened postoperative recovery times (Liu et al. 2006;
Servin 1998; Theil et al. 1993). Historically, the application
of proportional-integral-derivative (PID) control in closed-
loop anesthesia has demonstrated moderate success (Absa-
lom and Kenny 2003). However, success has been con-
strained by limitations in the control method, as well as the
complexity of human physiology (Wood 1989). To improve
control performance, clinical study has broadened to in-
clude techniques commonly associated with intelligent sys-
tems, most notably fuzzy control (De Smet et al. 2008;
Esmaeili et al. 2008; Carregal et al. 2000; Schaublin et al.
1996).

Reinforcement learning (RL), another intelligent systems
technique, has demonstrated proficiency in difficult robotic
control tasks (Gullapalli 1993); however, RL has no reported
application to clinical control problems, with the exception
of work relating to this study (Moore et al. 2004). De-
spite the lack of clinical application, reinforcement learn-
ing is not far removed from medicine since its fundamental
principles (dynamic programming and value function opti-
mization) have been applied to depth of anesthesia control
with favorable results (Hu, Lovejoy, and Shafer 1994).
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Because RL’s aptitude for specialized control tasks re-
mains incompletely explored, the objective of this study was
to investigate the application of reinforcement learning to
closed-loop control of intravenous propofol anesthesia in
healthy human volunteers. Accordingly, an RL agent was
developed, tested in silico, and then evaluated in volunteers
under an IRB-approved study protocol in the Department of
Anesthesia at Stanford University School of Medicine.

Background
Propofol-Induced Hypnosis
Propofol is a short-acting sedative administered intra-
venously to achieve induction and maintenance of general
anesthesia. Propofol suppresses cortical brain function (hyp-
nosis) but offers no analgesic effect (pain relief).

The anesthesia community has studied automated deliv-
ery of propofol for two principal reasons. First, the short-
acting nature of the drug (characterized by rapid onset and
recovery) permits titration to effect. Second, indication of
propofol effect may be observed in the electroencephalo-
gram (EEG) (Glass et al. 1997). Currently, the bispectral in-
dex of the EEG, or BIS (Aspect Medical Systems, Newton,
MA), enjoys the greatest clinical acceptance as a measure
of hypnotic effect. BIS is a statistically derived indicator of
cortical activity that lies in the range [0, 100] (Rampil 1997).

Motivation for Good Control of Hypnosis
BIS has been recently studied as a mitigation for reduc-
ing the risk of intraoperative awareness, defined as con-
scious behavior (motion, vocalization, etc.) during surgery
or post-operative recall of intraoperative events (explicit or
implicit). Unintentional intraoperative awareness can chal-
lenge the anesthetist because doses ensuring adequate hyp-
nosis may be associated with hemodynamic and/or respira-
tory instabilities in sensitive patients (i.e. trauma, critically-
ill, elderly, etc.). While the incidence of intraoperative
awareness is estimated to be low (0.13%) (Sebel et al. 2004),
it can be extremely traumatic for the patient. BIS monitoring
has been recommended as a preventative measure (Sandin
et al. 2000) and has been reported to reduce the incidence
of unintended intraoperative awareness (Myles et al. 2000).
This finding remains controversial since this evidence comes
from observational clinical trials (Avidan et al. 2008), and
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the execution of a convincing prospective clinical trial is lo-
gistically challenging.

At first glance, the risk of intraoperative awareness im-
plies that “deeper is better”; however, higher doses of propo-
fol are correlated with incidences of respiratory and hemo-
dynamic depression. Emerging research corroborates a need
for balance: Lindholm et al. report a possible causal link
between deep anesthesia (BIS < 45) and postoperative mor-
bidity (Lindholm et al. 2009). As before, this conclusion
requires further substantiation before universal acceptance.

These opposing concerns (awareness versus toxicity), as
well as the favorable outcomes cited above, associate good
control of intraoperative anesthesia with good patient care.
Consequently, closed-loop control of propofol-induced hyp-
nosis is well-represented in the literature (Struys et al. 2007;
2004; Absalom and Kenny 2003; Leslie, Absalom, and
Kenny 2002; Absalom, Sutcliffe, and Kenny 2002; Sakai et
al. 2000; Struys et al. 2001), but accurate and stable control
of intraoperative hypnosis remains an unsolved problem.

Challenges to Optimal Control of Hypnosis
Existing closed-loop drug delivery systems are typically
based on population models of drug effect (Vuyk et al.
1995), making them ill-equipped for accurate drug deliv-
ery in the individual. Age, gender, and ethnicity, as well
as disease and surgical intervention (Schnider et al. 1998;
Barvais et al. 1996), are known to affect a patient’s re-
sponse to propofol infusion. Control of propofol-induced
hypnosis is also complicated by delays in action and ef-
fect (transport delay in control literature). The delays
are variable, hysteretic, and demonstrate flow rate depen-
dence (Struys et al. 2007; Pilge et al. 2006). Further-
more, environmental conditions can influence patient re-
sponse; for example, routine surgical events (incision, ma-
nipulation, etc) challenge good control (Röpcke et al. 2001;
Ausems et al. 1986).

Reinforcement Learning
Reinforcement learning (RL) is intelligent control method
that presents a structured, mathematically robust mechanism
for goal-directed decision-making in which long-term gain
is to be maximized (Sutton and Barto 1998). Unlike su-
pervised learning methods, no examples of desired behav-
ior are provided during training; instead, behavior is guided
through positive or negative reinforcements. Knowledge is
gained through experimentation: actions are chosen, effects
are observed, and rewards are gained accordingly.

Methods
A study protocol was designed to evaluate the reinforce-
ment learning (RL) agent using widely accepted measures
of closed-loop control performance. The agent was origi-
nally developed in the Department of Computer Science at
Texas Tech University. Several simulation trials, as well as
preliminary studies in human volunteers at Stanford Uni-
versity, were used to improve the agent’s performance and
produce a clinically suitable controller. The final clinical
evaluation, conducted in the Department of Anesthesia at

Stanford University School of Medicine, consisted of fif-
teen, consecutively-studied, healthy volunteers.

Agent Architecture
Agent Inputs To achieve and maintain a desired level of
hypnosis (BIStarget), the agent first observed the volunteer’s
bispectral index (BISmeasured) on five-second intervals, as
reported by an A-2000 BIS monitor (Aspect Medical Sys-
tems, Norwood, MA). Since BIS is an inherently noisy sig-
nal, BISmeasured was smoothed using a low-pass filter. Two
control inputs were then computed: E and ∆E. E was de-
fined as (BISsmoothed −BIStarget), and ∆E was defined as
the change in E over 15s, or (Et − Et−2).

In pilot studies, the combined effects of BIS measurement
noise and transport delay resulted in oscillatory behavior.
These confounding influences were successfully mitigated
by conditioning E and ∆E with sets of fuzzy membership
functions (Zadeh 1965). The fuzzy set membership for E
and ∆E was assessed using two sets of triangular member-
ship functions, µN (x), µZ(x), and µP (x). The resulting
six-dimensional feature vector served as the agent’s input.

Agent Actions The agent delivered propofol via a catheter
placed in the antecubital vein (elbow) using a precision sy-
ringe pump (Pump 33, Harvard Apparatus, Holliston, MA).
During control, the agent could select an infusion rate from
a discrete set ranging from 0.0–6.0 ml/min. Once a rate was
selected, the action remained in effect for five seconds. The
agent lacked the ability to directly reduce propofol concen-
trations in the patient, resulting in a condition of asymmetric
control.

Knowledge Representation During the control process,
the RL agent is expected to observe the patient’s state, and
then select the appropriate propofol dose from its control
policy. To learn the optimal control policy, the agent accu-
mulated its experience in value functions, or mathematical
descriptions of the utility of patient states and infusion rate
selections. In RL, learning is accomplished through itera-
tive function approximation, and value functions must be
represented in suitable form; tables, decision trees, neural
networks, and weighted polynomials have precedence in the
literature. Of these, the uniformly discretized table is fa-
vored for its ease of implementation and mathematical ro-
bustness (Baird 1995).

In this study, the agent’s state observation vector consisted
of the six fuzzy membership values described previously.
The tabular value function approximator bounded each fea-
ture element to the range [0, 1], and then partitioned the
range into ten discrete bins. Thus, a table of 106 entries
was associated with each discrete infusion rate.

Reward The agent’s objective was to achieve and main-
tain the selected BIS target (i.e. minimize the absolute con-
trol error |E|). Since the task lacked an explicit terminal
state, the reward function rt+1 = −|Et| was chosen.

Agent Training
Because the naive, uninformed agent can make arbitrarily
poor dosing decisions, a simulated intraoperative patient was
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developed for agent training. This in silico patient also
presented an advantage in its rapid simulation of hypnotic
episodes. Reinforcement learning is fundamentally a pro-
cess of statistical estimation, and a large number of training
episodes were needed to achieve clinical readiness.

The principle role of this virtual patient was to model
the time-dependent effects of propofol infusion, collec-
tively known as the pharmacokinetic and pharmacodynamic
(PK/PD) responses to propofol. (A drug’s pharmacokinetic
properties describe its distribution within the body, and phar-
macodynamic attributes characterize the dose effect.)

Modeling Propofol Effect Propofol pharmacokinet-
ics were modeled using Schnider’s three-compartment
model (Schnider et al. 1998), which provides the central,
rapid, and slow compartments to estimate the time-
dependent distribution of propofol. In this model, propofol
is introduced into the central compartment via intravenous
infusion; after infusion, the drug is free to interact with the
rapid and slow compartments through first-order, gradient
driven flow. The rapid and slow compartments represent
collections of tissues with high and low propofol transport
coefficients; however, it is important to note that the model
was derived from empirical observations. As such, these
compartments may not have a direct, obvious mapping to
physiological systems.

Figure 1 illustrates the model and its transport coeffi-
cients, which vary with patient height, weight, gender, and
age. As shown, the coefficients are subscripted to indicate
direction of flow (from, to) because the coefficients may dif-
fer directionally, i.e. the central-to-slow coefficient (kcs) is
not equal to the slow-to-central coefficient (ksc). Metabolic
losses of propofol are represented in kc0.

Because an infusion of propofol exhibits a 2.7 minute
time-to-peak effect in BIS (Schnider et al. 1998), a fourth ef-
fect site compartment was implemented. The resulting trans-
port coefficient, ke0, was assigned a value of 0.17 (Doufas
et al. 2004). The effect-site compartment is assumed to pos-
sess negligible volume; hence, effect-site interaction is as-
sumed to be one-way.

Central RapidSlow

Infusion

Metabolism Effect site

kc0 ke0

kcs

ksc

kcr

krc

Figure 1: Schnider’s pharmacokinetic model of propofol. The drug
is infused into the central compartment, and concentration gradi-
ents govern the subsequent transport to other compartments.

To model the hypnotic effect of propofol, a nonlinear
pharmacodynamic model was developed using previously
obtained data (Doufas et al. 2004). A three-layer percep-
tron network was trained to associate arterial concentrations

of propofol with observed BIS, allowing the agent to gen-
erally predict propofol effect from estimated effect site con-
centration. Figure 2 illustrates the observations of BIS and
propofol concentration, as well as the median fit.

Figure 2: The Doufas nonlinear model for propofol pharmaco-
dynamics. Doufas et al. observed the propofol/BIS response in
eighteen young, healthy subjects. To model propofol pharmacody-
namic effect in this study, a neural network function approximator
was used to fit the median dose curve (highlighted here).

Learning Algorithm Watkins’ Q-learning algorithm was
used to train the agent (Watkins 1989). Q-learning is a tem-
poral difference learning method characterized by model-
free, off-policy learning. The algorithm is mathematically
robust (Tsitsiklas and Van Roy 1996; Dayan 1992), a prop-
erty that has contributed to the method’s popularity in ap-
plied RL applications. Furthermore, this method has been
shown to work well with tabular function approximators. To
speed learning, the Q-learning algorithm was implemented
with eligibility traces (λ=0.8) (Sutton and Barto 1998).

Training Agent training consisted of a sequence of sim-
ulated hypnosis episodes using a standardized intraopera-
tive patient prototype (male, 21 yr, 170 cm, 75 kg). To aid
in learning a general association of propofol infusion and
patient response, the patient’s ke0 was randomly selected
[0.17 ± 25%] at the beginning of each episode. This mea-
sure, of which the agent remained unaware, influenced the
timing and magnitude of peak BIS effect as illustrated in
Figure 3. In this figure, the effect of ke0 variation in a sim-
ulated patient is shown with a bolus of propofol delivered at
t= 0 min. The bolus was allowed to distribute according to
the Schnider pharmacokinetic model under the selected ke0.
As shown, a larger ke0 represented a more “tightly coupled”
system in which propofol was transported to the effect site
more readily, yielding a deeper level of hypnosis. For em-
phasis, Figure 3 highlights the minimum hypnotic levels, as
well as the times of their occurrence. While the time of peak
effect varied by approximately 25 seconds, the range in peak
effect varied by more than 20 BIS points.

To ensure adequate exploration of the state-action space,
each episode began with an exploring start in which a BIS
target was randomly selected, and random propofol quanti-
ties were assigned to the three major PK compartments. The
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2.83 min

76.5 BIS
ke0 = 0.1275

2.58 min

64.3 BIS

ke0 = 0.17

2.42 min

54.4 BIS

ke0 = 0.2125

Figure 3: Pharmacodynamic effect of variation in ke0. To demon-
strate the individual subject variation associated with changes in
ke0, a bolus of propofol was delivered to a simulated patient
and propofol distribution was modeled over time. For compari-
son, ke0 was selected at 0.17, 0.1275 (0.17 − 25%), and 0.2125
(0.17 + 25%). The points of peak BIS effect and their associated
times are highlighted.

agent was then permitted to interact with the patient and ac-
cumulate reinforcements. After 1,000 action choices (5,000
simulated seconds), the episode was concluded, and a new
one begun.

Training began with a step-size parameter α= 0.2, hori-
zon parameter γ= 0.69, and an exploration parameter ε=
0.01. To assess the progress of learning, the sum of squared
difference (SSD) was computed between intermediate con-
trol polices. When the SSD metric fell below a small thresh-
old, α was halved, and learning resumed. This procedure
continued until α= 10−5. In total, training required 5×107

episodes and approximately one week of CPU time on a con-
temporary desktop computer.

In silico Control Policy Evaluation
Prior to clinical application, the agent was evaluated in sim-
ulation. To assess the fitness of the candidate control pol-
icy, a Patient Variability Model (PVM) was constructed to
challenge the controller with individualized patients (Fig-
ure 4). The PVM modeled both PK and PD variation: the
PKPVM component modeled changes in ke0 as described
previously (see Figure 3), while the PDPVM block modeled
changes in propofol sensitivity (∆BISPV M ) as a sum of
time-dependent and time-independent parameters (Moore,
Pyeatt, and Doufas 2009). PVM influence can be summa-
rized as:

(1) BISmeasured(t) = BISideal(t) + ∆BISPV M (t)

Evaluation consisted of a sequence of sedation episodes
in a population of 1,000 simulated patients possessing
randomized demographic and PVM parameters. In each
episode, the agent was tasked with achieving and maintain-
ing propofol-induced hypnosis for 240 minutes. BIS targets
were randomly selected (without replacement) from the set
{40,50,60}. Once selected, a target remained in effect for
80 minutes.

Figure 4: Interaction between the agent and simulated intraoper-
ative patient. To estimate the agent’s performance in clinical ap-
plication, simulated episodes of hypnosis were performed on a
population of 1,000 randomly selected patients. A Patient Vari-
ability Module (PVM) challenged the agent with an array of static
and time-varying parameters, including variations in patient demo-
graphics, propofol sensitivity, and intraoperative events. PVM in-
fluence was not directly observable by the agent.

Performance Evaluation
The steady-state control performance was evaluated using
the four metrics of Varvel et al. (Varvel, Donoho, and Shafer
1992), which comprise the standard performance measures
in closed-loop infusion control. These metrics build upon
the instantaneous performance error (PE):

PE =
BISmeasured −BIStarget

BIStarget
· 100(2)

The median performance error (MDPE) indicates the control
bias observed in a single patient and is computed as:

(3) MDPEi = median (PEij) j = 1 . . . N

where i identifies a subject, and j iterates over the set of PE
measurements for a subject. Median absolute performance
(MDAPE) error reflects the accuracy of the controller in a
subject:

(4) MDAPEi = median (|PEij |) j = 1 . . . N

Wobble measures the intra-subject variability in perfor-
mance error:

(5) Wobblei = median (|PEij −MDPEi|) j = 1 . . . N

Divergence is defined as the slope of the regression line com-
puted through the observed MDAPE measurements. Posi-
tive values indicate an increasing difference in measured and
target values; a negative divergence indicates more stable
control.

In addition to the Varvel metrics, recent studies have
computed the Controlled metric, the percentage of mea-
surements in which the observed BIS was within ± 10
BIS (Struys et al. 2004) or± 5 BIS (De Smet et al. 2008) of
target. As an additional performance comparator, this study
also reports the root-mean-square error (RMSE) computed
for each maintenance control interval.
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Table 1: Human Volunteer Demographics

Height Weight BMI Age
(cm) (kg) (kg/m2) (yr)

174.5±9.6 72.2±10.0 22.0±1.6 20.7±2.5

N = 15 (Nmale = 11, Nfemale = 4)

Acceptance Criteria The literature does not provide
a definitive guideline for clinically suitable control of
propofol-induced hypnosis, but a survey of three contem-
porary studies (De Smet et al. 2008; Struys et al. 2004;
Absalom and Kenny 2003) provides some reasonable per-
formance goals: MDPE ≤ ±5.0%, MDAPE ≤ 7.5%, Wob-
ble ≤ 5.0%, Divergence ≤ ±0.1%/hr, Controlled ≥ 80%,
and RMSE ≤ 5.0 BIS.

Clinical Application After IRB approval (Stanford
School of Medicine) and informed consent, we studied
fifteen consecutively recruited healthy (BMI ≤ 25 kg/m2,
18-45 yr) volunteers in the operating room at Stanford
University Medical Center.

Volunteers fasted for at least six hours prior to the study
and their vital signs were monitored according to the stan-
dards of the American Society of Anesthesiologists (ASA).
After placement of the monitors (including BIS) an intra-
venous catheter was inserted at the elbow. The study began
when the anesthesiologist directed the RL agent to achieve
a randomly selected initial target (40 or 60). Once BIStarget

was achieved, the agent was permitted to regulate the level
of hypnosis undisturbed for 15 minutes. A mild tetanic stim-
ulus was then administered to the volunteer’s thigh to simu-
late a destabilizing surgical event, and control was allowed
to continue for an additional 15 minutes. At that time, the
agent was directed to achieve the second BIStarget. Once
the volunteer had stabilized at the second target, a similar
procedure of maintenance and stimulus followed; then, the
volunteer was then allowed to recover normally from seda-
tion.

Analysis To analyze the steady-state control performance,
automated tools identified and discarded the intervals of in-
duction and target change. The resulting maintenance inter-
vals were then scored using the methods applied in the in sil-
ico performance analysis (Equations 2–5). The BIStarget =
40 and BIStarget = 60 control periods were evaluated inde-
pendently, then in aggregate form.

Results
Fifteen healthy human volunteers (11 males and 4 females)
were recruited to assess the effectiveness of RL control in
closed-loop delivery of intravenous propofol anesthesia (Ta-
ble 1). Table 2 summarizes the agent’s observed control
performance in delivering propofol to achieve targets of
BIStarget = 40 and 60. As shown, the average aggregate
control metrics were within the desired performance values.

Table 2: Control Results

BIStarget BIStarget Aggre-
40 60 gate

Duration† 30.2±5.2 30.1±2.5 60.3±5.1
MDPE‡ 1.0±5.6 −0.2±1.2 0.4±3.0
MDAPE‡ 7.4±3.5 2.8±1.2 5.1±1.7
Wobble‡ 6.2±2.6 2.6±1.2 4.5±1.5
Divergence? < 0.001 < 0.001 < 0.001
RMSE§ 4.5±1.7 2.9±1.1 3.7±0.9
Controlled‡ 75.6±19.5 90.5±11.0 82.9±9.6

mean ± std. dev. †(min), ‡(%), ?(%/hr), §(BIS)

Discussion
Figure 5 illustrates one promising aspect of RL control:
patient-specific hypnosis. During each study, the data col-
lection system computed the predicted bispectral index as
the agent controlled the volunteer’s level of hypnosis. Us-
ing the volunteer’s demographic data, the agent’s action
history, and the Schnider-Doufas PK/PD model, an esti-
mate of propofol effect was computed on five-second in-
tervals. By comparing predicted and observed BIS values
(Figure 5), the RL agent’s ability to compensate for model
mis-specification is evident. As shown, Volunteer A demon-
strated an apparent sensitivity to propofol: the observed hyp-
nosis level was consistently below the predicted value for
most of the 30-minute period shown. Likewise, the RL agent
compensated for an apparent propofol tolerance in Volunteer
B. In this 30-minute period, the observed BIS was consis-
tently above the predicted value, indicating that the volun-
teer required more propofol than predicted. These observa-
tions suggest that the reinforcement learning process yielded
a patient-specific control policy that may be applied to a gen-
eral population of volunteers.

Limitations
The principle limitation of this study lies in its controlled
nature: the human volunteers were healthy and resembled
those populations from which the PK/PD models were de-
rived. Although the agent was challenged with intra- and
inter-subject variation, it did not experience the full rigor of
the intraoperative environment. Consequently, these results
may be extrapolated to surgical patients with limited fidelity.

Future Directions
Given the favorable performance in both simulation and
healthy human volunteers, it is reasonable to evaluate the
agent in intraoperative patients to further assess the clinical
utility of RL control. A study of agent performance under
the rigors of the surgical environment and varying conditions
of patient health should provide additional insight in the suit-
ability of the technique. Likewise, it would be interesting to
further explore the agent’s capacity for patient-specific hyp-
nosis with evaluations in patient populations lacking good
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Volunteer A: Apparent propofol sensitivity
MDPE60 = 0.4%

Volunteer B: Apparent propofol tolerance
MDPE60 = −0.03%

Figure 5: Examples of patient-specific anesthesia. Although the
RL agent was trained using a standardized patient prototype, the
agent demonstrated good control in subjects demonstrating appar-
ent propofol sensitivity (Volunteer A) and apparent propofol toler-
ance (Volunteer B).

PK/PD models (critically ill, morbidly obese, etc).
This study has also identified some areas of improvement.

First, the agent controlled hypnosis better at BIStarget = 60
(as indicated by most metrics). Since the agent’s action
choices were recorded during this study, it is anticipated that
an improved agent can be developed by incorporating the re-
sultant volunteer responses into the training regimen.

Second, the agent’s reward structure discouraged over-
shoot, leading to “soft landings” averaging 12.5 minutes
at induction (not favored by time-conscious OR schedules).
Since induction and maintenance have competing goals in
time and accuracy, a more effective solution might involve
two independent, cooperative agents.

Conclusions
The RL agent demonstrated clinically suitable performance
in the closed-loop control of propofol-induced hypnosis in
healthy human volunteers. The agent achieved generalized
control that compensated for varying degrees of intra- and
inter-subject variation in propofol effect, suggesting that RL
control may be applied to populations lacking good PK/PD
models. Since the RL agent has demonstrated good control
in both simulation and controlled human volunteer studies,
the next objective is to assess agent performance in surgical
patients.
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