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Abstract 

Over the past decades, there have been significant efforts on 
developing robust and easy-to-use query interfaces to 
databases.  So far, the typical query interfaces are GUI-
based visual query interfaces. Visual query interfaces 
however, have limitations especially when they are used for 
accessing large and complex datasets. Therefore, we are 
developing a novel query interface where users can use 
natural language expressions to help author visual queries. 
Our work enhances the usability of a visual query interface 
by directly addressing the “knowledge gap” issue in visual 
query interfaces. We have applied our work in several 
 real-world applications. Our preliminary evaluation 
demonstrates the effectiveness of our approach.   

 Introduction   
In many lines of businesses, people often need to make 
rapid decisions based on data stored in databases.   Most 
business users however are not database experts. They 
often find it difficult to use the native database query 
language SQL to express their data needs.  
 To better help business users in their data access and 
analysis tasks, researchers have proposed using Natural 
Language (NL) interfaces to access databases 
(Androutsopoulos, Ritchie and Thanisch 1995). This 
approach however has not gained much acceptance in 
practice, since NL understanding poses great challenges for 
computers. NL expressions are often diverse and 
imprecise, requiring extensive knowledge and 
sophisticated reasoning for computers to interpret them.  
 In contrast, visual query interfaces have emerged as a 
practical solution. They allow users to express their data 
needs using GUI elements. Fig. 1 shows a visual query 
used in a trade management application to retrieve 
shipments containing model “T42p” laptops. In this 
example, the graph nodes represent database tables (e.g., 
Case and Invoice) and the links represent joins between 
tables. The GUI combo boxes are used to specify data 
constraints, which select rows (entities) from a table. With 
the visibility of GUI prompts, visual query interfaces are 
relatively easy to use. Moreover, translating a visual query 
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to an SQL query is straight-forward, since there is often a 
direct mapping between them.  
 Visual query interfaces however also have limitations. 
They are usually rigid, requiring users to precisely map 
their data needs to the underlying database schema and 
values. Since a user may have limited knowledge about a 
database, it may be difficult for the user to know how to 
express his data needs in visual queries. In the above 
example, to match what is in the database, the user must 
know that “T42p” should be expressed by a coded part 
number (000002374) in the Item table. Moreover, in this 
schema, the Item table must be joined with the Shipment 
table through two intermediate tables: Case and Invoice. 
As databases grow more complex, the mappings become 
more difficult. Consequently, the usability of a visual 
query interface decreases.  
 To take advantage of the strengths of a visual query 
interface while overcoming its limitations, our current 
work focuses on using Natural Language (NL) expressions 
to augment a visual query interface. Our NL-augmented 
visual interface, called TAICHI, can be used as a typical 
visual query interface alone. Moreover, it allows users to 
input NL expressions to aid visual query authoring, 
compensating for users’ incomplete knowledge about the 
underlying data and schema. TAICHI’s NL input however, 
is not meant to be used alone. Instead, it is used as an aid in 
the context of visual query authoring, thus alleviating the 
burden of developing a perfect NL interpretation engine. 

 
 

Figure 1: A Visual Query Example
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Figure 2:  A Query Graph Example 

  TAICHI has been used in several real-world 
applications, including a real-estate application and a trade 
management application.  Through out the paper, we use 
examples from these applications to illustrate our work.   

Related Work  
There are numerous works on visual query interfaces for 
databases (Ahlberg and Shneiderman 1994; Catarci et al. 
1997; Derthick, Kolojejchick and Roth 1997). Similar to 
these works, TAICHI allows users to directly author a 
visual query using GUI widgets. Unlike these works, 
TAICHI also allows users to use NL to author a visual 
query from scratch or to complete a partial visual query.  
 There are also significant efforts on developing NL 
interfaces to databases (Androutsopoulos, Ritchie and 
Thanisch 1995; Blum 1999, Tang and Mooney 2000). Like 
these systems, TAICHI is able to understand a user’s NL 
inputs and translate them into database queries. Unlike 
these systems, which attempt to interpret NL expressions 
alone, TAICHI processes a user’s NL expressions in the 
narrower context of a visual query.  This often constrains the 
possible NL interpretations, resulting in higher accuracy. 
   To the best of our knowledge, there is little work directly 
on NL-aided visual query authoring. However, visual query 
interfaces were used to assist NL query building. For 
example, a menu-based GUI interface was used to guide 
users in selecting and composing NL queries (Tennant, 
Ross and Thompson 1983). By guiding users to construct 
only system-understandable queries, it reduces the NL 
interpretation difficulties. However, the system has the same 
limitations as a visual query interface, since GUI is the 
dominate interaction modality and NL queries are the 
results of GUI interactions. Thus, it does not help close 
users’ knowledge gap as TAICHI does.   

  TAICHI Overview 
Here we provide an overview of TAICHI, starting with its 
internal query representation. 
 Query Representation TAICHI uses a query graph, an 
intermediate query representation, to capture the semantics 
of a query. This representation can be rendered visually in 
the visual query interface. It also defines the scope of 
queries TAICHI can process. Thus, a user query that 
cannot be mapped to a valid query graph cannot be 
processed correctly by TAICHI. Since there is a direct 
mapping from query graph elements to database elements, 

it is straight-forward to generate an SQL query from a 
query graph.  Fig. 2 shows a query graph consisting of a 
set of nodes and links. Each node represents a data concept 
(e.g., house), while each link encodes the relationship 
between two data concepts. During SQL query generation, 
a data concept is normally mapped to a database table 
while a data relationship is mapped to a database join 
operation. Each node is associated with a set of data 
attributes (e.g., price) and constraints (e.g., style=colonial). 
Each data constraint is further represented by an operator 
(e.g., “>”) and a set of operands. An operand can either be 
a data concept (e.g., school district), a data attribute (e.g., 
style), a constant value (e.g., 5000), or an aggregated data 
aspect (e.g., average price).  
 TAICHI Architecture Fig. 3 shows the architecture of 
TAICHI. It has three main components: an NL interpreter, 
a visual query composer, and a dispatcher. The NL 
interpreter translates NL expressions to query graph 
elements. Given a query graph, the visual query composer 
automatically generates a new or updates an existing visual 
query. The dispatcher communicates with a web client.  
 To interpret a user query in context, TAICHI relies on 
several knowledge sources. For example, it is connected to 
a database server to access domain data. It also maintains 
application metadata (e.g., semantic dictionary) and 
interaction context (e.g., interaction history). 

Examples 
Here we use concrete examples to illustrate three typical 
uses of NL in aiding visual query authoring.  

NL-Aided Visual Query Element Authoring 
Consider Jane, a potential home buyer, who wants to find 
cities in the north, along the Hudson River. To express her 
data needs, Jane first creates a city node. She then adds a 
city constraint (“region=north” in Fig. 4a). As she proceeds 
to add her second city constraint, “along the Hudson 
River”, Jane does not know how to express it. So she 
leaves the attribute field empty and enters an NL 
expression “along Hudson” in the value field of the 
constraint combo box (Fig. 4a). Jane then submits the 
query. Given this input, TAICHI attempts to create a city 
constraint. Since the word “Hudson” is ambiguous, 
TAICHI asks Jane to disambiguate it (Fig. 4b). After the 
disambiguation, TAICHI completes the GUI Combo box 
expressing the city constraint: “subRegion = Hudson River 
Shore” (Fig. 4c). In this case, Jane was able to use NL to 

 

Figure 3: TAICHI Architecture
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author a visual query element (the subRegion constraint) 
that she did not know how to express initially. 

NL-Aided Partial Visual Query Completion 
Continuing the above scenario, Jane now wants to examine 
houses located in the cities discovered earlier. To do so, she 
first adds a house node, and links the house node to the 
previously created city node to constrain the houses to be 
located in these cities (Fig. 5a). Two house constraints are 
also added to further limit the house set. Moreover, Jane 
wants the houses to be located in a good school district. 
She adds a school district node and links it to the house 
node (Fig. 5a). Then Jane wants to use the college 
attending rate as a criterion to filter the school districts. 
However, she could not find it or anything similar listed as 
one of the school district attributes in GUI. Not knowing 
how to proceed, Jane right clicks on the school district 
node to bring up a pull-down menu. She selects “Add NL 
constraint” from the menu (Fig. 5a). Triggered by her 
action, TAICHI automatically inserts the text “school 
district:” in the NL input area, indicating that the NL input 
that follows is directly related to this concept (Fig. 5b). 
Jane then enters the text “with over 90% seniors attending 
college”. Given this, TAICHI automatically completes the 
partially constructed visual query and presents the 
completed query to Jane (Fig. 5c). Note that in the real 
estate database, the “attendingCollege” attribute is not 
directly associated with the school district table. Instead, it 
is an attribute of the high school table, which can be joined 
to the school district table by a has-member relation. This 
scenario demonstrates that much user knowledge is often 
required to build a complex visual query. A user like Jane 
can leverage NL to complete a visual query without the full 
knowledge of the database schema or data values.  

NL-Aided Full Visual Query Generation 
In some cases, a user may use NL alone to build or revise a 
visual query. After Jane retrieves houses that meet her city 

and school district constraints, she wants to check out the 
amenities of the houses. In particular, she wants to see 
whether there are any golf courses near these houses. 

 
 

Figure 6: NL-Aided Full Visual Query Generation 

 
Figure 4: NL-Aided Visual Element Authoring 

 

Figure 5: NL-Aided Partial Visual Query Completion
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However, Jane does not know how to express “near” in the 
visual query interface. Instead, she directly enters an NL 
query “show golf courses near them” (Fig. 6a). Upon 
receiving this, TAICHI interprets the NL expression in the 
context of the existing visual query. It understands that the 
referring expression “them” refers to the houses retrieved 
in the previous query. Based on this interpretation, TAICHI 
automatically generates a complete visual query (Fig. 6b).  

Our Approach 
In this section, we explain the key technologies that we 
developed to support NL-aided visual query authoring. We 
start with the visual query composer.   

Visual Query Composer 
The visual query composer is responsible for producing the 
visual representation of the query graph.  We note here that 
in order to optimize the user experience across successive 
queries, we must minimize the amount of visible change 
seen by the user of the visual query interface (i.e., maintain 
the visual momentum).  The visual query composer 
accomplishes this by tracking changes to the query graph, 
and then using this information to generate a sequence of 
incremental change operators (e.g., add, delete, update 
element) that transform the previous visual query into the 
current one.  Any changes made are visually highlighted on 
the display. For example, the visual query generated in Fig. 
5(c) is an incremental update of Fig. 5(a).  
     When determining the visual representations for new 
query elements (i.e., those not found in the previous query), 
the TAICHI visual query composer employs a rule-based 
graphics generation approach. It uses a set of design rules 
to map query graph elements (e.g., data constraints) to 
visual metaphors (e.g., GUI combo boxes).  After all the 
query elements are processed, TAICHI sends a list of 
visual update operators to the web client to be rendered. 
Upon receiving the visual operators, TAICHI’s client 
employs a graph layout algorithm implemented in JUNG1 
to automatically determine the layout of the new visual 
query.  

NL Interpreter 
To explain the NL interpreter, we first describe our main 
NL processing steps.  We then focus on how TAICHI takes 
advantage of the restricted visual query context to produce 
more accurate NL interpretations.  
Main NL Processing Steps To create a query graph or 
part of it from an NL input,  TAICHI uses a six-step 
process: morphological analysis, term identification, 
semantic tagging, semantic unification, relation analysis 
and context analysis. Fig. 7 shows an example illustrating 
the first five steps. 

                                                 
1 http://jung.sourceforge.net/ 

 Morphological analysis maps words like “houses” or 
“built” to their root forms (i.e., “house” or “build”) to 
reduce surface variations. Currently, TAICHI uses a hybrid 
approach that combines a dictionary lookup with a rule-
based transformation for morphological analysis. In 
addition, TAICHI uses patterns defined in regular 
expressions to canonize special constructs whose instances 
cannot be enumerated in a dictionary. For example, the text 
“1/1/2008” in U1 Fig. 7 is mapped to a “DATE”.  
 Term identification groups one or more words together 
to identify terms, each of which represents a single 
semantic entity. For example, the two words “New 
Rochelle” in S1 Fig. 7 should be grouped together as one 
term to represent the name of a school district. Currently, 
TAICHI relies on a semantic dictionary to identify 
potential terms. Most entries in the dictionary are 
automatically mined from databases. For example, the 
dictionary entry “New Rochelle” was partially constructed 
from the name column of the school district table. Each 
entry in this dictionary has two parts: the string index 
(“New Rochelle”) and its corresponding semantic tags. 
Currently, each tag is represented by a set of feature-value 
pairs. For example, one semantic tag for the term “New 
Rochelle” is: {<concept: SchoolDistrict>, <attribute: 
name>, <value: “New Rochelle”>}. To handle a wide 
variety of input expressions in practice, TAICHI supports 
partial matches between a user’s input and the terms in the 
dictionary. For example, it allows users to use “Hastings” 
to refer to the term “Hastings on Hudson”.  
 Once terms are identified, the semantic tagging process 
automatically retrieves one or more semantic tags for a 
given term from the dictionary. If none of the dictionary 
entries matches, TAICHI assigns an “UNKNOWN” tag.     
 After semantic tags are selected, the semantic unification 
process pieces together the tags of adjacent terms to 
identify proper data constraints.  For example, after 
semantic unification, the tags associated with “built”, 
“after” and “DATE” are unified to derive a single data 
constraint “house.yearBuilt > DATE” (S4, Fig. 7).  
 Once individual semantic concepts and constraints are 
identified, relation analysis determines the relationships 
among them. Our relation analysis is a two-step process. 

Figure 7: An Example Illustrating the NL Processing Steps
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First, TAICHI attaches the identified constraints to 
appropriate data concepts based on semantic compatibility. 
In S4 for example, the identified yearBuilt constraint is 
attached to the House concept, since TAICHI recognizes 
yearBuilt a house attribute. Next, TAICHI determines the 
relationships among multiple identified data concepts. For 
example, in S4, TAICHI needs to derive the relationship 
between the House and the SchoolDistrict concepts. 
Currently, TAICHI defines the relationships on top of the 
database schema. 
 In TAICHI, users often inquire about data in context. 
For example, after a user issued U1 in Fig. 7, she may 
follow up with a new query U2: “How about those in 
Pleasantville school district?” To derive the full meaning 
of a query in context, TAICHI defines a set of context 
integration operators that merge the interpretation of the 
current query with that of the previous query. During 
context analysis, the sixth step of the NL interpretation 
process, TAICHI employs a rule-based approach to select 
the most appropriate context integration operators (Houck 
2004). For example, to derive the full meaning of U2, 
TAICHI applies an Update operator to replace the previous 
school district name “New Rochelle” in the school district 
constraint with “Pleasantville”. Moreover, the follow-up 
queries may contain referring expressions   (e.g., “those” in 
U2). To resolve references in the current query, TAICHI 
matches the references mentioned in an NL input to a set 
of potential referents mentioned in the query context. To 
find the most probable matches, TAICHI uses a set of 
matching constraints, including semantic compatibility and 
recency constraints.  
 Due to local and often incomplete knowledge at each 
processing step, TAICHI could potentially produce a large 
number of interpretation possibilities at each step (e.g., 
semantic tagging and relation analysis). To avoid making 
premature decisions, TAICHI keeps all the interpretation 
options until it can make an informed decision. To handle a 
potentially large number of combinatory interpretation 
possibilities in real time, TAICHI now uses a branch and 
bound admissible search algorithm. It progressively 
explores only the most promising interpretation 
possibilities at each step. If in the end, it cannot decide 
among the valid interpretations found, it generates a GUI 
disambiguation panel similar to that in Fig. 4(b). If no valid 
solution can be found, TAICHI generates an error message. 
Subsequently, users can interact with the NL or the visual 
query panel to revise and correct the interpretation result. 
NL Interpretation with Visual Query Context During 
NL interpretation, TAICHI often exploits the associated 
visual query context to help its NL processing. In 
particular, when interpreting embedded NL expressions 
such as “along Hudson” in Fig. 4(a), TAICHI leverages the 
visual query element that embeds the NL expression to 
infer its meaning.  In this case, the expression is embedded 
in a GUI combo box representing a city constraint. During 
semantic tagging, TAICHI only considers semantic tags 
compatible with <concept: city> and quickly filters out tags 
that are incompatible (e.g., “Hudson” in a house 

community “Hudson View”). Similarly, in Fig. 5(a), the 
NL expression “with over 90% seniors attending college” 
is added explicitly by the user as the constraint of the 
School District concept. During relation analysis, TAICHI 
attaches the High School node to the School District node. 
Without the visual context,  it is ambiguous where to attach 
the High School concept. According to the real estate 
database, the High School node can be attached to three 
potential nodes in this visual query graph: House, School 
District, and City, since it can be joined with all three 
tables. As shown here, TAICHI can leverage a restricted 
visual query context to alleviate one of the biggest 
challenges in NL interpretation: ambiguities. When a system 
does not have enough reasoning capability to make the 
correct choice among many possible alternatives, NL 
interpretation errors occur. Exploiting the restricted visual 
query context explicitly established by the user, TAICHI is 
able to interpret a user’s NL input more accurately.   

 User Evaluation  
We have tested TAICHI in several real-world applications 
including a real estate and a trade management application. 
In the first application, TAICHI was the query front end 
for a residential real estate Multiple Listing Service (MLS) 
database. In the second application, TAICHI was used to 
access the international trade information of our company. 
 To formally evaluate the usability of TAICHI, we have 
conducted a controlled study. Our study was designed to 
quantitatively examine the value of using NL in aiding 
visual query authoring. We conducted the study in the real 
estate domain. Our choice of the domain is mainly dictated 
by practical constraints, such as data confidentiality. We 
compared the performance of the full version of TAICHI 
with that of TAICHI-visual, a visual query-only version of 
TAICHI. During the study, we recruited eight employees, 
4 females and 4 males. Before the study, we gave each user 
a tutorial on TAICHI. We then asked them to complete two 
target search tasks, each required six search criteria to be 
met (e.g., finding houses with certain price, size, and 
location criteria). The order of the tasks to be performed 
and the systems to be used for a task were decided 
randomly for each user.   

NL Usage and Performance 
Before we report the evaluation results, we first summarize 
the NL usage patterns in the study. Based on our study 
logs, NL was shown to be valuable for all the users. For 
example, the NL interface was used at least once in each 
task by all the users when the full version of TAICHI was 
used. Among all the cases where an NL input was 
involved, 35.7% of them provided additional constraints, 
especially superlative constraints (i.e., with lowest tax); 
28.6% were related to inquiring about specific attributes of  
 a target object (e.g., show the price of a house); 32.1% 
were stand alone new NL queries; and the rest (3.6%) 
belonged to miscellaneous cases such as error correction.  
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The NL interface was also proven to be quite reliable. 
During the study, among all the NL queries received by 
TAICHI, 92.9% of them were interpreted correctly.   
Moreover, all the errors occurred when an NL query was 
used as a stand alone new query. In these cases, TAICHI 
could not leverage the explicit and often constrained visual 
query context established by the users. But NL error 
correction in TAICHI was easy.  Since TAICHI always 
converts its NL interpretation result into an equivalent 
visual query, users can simply interact with the visual 
query interface to correct an error, such as deleting an 
unwanted visual query element, adding a missing one, or 
changing an incorrect one.  

TAICHI versus TAICHI-Visual 
To evaluate the overall performance of TAICHI versus that 
of TAICHI-visual, we use several well known criteria 
previously used in measuring user interfaces: effectiveness, 
expressiveness and reliability (Mackinlay, Card and 
Robertson 1990; Beaudouin-Lafon 2000). In our study, 
effectiveness was measured by two objective values 
extracted from the study logs: elapsedTime (the time taken 
to finish a task in seconds) and taskSuccess (0 for a failed 
task and 1 for a successful one).  On the other hand, 
expressiveness and reliability were measured based on a 
user survey collected at the end of each task. The two 
subjective measures were rated on a 1 to 5 scale, 1 being 
the least satisfactory and 5 being the most satisfactory.  
 Overall, all the participants successfully completed all 
their tasks using both systems (taskSuccess =100%). As 
shown in Table 1, except for reliability, the full version of 
TAICHI performed better than TAICHI-visual across all 
the metrics. Moreover, even though our study only 
involved eight subjects, based on the t-test, the differences 
in elapsedTime (p<0.048) and expressiveness (p<0.035) 
were statistically significant. The difference in reliability 
however, was not significant. Our observations during the 
study helped explain why the full version of TAICHI had 
significant advantage over TAICHI-visual in elapsedTime.   
First, TAICHI’s automatic generation of the visual query 
from a user’s NL input saved the user’s time. Especially, 
when a user did not know how to use a visual query to 
express his/her data needs, s/he just entered NL queries 
instead of inspecting all the GUI options. Second, 
TAICHI’s robustness in handling NL input also helped, 
since it required little user effort/time in correcting 
interpretation mistakes. In our study, NL expressions were 
often entered in a restricted visual query context. TAICHI 
thus managed to achieve a high NL interpretation accuracy 
(92.9%). TAICHI also out-performed TAICHI-visual for 
being more expressive. From our post-study interviews, we 
discovered that in certain cases users simply did not know 

how to express their requests in GUI (e.g., a complex 
constraint similar to the one shown in Fig. 5). With the full 
version of TAICHI, however, a user could easily express 
such requests in NL.  

 Conclusions 
We have presented TAICHI, a novel query interface that 
allows users to use NL expressions to aid visual query 
authoring. We have explained how TAICHI supports NL-
aided visual query authoring in three typical situations: 1) 
using embedded NL input for visual query element 
authoring, 2) using concept-specific NL input for partial 
visual query completion, and 3) using stand-alone NL 
input to build a full visual query. We have highlighted one 
key aspect of our method: NL interpretation using the 
restricted visual query context to achieve a high degree of 
interpretation accuracy. We have also presented a user 
study that demonstrates the advantages of TAICHI over a 
visual query-only interface. Specifically, the full version of 
TAICHI helps users express their data needs better 
(expressiveness) and accomplish their tasks more 
efficiently (elapsedTime) while maintaining a high level of 
robustness (reliability). This confirmed our initial 
hypothesis that NL-assisted visual query authoring would 
enhance the usability of a typical visual query interface. 
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System ElapsedTime Reliability Expressiveness 
TAICHI 209 4.56 4.67 
Visual 352 4.67 4 

Table 1. Evaluation Results 
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