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Abstract 

Human experts in scientific fields routinely work with 
evidence that is noisy and untrustworthy, heuristics that are 
unproven, and possible conclusions that are contradictory. 
We present a fully implemented AI system, Calvin, for 
cosmogenic isotope dating, a domain that is fraught with 
these difficult issues. Calvin solves these problems using an 
argumentation framework and a system of confidence that 
uses two-dimensional vectors to express the quality of 
heuristics and the applicability of evidence. The arguments 
it produces are strikingly similar to published expert 
arguments. Calvin is in daily use by isotope dating experts. 

 Introduction   
Automating scientific reasoning is an important challenge 
to AI. An automated tool can do boring and repetitive 
reasoning, freeing experts to do more difficult and creative 
work. Indirectly, it can make explicit the knowledge and 
reasoning used by experts in the field. Finally, an 
automated tool can consider all possibilities, sometimes 
exploring scenarios that human experts may miss. 

This paper discusses automating reasoning for dating 
geological landforms. Dating landforms is similar to 
investigating a crime scene: from the information available 
on the surface, left behind by an unknown series of events, 
experts must abduce what happened in the past. In the 
example diagrammed in Figure 1, subsurface rocks are 
exposed over time as the soil around them erodes. A 
geoscientist would be faced with the situation shown on 
the right of the figure; his1 goal is to derive the situation 
shown at the left, along with the processes that were at 
work and the timeline involved. 

To accomplish this, a geoscientist first dates a set of rock 
samples from the present surface, then reasons backward to 
deduce what process affected the original landform. This is 
a difficult deduction: geological processes take place over 
an extremely long period of time, and evidence remaining 
today is scarce and noisy. Finally, experts in geological 
dating, like experts in any field, are only human, and can 
be biased in favor of one theory over another. 

                                                 
Copyright © 2010, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
1We use the male pronoun for linguistic simplicity. 

In the face of these problems, experts form an exhaustive 
list of possible hypotheses and consider the evidence for 
and against each one—much like the concept of 
argumentation. Our system to automate this reasoning, 
Calvin, uses the same argumentation process as experts, 
comparing the strength of the evidence for and against a set 
of hypotheses before coming to a conclusion. We collected 
knowledge about how isotope dating experts reason via 
interviews with several dozen geoscientists. Confidence is 
key in this kind of reasoning: not only in the quality of 
evidence, but also in the knowledge that is used to connect 
evidence to conclusion. Capturing these elements required 
a novel instantiation of confidence-based reasoning in an 
argumentation system. From these elements, Calvin 
produces arguments almost identical to the reasoning 
presented by human experts. 

Calvin provides several contributions to AI and to the 
larger scientific community: 
• Its rule base is an explicit representation of the 

knowledge of two dozen experts in landform dating 
• It incorporates a rich system of confidence that captures 

the reasoning of real scientists in a useful way 
• It is a fully implemented system in the beginning stages 

of deployment 
• It is a real tool that is in use by real scientists 
 
In the following section, we discuss the general problem of 
cosmogenic isotope dating, highlighting its challenges and 
the approach that experts take to solving it. Next, we 
describe how Calvin uses argumentation to automate that 
process, and finally, we discuss our results. 

Figure 1: Deducing past events from the evidence 
available now. 

1833

Proceedings of the Twenty-Second Innovative Applications of Artificial Intelligence Conference (IAAI-10)



Cosmogenic Isotope Dating 
Beginning from a set of samples collected from boulders 
on a landform, an isotope dating expert’s goal is to 
determine the absolute age of that landform. This section 
summarizes how experts work, from sampling individual 
boulders to deducing an age for an entire landform. 

The first step is to collect as many samples as possible 
from the landform. A set of at least five samples is best 
(Putkonen and Swanson 2003); five to ten samples is about 
the norm. Experts would prefer to collect far more 
samples, but often only a handful of boulders suitable for 
sampling are available. While collecting samples, the 
expert also makes qualitative field observations that are 
often crucial for interpreting initial dating results.  

Once the expert has gathered a set of samples in the field, 
he brings them to a lab for dating. He finds the exposure 
age of each sample by determining its isotopic composition 
(some isotopes are produced only by cosmic rays). Then he 
performs a series of calculations using this composition 
and some of the observations taken at the sample site (such 
as topographical shielding) to find the length of time the 
sample has been at the surface. This length of time takes 
the form of a value with error bars. The expert’s next step 
is to derive an absolute landform age.  

For most landforms, the surface exposure times of 
boulders on the surface are true measure of the age of the 
landform. This is because the boulders are brought to the 
surface from deep bedrock when the landform is formed. 
However, different landforms are exposed to different 
events, complicating the task of determining an overall age 
for a landform. The simplest version of this problem arises 
when the expert has a large number of samples and all of 
their ages overlap, as shown in Figure 2(a).  

Unfortunately, sample sets rarely have a perfect range of 
overlap. Instead, initial sample ages are usually spread over 
a wider range than the individual sample errors as in Figure 
2(b). In these cases, the researcher must construct an 
explanation for the spread in apparent ages, usually a 
geologic process acting on the samples over time. Once he 
has found a process that explains the majority of the data, 
he uses further calculations and educated guesswork to 
remove its effects from the sample set and, he hopes, arrive 
at a single age for the landform. In real landforms, more 
than one process may have been at work, but experts 

generally focus on isolating the one that most affected the 
ages of the samples. 

Unfortunately, a single round of analysis does not always 
serve to isolate a landform’s true age with any confidence. 
In this case, the expert must return to the original sample 
site (at great expense) to seek further samples that 
disambiguate between possible hypotheses or reinforce the 
evidence for a likely process. For example, a soil sample at 
depth can distinguish between several candidate processes. 

Most explanations that experts use for a spread in 
apparent ages come from a short list of geologic processes 
that affect the exposure times of the samples. Statistical 
‘processes’ may also explain the data: e.g. the age spread 
may be a result of lab error or some form of mis-sampling. 

Despite the small number of candidate processes, 
selecting an explanation for the apparent age spread of a 
particular landform is not a simple task. Available data are 
noisy and untrustworthy. Experts make mistakes in their 
observations in the field. Moreover, the manifestation of 
one process may be quite similar to the manifestations of 
other processes. Experts make a final decision about the 
process in effect on the basis of heuristic reasoning. These 
heuristics frequently contradict each other, and different 
experts hold contradictory opinions about the correct 
heuristics. Addressing this contradiction was a major factor 
in Calvin’s design, as we discuss in the following section. 

Design and Architecture 
Calvin’s input is a set of samples that have already been 
individually dated (experts use a different tool for this step, 
such as ACE (Anderson et al. 2007)). It analyzes these 
groups of samples to determine what process affected the 
whole landform. Our selection of an appropriate 
framework for solving this problem rested primarily on 
data we gathered during extensive interviews. From these 
interviews, we arrived at an argumentation framework as 
the best one for Calvin. This selection led to a need to 
represent both expert knowledge and expert sources and 
comparison of confidence. 

Interviews: Design Motivation 
We interviewed two dozen experts in isotope dating, 
amassing around eighty hours of formal and informal 
interviews. Transcripts of formal interviews can be found 
in (Rassbach 2009). We learned that experts in isotope 
dating consistently use the method of multiple 
simultaneous hypotheses (Chamberlain 1965). They form 
arguments for and against every hypothesis, judging their 
relative and absolute strength to arrive at a solution. 

We learned two significant things in our interviews. First, 
experts reason with contradictory heuristics: 

Geologist: The thing about inheritance is, it’s usually 
thought about as quantized, not incremental... 

Interviewer: So it shouldn’t be a spread of ages 
Geologist: Yeah, however, you can convince me you 

would see a continuum. 

Figure 2: Possible sample age-error distributions 
(a) An ‘ideal’ age distribution: many samples with a 

range of ages included in every single sample’s age plus or 
minus the uncertainty in that sample’s age. 

(b) A ‘real’ age distribution: significant spread, fewer 
samples. This case is common in real problems.

a. b. 
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That is, not only do experts disagree with each other, 
they sometimes disagree with themselves.  

And second, experts themselves are convinced that 
reasoning in their field takes place in the form of argument: 

Interviewer: So we’re trying to understand what it is 
that you do 

Geologist: Well, mostly we argue with each other. 
The structure of expert reasoning revealed in these 

interviews makes argumentation a natural framework for 
automating expert reasoning. 

Reasoning Process 
Most processes that affect a landform come from a set list: 
• The possibility that no process at all was at work 
• Exhumation 
• Clast erosion 
• Inheritance 
• Vegetation cover 
• Snow cover 
• The possibility that some sample(s) are outliers 

 
Other processes do sometimes affect landforms, but these 

seven are the most common. Because the possible 
processes are known, experts do not generally need to form 
novel hypotheses to find an explanation for their data. 

Therefore, Calvin gives every hypothesis from the list of 
‘usual suspects’ equal consideration, as recommended in 
(Chamberlain 1965) and by experts during our interviews. 

Calvin's main task is generating arguments for and 
against each hypothesis in its list. This process involves 
finding the applicable information in its knowledge base, 
unifying it with sample data, and constructing a collection 
of arguments about the conclusion. Performing these 
functions requires a number of design elements: an engine, 
rules, evidence, and arguments. 

Calvin considers candidate hypotheses one at a time and 
builds arguments for and against each hypothesis from the 
top down using backwards chaining. First, the engine finds 
all the rules that apply to this hypothesis—i.e., those that 
refer to the same conclusion. Unification is applied to each 
of these rules, resulting in either a new conclusion to 
consider or a comparison to input data. Calvin builds the 
most complete possible set of arguments from its 
knowledge base for and against each hypothesis. 

Figure 3 illustrates this backwards-chaining process for 
an argument about the possibility of snow cover on a 
landform. Calvin’s engine finds the applicable set of rules, 
considers each one in turn, and then forms a confidence in 
the overall evidence. Eventually Calvin will consider every 
rule about snow cover in its knowledge base and, if the 
data for unification exists, the rule will be used in its 
resulting reasoning. 

Every rule in Calvin contains both a conclusion and a 
template for evidence that will support that conclusion. 
The primary portion of a rule is an implication of the form 
A=>C, where A may be either a single literal or the 
conjunction (or disjunction) of several literals, and C is the 
conclusion that A supports. Calvin uses its rules to form an 
argument (not a proof) for each element in A. From 
arguments in favor of A, Calvin creates an argument for C. 
The representation of the argument contains both the rule 
and the arguments for the antecedents. However, more 
convincing arguments against the conclusion may be 
found, and Calvin’s belief in it overturned. This is the main 
distinction between an argumentation system and a 
classical first-order logic system. 

Calvin’s rules contain several additional elements: a 
quality rating, a guard, and a confidence template. The 
quality rating and confidence template are used to judge 
the relative and absolute strengths of arguments. Guards 
prevent the engine from building arguments using rules 
that are not applicable to the current case. For example, 
Calvin knows that snow cover is more likely if sample age 
is inversely correlated with elevation. This is based on the 
knowledge that snow cover blocks cosmic rays and more 
snow falls at higher elevations, but only makes sense for 
sample sets with large elevation ranges. Otherwise, random 
differences in the data might be interpreted as a meaningful 
correlation. The guard on this rule tells the engine to ignore 
the rule unless this precondition holds. Other 
argumentation systems typically do not require an explicit 
guard mechanism because they instead defeat rules 
explicitly (Farley 1997), (Morge and Mancarella 2007). 

Figure 3: Illustration of Calvin’s chaining of rules. 
(a) Calvin’s engine finds all the rules in its knowledge 

base with a ‘snow cover’ conclusion and puts them in an 
unordered set to consider one at a time. 

(b) Calvin considers a rule that snow cover is more likely 
in cold areas. To apply this rule, Calvin must determine if 

the sampled area is cold, data not input directly. 
(c) The main reasoning loop is called with a new 

conclusion, ‘the area is cold.’ 
(d) Calvin sequentially considers every rule about 

coldness. We show a rule about coldness that finds the 
average latitude and maximum elevation of the sample site 

and compares those values to fixed thresholds. 
(e) The results of arguing about ‘is cold’ are unified with 

the original rule about ‘snow cover.’ 
(f) Calvin moves on to the next rule about snow cover. 
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The antecedents in a rule describe templates for the 
evidence that will satisfy that rule argue for the rule’s 
conclusion. These patterns define both what evidence is 
needed to satisfy the rule and where that evidence can be 
located: that is, whether to build an argument for a new 
conclusion or refer to the data input by the user. 

The arguments for a conclusion C are a collection of 
trees constructed by Calvin’s engine by unifying rules with 
evidence. Alternatively, each argument can be viewed as a 
tuple of the conclusion and support for the argument, as in 
the Logic of Argumentation of (Krause et al. 1995). The 
root of each tree in the collection is a rule whose 
conclusion is C, such as the rule A=>C. Each child of this 
root is one of the literals in A unified with evidence. This 
evidence may be either additional collections of argument 
trees or a reference to the input data. Calvin’s backwards-
chaining engine generally makes no distinction between 
negative and positive evidence. This is not a valid method 
in classical logic, where the knowledge that A=>C 
certainly does not imply that ~A=>~C. However, Calvin’s 
reasoning is intended to mimic that of experts, who are not 
necessarily logical. Experts not only apply rules in this 
negative fashion, they regard it as a sufficiently defensible 
practice that they discuss it in published reasoning. For 
example, (Jackson et al. 1997) includes the statement that, 
since there is no visual evidence of erosion, erosion is 
unlikely in the area under consideration. 

Weighing Arguments 
Some arguments carry greater weight than others, but 
precise comparisons between arguments are not always 
easy to perform. For example, some arguments for 
exhumation on a hypothetical moraine might be: 

(1) This moraine has a flat crest, which is a visual sign of 
matrix erosion. Matrix erosion causes exhumation. 

(2) This landform is a moraine, and moraines usually 
have a matrix, which is soft and erodes quickly. Matrix 
erosion causes exhumation. 

(3) This landform has samples as old as 50ky, and 
various processes often disturb the surface and cause 
exhumation over such a long time period. 

Clearly (1) and (2) are similar arguments, sharing the 
same root rule. Calvin would derive these arguments as a 
single tree with two branches. However (1) is a stronger 
argument for exhumation because it draws on empirical 
observations rather than general knowledge about 
moraines. This issue is often handled in argumentation 
systems by referring to the specificity of arguments, with 
more-specific arguments carrying more weight (Elvang-
Gøransson et al. 1993). However, (3) seems to contradict 
this choice of weighting: although it refers to information 
that is specific to this landform, it seems weaker than (1). 
Furthermore, the relationship between (2) and (3) is 
surprisingly difficult to quantify. How, then, are we to 
judge the strengths of these three arguments in a way that 
preserves the intuitive relationships between them? 

The central principal of Calvin’s confidence system is 
that not only can specific evidence be trivial or critical, but 
the knowledge used to connect the evidence to the 
conclusion is also of variable quality. Defining confidence 
with two dimensions allows us to clarify why one 
argument is better than another: (1) uses high-quality 
evidence and high-quality knowledge. (2) uses high-quality 
knowledge but only moderate-quality evidence, and (3) 
uses high-quality evidence but low-quality knowledge. 
Separating the sources of confidence greatly enhances our 
understanding of the strengths of these three arguments. To 
instantiate this, Calvin represents confidence as a two-
dimensional vector. One element of the vector is 
determined by which rules were used to form the 
argument, and the other is determined by how closely the 
observed situation matched those rules. 

As part of our knowledge engineering process, we asked 
experts about the strength of their belief in their heuristics 
to determine the appropriate qualitative validity to assign 
to each rule. When Calvin unifies evidence with a rule, it 
creates a confidence vector for the rule’s conclusion from 
the closeness of the current situation to the rule’s 
threshold(s) (closer to thresholds gives less confidence) 
and the validity assigned to the rule. Calvin’s engine uses 
this confidence vector to find an overall confidence in 
chains of arguments and in sets of argument trees. 

Using Confidence To judge the strengths of the 
arguments it generates, Calvin manipulates confidence 
values in two distinct ways. The first operates along a 
single chain of reasoning: snow cover is more likely in 
cold areas; this area is cold because it is at high elevation. 
Intuitively, it makes sense to choose the validity of the 
least-valid rule for the overall conclusion: the chain is only 
as strong as its weakest link. Applicability is ‘created’ by 
the direct use of observed evidence. In this case, how high 
the sampled area is, compared to what elevation is usually 
cold, determines the applicability. A few rules lower or 
raise the applicability of knowledge passed through them 
when they are applied. This is to handle situations where 
an observation is not specific to the knowledge being 
applied, as in argument (2) at the beginning of this section. 

The second and more-complicated use of confidence 
occurs when a number of different chains of reasoning are 
all applied to the same conclusion (because an argument is 
a collection of trees), e.g.: (a) erosion is more likely 
because the landform is old; (b) erosion is less likely 
because there is no visible sign of it. A chain of reasoning 
supporting the conclusion might have higher validity but 
lower applicability than a chain of reasoning refuting the 
conclusion. There are often several independent chains of 
reasoning both supporting and countering the conclusion, 
each with its own confidence level. Calvin, like many 
existing argumentation systems (Prakken 2005), assigns 
confidence in two stages, first locally up a single chain of 
reasoning and then globally across many chains of 
reasoning arguing about the same conclusion. 
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To determine its overall confidence in a conclusion, 
Calvin first aggregates groups of lower-validity 
confidences in into higher-validity confidences. Then, if 
the highest-validity confidences for and against the 
conclusion are at least two levels apart, the highest-validity 
confidence is returned intact as the overall confidence: it is 
judged sufficiently strong to completely override the 
weaker rebutting evidence. A difference of two levels of 
validity implies a huge difference in overall confidence 
strength—it is the difference between a logical tautology 
and a statement such as ‘frost heaving sometimes occurs in 
cold areas.’ In contrast, a single level of difference in 
validity is less drastic, for example the difference between 
the preceding statement and a statement that ‘snow cover is 
plausible in cold areas.’ The resulting confidence in other 
situations is illustrated in Figure 4 and Table 1. Figure 4 
indicates which confidence is considered greater and 
assigned to the overall conclusion. However, when the two 
confidences are close, Calvin reduces its overall 
confidence in the conclusion according to how close the 
two competing confidences are. Table 1 shows the possible 
ranks of confidence reduction and when they apply.  

Table 1: Reduction Operations in Confidence Combination

Reduction 
Operation 

Occurs When 

Validity > AND Validity = AND 

Do Nothing Applicability >>  

Applicability- Applicability >= Applicability >>

Applicability- -  ‘Against’ 
Applicability > 

Validity- - Applicability <  

Validity-, 
Applicability- 

 ‘For’ Applicability >

Validity-, 
Applicability- 

 Applicability =

 
Calvin, then, reproduces expert reasoning by considering 

a set list of hypotheses one at a time, creating arguments 
for and against each hypothesis. Evidence may take the 
form of a single comparison or a complete subargument. 
Calvin then weighs these arguments based on the quality of 

knowledge and certainty of evidence used to generate 
them. This weighting results in both absolute and relative 
judgments of argument strength, as well as indicating the 
strongest and weakest points of each argument. 

Results 
Experts publish some of their qualitative reasoning about a 
landform when they publish its age. While this 
presentation is usually incomplete, it typically includes 
information about both rejected and accepted conclusions. 
We used these to assess Calvin’s ability to reproduce 
human expert reasoning. We compared Calvin’s reasoning 
to the reasoning in eighteen randomly-selected papers 
discussing one or more isotope dating problems in detail. 
These publications provide a broad basis of comparison. 
To compare Calvin’s output with this prose, we extracted 
every statement from these papers that made an assertion 
and distilled it to the conclusion being argued and the 
evidence presented for that conclusion. We then entered all 
the data given in the paper, ran Calvin, and compared its 
output to these argument summaries. 

Calvin performed quite well at reproducing arguments 
published in isotope dating papers. For 62.7% of the 
arguments in published work, Calvin came to the same 
conclusion, supported by the same evidence, at about the 
same confidence level as the argument in the original paper 
(we found judging confidence levels from prose relatively 
difficult, and only divided these arguments into ‘strong’ 
and ‘weak’ categories). On a further 26.1% of these 
arguments, Calvin succeeded in two of these elements 
(recognizing the same evidence as important but to a 
different conclusion, coming to the same conclusion with 
different evidence or a vastly different confidence level).  
More detailed results are presented in (Rassbach 2009). In 
a few cases, Calvin produced arguments that did not appear 
at all in the original paper. In one such case, when 
examining (Ballantyne and Stone 1998), Calvin argued that 
the samples were exhumed. The main evidence for this is a 
disagreement with ages determined for this landform via 
other methods. To judge these results, we asked a domain 
expert to assess Calvin’s new argument. He responded: 

I think I see both sides here. From the results, the fact 
that the ages are younger than the C14 data means that 
exhumation should be taken very seriously (...) there 
is not much in the way of material that could bury 
them. However the peaks themselves are eroding... 

Clearly choosing not to explicitly address exhumation in 
(Ballantyne and Stone 1998) was a major oversight, given 
the amount of unclear and conflicting evidence that may or 
may not be indicative of it. Although Calvin does not give 
exactly the same argument, it has found a major gap in the 
reasoning published by these authors. 

In some cases, Calvin produced arguments strikingly 
similar to the statements in the paper. These similarities 
were especially obvious when the authors of the paper 

Figure 4: A decision tree for which confidence is 
greater in comparing opposing confidences. 
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expressed significant doubt about their conclusions. For 
example, consider this passage from (Briner et al. 2005): 

“The ca. 56 ka age on the Jago lateral moraine 
appears to be a clear outlier that we attribute to 
inheritance. The age of the Okpilak ridge is uncertain; 
correlation with the Jago ridge supports the 
suggestion that the two older boulders from the 
Okpilak ridge contain inherited isotopes. 
Alternatively, both ridges might be pre-late Wisconsin 
in age, and the young age cluster on the Jago ridge 
records accelerated moraine degradation and 
consequent boulder exhumation during the late 
Wisconsin. On the other hand, the stabilization age 
indicated by the (...) ca. 27 ka age is consistent with 
Hamilton’s (1982) age constraints for deglaciation...” 

Calvin finds it quite likely that the 56ka sample is an 
outlier and attributes the difference to inheritance. 
However it, too, grapples with explaining the age of the 
Okpalik ridge: inheritance is supported by correlation with 
the Jago moraine, the 25ka expected age, and the climate 
of the area. However, this implies that 2/3 of the samples 
from that ridge contain significant inheritance, leading to a 
conflicted overall argument for inheritance. Calvin also 
finds significant support for exhumation on both moraines, 
coming to the same uncertain conclusion as the authors. 

Conclusion 
Calvin is a fully implemented argumentation system in use 
by experts in cosmogenic isotope dating (it has been 
downloaded 178 times). Because of its nature as a concrete 
system, building Calvin required us to solve a complex 
problem: how to best describe and compare confidence. 
Our solution, a two-element vector to represent confidence, 
and the associated system for weighing rebutting 
arguments appears to be novel. This system, while 
complex in implementation, elegantly captures the 
argument comparisons we observed experts making. 

Calvin is an argumentation system because our goal was 
to reproduce the structure of expert reasoning. Although 
isotope dating experts may speak in terms of probabilities 
and chains of reasoning, they, like most scientists, do not 
reason in a probabilistically or logically correct manner. 
Thus, an inflexible system of probabilities or logic would 
find it difficult to accurately reproduce the reasoning of 
experts in this field. Expert argument comparisons more 
closely resemble possibilistic logic (Dubois and Fagier 
2005), (Farreny and Prade 1996) and our own confidence 
system than either a Bayesian or pure logic system. 

While Calvin’s initial results are extremely promising, 
we are in the process of planning a more rigorous study 
(with automatic annotation (White 2009)) to more 
completely test its success at solving this problem. 
Furthermore, we believe that Calvin’s confidence system 
will translate well to other problems where weighing 
competing arguments is difficult—both in other scientific 
fields such as forensic linguistics and problems in other 

domains, such as the game of bridge. We hope to identify 
if there is a cognitive mechanism that weighs rebutting 
arguments in a consistent way across domains and, if so, to 
elucidate that mechanism. 
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