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Abstract 
This paper presents a machine learning approach for 
accurate estimation of energy expenditure using a fusion of 
accelerometer and heart rate sensing.  To address short 
comings in existing off-the-shelf solutions, we designed Jog 
Falls, an end to end system for weight management in 
collaboration with physicians in India.  This system is meant 
to enable people to accurately monitor their energy 
expenditure and intake and make educated tradeoffs to reach 
their weight goals.   
In this paper we describe the sensing components of Jog 
Falls and focus on the energy expenditure estimation 
algorithm.  We present results from controlled experiments 
in the lab, as well results from a 15 participant user study 
over a period of 63 days.  We show how our algorithm 
mitigates many of the issues in existing solutions and yields 
more accurate results.1 

 Introduction 
The statistics of rapid increase in obesity, and its effect on 
diabetes, heart disease and high blood pressure has 
motivated much of this work.  To enable people to better 
manage their weight, we need to empower them with 
solutions to monitor their energy expenditure and balance 
it against their food intake.  Accurate visibility of these 
parameters provides people with the necessary information 
to make educated tradeoffs.  In addition, enabling users to 
share this knowledge with their physicians enhances the 
physicians’ ability to help their patients. There are many 
off the shelf solutions available today to measure energy 
expenditure such as pedometers, Body Bugg, Nike+, and 
many others.  However, most of these solutions have 
limitations when it comes to accuracy, system integration, 
and user feedback. To realize this vision, we worked 
closely with physicians to design an end to end system for 
weight management that addresses the shortcomings in 
existing solutions. Our system, which we call Jog Falls, 
consists of multiple sensing devices (accelerometers and 
heart rate sensor) connecting to a cell phone for further 
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processing, aggregation and data transport. To satisfy the 
accuracy requirement for energy expenditure estimation, 
we designed an algorithm that fuses data from the different 
sensors. This fusion approach improves the accuracy and 
helps mitigate issues like sensor noise and data loss. We 
conducted a user study on 15 participants over a period of 
63 days and analyzed the results of the study. 
 In this paper we describe this algorithm and show results 
from controlled experiments as well as our user study. 
The rest of the paper is organized as follows.  We first 
describe related work, followed by a system overview.  We 
then describe the details of the algorithm and the features 
used, followed by a description of the results from the 
controlled experiments and the user study.  We finally 
conclude the paper and describe future work. 

Related Work 
Several solutions to calculate ambulatory energy 
expenditure have been proposed. Most notable work 
that takes a machine learning approach is BodyBugg. 
As described in [McClain, James J 2005] and [David 
Andre. 2006] BodyBugg shows better accuracy in 
estimating Energy Expenditure by using sensors like 
GSR (galvanic skin response) and heat flux to 
compensate for the shortcoming of accelerometers in 
accurate effort estimation. However, as shown in the 
experimental results section, it overestimates expended 
energy due to error in estimating body movement (e.g. 
while riding in vehicles). The authors in [McClain, 
James J 2005] also demonstrate accuracy improvement 
by using heart rate data with BodyBugg sensors, but 
since the principle of operation of the device is based 
on identifying user context and choosing the right 
formula accordingly to calculate EE, it will still be 
affected by the lack of lower body information. 
 [Soren Brage 2004] used a hip mounted single axis 
accelerometer to quantify the level of physical 
movement in terms of “counts per minute” for walking 
and running speeds. They used a Branched Equation 
Model, however, the model does not consider energy 
expenditure due to “upper body” movement during 
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sedentary activities (like working on PC, bending, 
arranging drawers, cooking, ironing etc) hence leading 
to underestimation of energy expenditure. Another 
shortcoming of their solution is that if one of the 
sensors stops providing data, the system will not 
output any energy expenditure.  We address both of 
these limitations in our solution. [K Rennie 2000]  
used a single integrated chest mounted movement and 
HR sensor. They address the effect of emotion on HR 
and the quantification of excretion, however, the 
algorithm will be affected by the lack of lower body 
movement data.   
 Results from [Daniel Olgun 2006] and [Ling Bao 
2004] prove that a combination of accelerometer data 
from upper and lower body always yields higher 
accuracy in identifying user activities, compared to a 
single accelerometer. The errors are mainly due to the 
misinterpretations of the movement noise caused in the 
accelerometer. The same conclusion could be extended 
to the technologies described in [Soren Brage 2004][K 
Rennie 2000][ McClain, James J 2005] and [David 
Andre.2006], which use a single accelerometer either 
on the upper or lower body for EE calculation.   

System Overview 
Our Energy Expenditure estimation system contains the 
following components: 

Chest Sensor 
The Chest Sensor (CS), designed in-house, is 
comprised of a wearable ECG Heart Rate (HR) 
monitor with an integrated 3-axis accelerometer 
sensor. The CS uses the integrated Chest 
Accelerometer (CA) to estimate the intensity of upper 
body movement (such as bending, turning, movement 
of hands) in terms of Metabolic Equivalents (METs), 
which we refer to as CA_MET. The CS sends 
computed HR and the CA_MET values to a cell phone, 
wirelessly over Bluetooth, every 5 seconds. 

Hip Sensor 
The Multi-sensor Platform [MSP], which also has an 
integrated 3-axis accelerometer, is used as Hip Sensor 
(HS). The signals from the Hip Accelerometer (HA) 
are classified using machine learning algorithms to 
identify user activity (sitting, walking, running etc) 
and walking speed. The HS sends the walking speed 
(S) and activity information to the cell phone, 
wirelessly over Bluetooth, every 5 seconds. 

Data Aggregator 
The Cell phone runs the Data Fusion algorithm which 
fuses data from HR, CS and HS to estimate the EE 
every minute. The cell phone continuously aggregates 
computed values from the CS and the HS, averages the 

values over a minute and passes it to the Data Fusion 
algorithm. All the computed values are stored on a 
flash card and used for post-analysis. 

Individual Calibration 
Energy requirement of any activity can also be quantified 
in terms of METs. Each activity has a specific MET value, 
proportional to the required effort. Multiplying MET by 
the Weight (W) of the individual in Kg gives the EE in 
kcal per hour. MET values published in the Compendium 
of Physical Activities [ Ainsworth 2000] were used. 

Heart Rate Calibration 
Since both EE and HR are proportional to Oxygen Uptake 
(VO2), HR can be used to estimate EE. However, as HR at 
particular activity intensity depends on the fitness level of 
the individual, HR needs to be calibrated for each 
individual to estimate EE. In our calibration procedure, 
subjects walked for 3 minutes each, at different walking 
speeds, during which their HR and MET equivalent to the 
walking speed were noted to build an individualized HR 
v/s MET calibration table. Before the start of the 
calibration procedure, subject’s Resting Heart Rate (RHR) 
was also noted. 

Accelerometer Calibration 
The CA was used to quantify the activity intensity of low-
intensity, non-walking activities which involve the upper 
body movements. Signals from 3-axis of the CA, were 
combined and averaged to form a composite signal, 
proportional to the upper body movement. BodyBugg has 
been shown to be accurate at estimating the resting energy 
expenditure [Malavolti 2007] [Fruin 2003], it was also 
verified in our Controlled Calorimeter experiment. Hence, 
the average magnitude of this composite signal was 
calibrated in the range of 0 to 3 METs while performing 
different sedentary activities (like sitting and working with 
hands, bending, cleaning, ironing, arranging drawers), 
using BodyBugg as reference. We refer to the METs 
estimated by the CA as CA_MET. Performing any 
activities with intensity greater than or equal to slow walk 
will result in a CA_MET value exceeding 3. 

Theory of Operation of Fusion Algorithm 
The features extracted from hip, chest accelerometer 
and heart rate are used to determine the best possible 
sensor to calculate Energy Expenditure (EE) for a 
given context. This enables a comprehensive analysis 
of user’s physical state and amount of exertion in an 
activity.  In addition it allows mitigating failures 
caused by missing data or sensor failure. Some of the 
cases addressed by our algorithm that differentiate our 
solution are listed below.  
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Psychological & emotional factors influence heart 
rate leading to higher estimation of EE. The Fusion 
algorithm uses heart rate trending in conjunction 
with lack of movement in the upper and lower body 
to identify the emotion effect on heat rate and 
calculate EE based on the accelerometer.  

During the recovery phase of an exercise, heart 
rate tends to overestimate the expended energy, 
while the accelerometer tends to underestimate it. 
The fusion algorithm adopts a switching technique 
that minimizes the error by using heart rate during 
the initial ramp down and switching to accelerometer 
after the ramp down of the heart rate. 

Vibrations in a moving vehicle could influence the 
accelerometer leading to higher estimation of EE. 
The fusion algorithm is designed to identify the 
condition and switch to the heart rate sensor. 

Accelerometer can’t estimate effort accurately 
(e.g. tell the difference between walking or walking 
while carrying a heavy load). The fusion algorithm 
can identify this context and use heart rate which 
will be more representative of the effort. 

 Choosing a single best sensor from all available 
sensors allows the fusion algorithm to gracefully 
degrade during sensor failures, and continue operation 
by using the information from the existing sensors.  
Alternative approach is to estimate a combined MET 
value from the sensors. We took the former approach 
due to our familiarity with context recognition and the 
fact that many of the components were already 
developed. 

BayesNet Model 
We used Bayesian Network to infer the validity of the 
sensors. The network structure learnt using data from our 
controlled experiment is shown in Figure 1. The decision 
variables like “HR Validity”, “Upper Body Accel Validity” 
and “Lower Body Accel Validity” are binary variables, 
representing valid and invalid states with equal priors. The 
feature variables consist of states representing discrete 
value ranges learnt from the training data. Three different 
queries , , 
and  will be performed on the 
network after extracting features from the sensor data to 
calculate conditional probability of validity of each sensor. 
The query that returns the highest probability is chosen as 
the preferred sensor. 
 For example, in the case of a weight lifting, the upper 
body accelerometer will tend to record higher movement 
than the lower body and at the same time heart rate of the 
subject will be elevated well above normal. The above 
evidence affect the individual probability of the nodes as 
follows, 

 

 

 

 
And 

 
 The local probabilities favor  
compared to the other queries and thus influencing the 
decision to choose Hear Rate sensor. 
 Similarly, in case of vehicle noise, the local probabilities 
look as follows  

 

 

 
 Thus reducing the chances of picking the noisy 
accelerometers for calculating EE. It is worth observing the 
indirect influences in the graph. For example, the “Upper 
Body Accel MET” influences “HR Validity” and “Lower 
Body Accel Validity” when “Upper Body Accel Validity” 
is not observed. Similarly the HR Features affect the 
“Upper Body Accel Validity” through the “Lower Body 
Speed”. 
 It is evident from examples above that features from all 
the sensors will either directly or indirectly influence all 
three of the decision nodes, and thus reinforcing each other 
in choosing the right sensor for a given context. 

Figure 1 BayesNet for sensor validity 
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Sensor Features 
Delta Heart Rate: This feature represents the difference 
between the mean heart rate of a given 1 minute window 
and the resting heart rate of the subject. The delta value is 
split in to 3 discrete ranges which form the elements of the 
random variable set.  
Heart Rate Forward Difference: This feature represents 
the mean value of forward difference of heart rate in a 
given 1 minute window. The feature provides the trending 
of the HR data in a given window. For example, was the 
HR consistently reducing, increasing or stayed almost flat.  
Lower Body Speed: This feature represents the speed of 
movement of the lower body using hip accelerometer. It 
can capture walking and running speed in MPH. 
Upper Body MET: This feature provides a metabolic 
equivalent of the movement captured in the upper body 
accelerometer.  
Mean Heart Rate: This feature provides the mean heart 
rate for any given minute. 
Heart Rate Mean difference: This feature represents the 
difference in mean heart rate across successive window. It 
provides information about the trend of heart rate across 
windows. 

Model Learning 
A supervised learning approach was adopted to create the 
model. The training examples are generated by using data 
from the lab experiment described in the “Calorimeter 
Experiment” section below. We used WEKA [Witten 1999] 
for learning the structures and parameters of the BayesNet.  
The structure of the BayesNet and the CPT (Conditional 
Probability Table) for the random variables are learnt using 
K2 greedy search algorithm with Bayes estimator. We 
compared the inference results by learning network with 
three and four maximum parents per node and found that 
adding an additional parent to the variable did improve the 
inference and hence decided to go with four parents. 

Inference and EE Calculation 
The BayesNet consists of 3 decision nodes, each attempt to 
answer the validity question of one of the sensors. For 
example, if the question we want to answer is P(HR 
Validity) we will observe the nodes, “Delta HR”, “Lower 
Body Speed”, “Upper Body MET” and “HR Forward 
Difference”.  
 The probability of decision variable is calculated using 
Baye’s rule, given all the features from various sensors. 
Let HR represent the class variable for “Heart Rate 
Validity”. Let E represent all the other random variables 
used as evidence.  

Let HR = {v, nv}, be the states representing HR Valid 
and HR not valid.     (1) 

The joint probability of the BayesNet using chain rule 
can be written as 

                  (2) 
Similarly,  

          (3) 
Applying 2 and 3 in 1 

(4) 
 
 Thus the CPD associated with each variable given its 
parents can be used to calculate the joint probability and 
ultimately the conditional probability of the class variable. 
 Similar queries can be formed for “Lower Body 
Accelerometer Validity”, and “Upper Body Accelerometer 
Validity”.  
 In case of missing data from one of the sensors, the 
algorithm allows to integrate over missing variables in the 
graph, facilitating a smooth operation. For example, let 

 be the evidence from lower body accelerometer and 
 represent the evidence set from rest of the sensors. In the 

case of missing lower body accelerometer data, equation 
(4) can be written as follows, 
 
 
 
                                                                          (5) 
 
 
 
 We designed the energy expenditure calculation to be 
performed every minute to help average erroneous input 
from the sensors that could lead to wrong sensor choice.  

Experiment and Results 
This Section describes the experiments performed for 
training and validating the system, together with the results 
from the deployment. 

Calorimeter Experiment 
A lab experiment was conducted in the Human 
Performance Laboratory of Oregon Health Science 
University. The experiment aimed at understanding the 
limitations of the sensor data like Heart rate, lower and 
upper body acceleration in comparison to Calorimeter 
which is considered as one of the golden standards for 
calculating EE. The calorimeter (Figure 4) is a device that 
measures the oxygen uptake and requires inserting a large 
fixture into the mouth and plugging the nose to ensure that 
oxygen flow is fully captured and measured through the 
device.  It is uncomfortable to wear and restricts the 
person’s movement quite a bit, so we needed to give 
frequent breaks to subjects while performing the 
experiment. As a result, it is not an option to use the 
calorimeter in real settings, but it is a great tool for 
performing controlled experiments and calibrating other 
equipment.  
 Four subjects wearing a hip mount accelerometer, 
BodyBugg (arm mounted with multiple 
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sensors)[BodyBugg], Polar HR monitor [Polar] were 
connected to the Calorimeter. Required parameters like, 
lower / upper body movement, heart rate, and EE from the 
calorimeter were logged. Subjects were asked to perform 
five different activities like slow walking, brisk walking, 
running, weight lifting and biking while connected to the 
calorimeter. Each activity was followed by a break where 
the user had to sit quietly. The initial 20 minutes were used 
to collect resting heart rate while sitting quietly and 
working on computer. However we observed elevated 
heart rate on all subjects (possibly anxiety induced) and 
repeated the RHR measurement in a different setting when 
the users were not connected to the calorimeter. 
 The data from the experiment was used to train the 
fusion algorithm in such a way that the modality chosen for 
EE calculation will maximize proximity to the Calorimeter. 
Cases like exercise recovery, upper body workout and the 
effect of exertion were captured accurately in the training. 
Cases like moving vehicles, and emotional effect were 
added to the BayesNet after the training process, since it 
was hard to collect data for such situations in a lab setting. 
The CPT’s were adjusted using sensitivity analysis tools to 
address these conditions. 

Figure 5 shows that heart rate sensor was chosen for 
high activity level whereas accelerometer sensor was 
chosen when the user was sedentary. In addition heart rate 
sensor was chosen for a brief period of time while 
recovering from an intense activity. The decision to switch 
to the accelerometer in this situation is driven by the rate of 
change of heart rate, as it decreases the algorithm switches 
to the accelerometer to prevent MET over-estimation. 

It can be seen from Figure 3 that heart rate overestimates 
the MET values in multiple occasions. There is an 
overestimation immediately after an intense activity, where 
the heart rate does not recover quickly, leading to a higher 
MET value. Secondly, at the beginning of the experiment 
the anxiety effect of wearing the calorimeter equipment 
resulted in an elevated heart rate in all of the four subjects 
which also caused a higher MET value estimation. The 
accelerometer shows a close proximity to the calorimeter 

during sedentary states, but underestimates exertion in the 
intense activities, as shown in the figure for cases like 
weight lifting and running.  
 The fusion algorithm was designed to choose the right 
sensor based on user activity level to obtain a MET value 
close to the calorimeter estimation. Results showed that the 
heart rate sensor overestimated EE by (+22%) and the 
accelerometer underestimated the effort by (-10%). The 
fusion algorithm reduced the error to (+5%) by switching 
between the heart rate and accelerometer sensor at the right 
context. Figure 2 illustrates the proximity of MET values 
between the fusion algorithm to the calorimeter. 

Figure 4 One of the authors in Calorimeter setup 

Figure 3 Compare MET values of Heart rate and 
accelerometer with calorimeter 

Figure 2 Compare MET value of Calorimeter and Fusion 
Algorithm 

Figure 5 Sensor choice for different activity context 
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Comparative Experiments 
Bodybugg has been shown to be accurate at measuring 
total Energy Expenditure in free living conditions [St-Onge 
2007]. In order to compare the performance of our data 
fusion technique with BodyBugg, subjects also wore 
Bodybugg along with our test setup. Minute by minute EE 
measurements were logged while subjects performed 
different activities in free living conditions (desk work, 
cleaning, washing, cooking, walking, shopping, sleeping, 
traveling in vehicle). Our algorithm closely tracked EE 
estimated by Bodybugg for most activities, the aggregate 
results of which are shown in Table 1.   However, 
BodyBugg overestimated EE, equivalent to running (9 
METs), even when the user was sitting in the vehicle while 
traveling. It does not seem to handle the vibration noise 
from the vehicle that affects the accelerometer, even with 
additional input from sensors like heat flux, temperature, 
and skin conductivity.  

Table 1.  EE estimated by fusion algorithm and by Bodybugg.  

Test Data Fusion  
(kcal) 

Bodybugg  
(kcal) 

% 
difference 

Home 
Activities 

319 340 -6% 

Working at 
Desk 

128 125 2% 

Full Day Test 1308 1378 -5% 
 Our algorithm uses CA_MET as one of the inputs to 
switch between sensing modalities. For low intensity 
activities (CA_MET <= 3) the CA is used for EE 
estimation, whereas for moderate to higher intensity 
activities (CA_MET > 3), HR is used for EE estimation. 
While traveling in the vehicle, the composite signal from 
the CA exceeded 3 METs due to vehicle vibrations and 
jerks, causing the algorithm to switch to HR modality, and 
prevented the overestimation of EE. The results during 
vehicle travel are shown in Figure 7. 

JogFalls Study 
The section describes results from the user study that we 
conducted at a leading medical school in India. The study 
involved 15 participants, who used the system for a period 
of 63 days. Estimation of EE in an accurate and reliable 
manner was a firm requirement of the study. Figure 6 
shows the sensor choice made by the fusion algorithm 
during different activities. Comparing the sensor choices in 
Figure 5 and Figure 6 it is clear that the sensor choice for 
calculating energy expenditure during the deployment 
matches the results from the calorimeter test. Figure 6 also 
highlights the short bursts of “slow walking” spread across 
the day which did not have the intensity to influence heart 
rate as the preferred sensor.  
 Figure 8 shows the cumulative MET value for one day. 
Both accelerometer and heart rate , estimated 15-20% less 
than the fusion algorithm. The main cause of 
underestimation in the case of heart rate is the intermittent 
data loss possibly due to bad wireless connection. The 
fusion algorithm used accelerometer to calculate EE when 
there was no information from Heart Rate sensor. The 
accelerometer underestimated the expended energy for 
activities like Brisk Walking, however the fusion algorithm 
chose to use Heart Rate sensor, which is more accurate 
during those scenarios. 

Figure 7 Performance of Data Fusion algorithm and 
Bodybugg while traveling in a vehicle 

Figure 6 Sensor choice in JogFalls for various activities 

Figure 8 Comparing cumulative MET for accelerometer, 
Heart Rate and Fusion algorithm 

1851



 Data from our field study revealed the average run time 
of the application was 13 hours a day and about 30% of the 
time the system operated with only one of the sensors (due 
to battery and/or wireless communication issues), which 
led to data loss. In these cases, the BayesNet algorithm 
enabled integration over missing variables to calculate EE 
when one of the sensors is missing, thus resulting in 
graceful degradation of the system. 

Conclusion 
The paper described a machine learning approach to 
accurately calculate Energy Expenditure in ambulatory 
conditions, using data from a chest mounted and hip 
mounted Accelerometer together with heart rate. A 
context driven sensor choice using BayesNet algorithm 
proved to be much more effective than the existing 
techniques and estimated EE much closer to the golden 
standard. The algorithm utilizes the asymmetry in the 
failure conditions across the sensors to compensate for 
the limitations of each individual sensor. 

We discussed various techniques used to calculate 
Energy Expenditure in this paper. While some are 
restricted to laboratory settings, few of the techniques 
used in products like BodyBugg utilize a combination 
of sensors like accelerometer, body temperature and 
galvanic skin response either individually or in 
combination and have been used in ambulatory 
conditions. Our experiments proved that the existing 
products do not address many of the failure cases like 
vehicle noise in accelerometer, psychological & 
emotional effects on Heart Rate etc. In addition, the 
controlled experiment proved that accelerometer 
underestimates exertion and hear rate overestimates 
recovery from an intense activity. The result section 
demonstrated that the fusion algorithm addresses the 
failure cases described above by switching to appropriate 
sensor in the right context. 
 Features from all three of the sensors were used in 
evaluating the current valid sensor in the BayesNet (Figure 
1). However the mapping of lower body speed to MET 
values was based on [Ainsworth 2000] and was not 
individually calibrated for each user. In addition our 
training set was not extensive enough to claim generality 
of the solution. Hence we did not use the lower body 
accelerometer to calculate MET value even if it was chosen 
as the preferred sensor. We override that particular 
decision and choose HR or Upper body accelerometer 
depending on their validity. We intend to address this issue 
in our future revisions to further improve our solution. 
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