Sentiment Extraction: Integrating Statistical Parsing, Semantic Analysis, and Common Sense Reasoning

Lokendra Shastri, Anju G. Parvathy, Abhishek Kumar, John Wesley, and Rajesh Balakrishnan
Center for Knowledge Driven Information Systems, Software Engineering and Technology Labs
Infosys Technologies Ltd., Bangalore, India
{llokendra.shastri, anjug.parvathy, abhishek.kumar25, john.wesley, rajeshb}@infoys.com

Abstract
Much of the ongoing explosion of digital content is in the form of text. This content is a virtual gold-mine of information that can inform a range of social, governmental, and business decisions. For example, using content available on blogs and social networking sites businesses can find out what its customers are saying about their products and services. In the digital age where customer is king, the business value of ascertaining consumer sentiment cannot be overstated. People express sentiments in myriad ways. At times, they use simple, direct assertions, but most often they use sentences involving comparisons, conjunctions expressing multiple and possibly opposing sentiments about multiple features and entities, and pronominal references whose resolution requires discourse level context. Frequently people use abbreviations, slang, SMSese, idioms and metaphors. Understanding the latter also requires common sense reasoning. In this paper, we present iSEE, a fully implemented sentiment extraction engine, which makes use of statistical methods, classical NLU techniques, common sense reasoning, and probabilistic inference to extract entity and feature specific sentiment from complex sentences and dialog. Most of the components of iSEE are domain independent and the system can be generalized to new domains by simply adding domain relevant lexicons.

1 Introduction
Much of the ongoing explosion of digital content is in the form of text and appears in news articles, blogs, tweets, social networking sites, and resources such as the Wikipedia. This content is a virtual gold-mine of information that can inform a range of social, governmental, and business decisions. For example, businesses can gather intelligence about their competitors (which company is acquiring which company, and who is hiring whom), or find out what its customers are saying about their products and services and about those of its competitors. Businesses can use this information to improve existing offerings, design better products, and address customer concerns. Customers can follow the buzz and find out what other customers are saying about products and services. The latter examples fall in the category of “sentiment analysis” wherein the task involves examining blogs, service call logs, reviews, and postings in social network sites in order to ascertain the opinions (or sentiment) being expressed about products and services. In the digital age where customer is king, the business value of ascertaining consumer sentiment cannot be overstated.

Sentiment analysis (SA) has many variants. In some cases, the task involves processing a collection of postings and arriving at a holistic rating indicating the strength of positive (and negative) sentiments expressed in a blog. In other cases, the analysis is carried out at a much finer granularity whereby each blogger’s opinion about a specific product, or even a specific feature of a product, is extracted (What is Joe124’s sentiment about the download speed of AcmeNetwork’s DSL offering)?

In the context of Natural Language Understanding (NLU), Sentiment Analysis (SA) lies at an interesting point on the “level of difficulty” scale. On the one hand, the final outcome (or meaning) of SA is straightforward; it consists of (i) a valence (positive/negative), (ii) a magnitude (with a small number of distinct values) and (iii) a specification of the entity about which the sentiment is expressed. But on the other hand, the input of SA can be arbitrarily complex. A cursory review of blog posts would reveal that people express sentiments in myriad ways. At times, they use simple, direct assertions (e.g., I love AcmeNetwork’s customer service), but most often they use sentences involving comparisons (The download speed of AcmeNetworks is better than that of AceNet); conjunctions that express multiple and possibly opposing sentiments about multiple features and entities; and pronominal references whose resolution requires discourse level context. Frequently people use abbreviations, slang, SMSese, idioms (AceNet downloads happen at a snail’s pace) and metaphors - even productive ones (Downloading on AceNet is like pouring honey from a jar). The understanding of such productive metaphors requires common sense reasoning. Finally, people often resort to sarcasm, irony and humor, all of which pose even greater challenges.

Much progress has been made in the field of text-mining and sentiment analysis (see Section 2 for citations). Some of the most impressive work has been done using statistical techniques based on machine-learning or word-correlation algorithms. These techniques have provided fairly good performance and they also offer the added advantage of being scalable and amenable to automation. While the overall per-
formance of these techniques is surprisingly good, they are less effective in teasing apart multiple sentiments being expressed about multiple entities in a single sentence. They also have difficulty in dealing with discourse-level context (e.g., resolving pronominal references) and understanding the meaning of productive metaphors that require common sense reasoning. An alternative approach to text analytics and sentiment analysis is based on NLU where a text undergoes syntactic, semantic and discourse analysis in order to extract “meaning” expressible in some formal notation. The major shortcoming of this approach is that it is labor intensive, and hence, difficult to scale. As one might expect, researchers have developed hybrid approaches that combine statistical techniques with NLU leading to interesting results. We believe that the best results in SA will be obtained by adopting such a hybrid approach.

In this paper, we present iSEE, a fully implemented sentiment extraction engine, which makes use of statistical methods, NLU techniques, common sense reasoning, and probabilistic inference to extract entity and feature specific sentiment from complex sentences and extended dialogs. Most of the components of iSEE are domain independent and the system can be generalized to new domains by simply adding domain relevant lexicons and without making changes to the processing engines. This makes iSEE easily extensible.

2 Brief review of related work

Much progress has been made in the field of sentiment analysis (Pang and Lee 08). Examples of applying the statistical approach include (Dave, Lawrence, and Pennock 2003), (Pang, Lee, and Vaithyanathan 2002), (Beinke et al. 2003), (Jin, Ho, and Srihari 2009). (Turney 2002) uses word-correlation algorithms for classifying entire documents based on their sentiment polarity. (Hatzivassiloglou and McKeown 1997) produced a list of seed words to determine whether a sentence contains private or negative sentiments. ‘SentiWordNet’(Esuli and Sebastiani 2006)is a lexical resource that aids opinion mining. Sentiment mining using lexicons is another widely followed approach (Yi and Niblack 2005), (Ding, Liu, and Yu 2008). Using appraisal groups of adjectives and modifiers to analyze sentiment is also pruned to get frequent ones; opinions are extracted from the adjectives in the sentence. ‘OPINE’ is an information-extraction system that exploits syntactic details to produce feature specific sentiments and their relative quality. ‘Opinion Observer’ (Hu, Liu, and Cheng 2005) is another prototype system that analyzes and compares consumer opinions.

3 The Proposed Approach

We believe that the most effective role of statistical machine learning techniques is in the area of parsing. Consequently, iSEE uses a statistical parser. At the same time iSEE uses a rule-based linking engine to map syntactic constituents to semantic roles. iSEE also uses discourse analysis and other NLU techniques in conjunction with common sense reasoning, and probabilistic inference to extract entity and feature specific sentiments from complex sentences and extended dialogs. iSEE also makes use of several lexicons (general as well as domain specific) for enumerating entities, features and sentiment words. The architecture of iSEE is highly modular, and hence, easily extensible.

Functional Architecture

Fig.1 shows the functional architecture of the iSEE based Sentiment Analyzer. A description of each module follows.

Knowledge Repository (KR): The KR hosts knowledge consumed by various modules. This includes the SMSese dictionary, domain specific entity and feature lexicons, the set of linking rules that mediate the interaction between parses and semantic frames, KRs for common sense knowledge, idioms, and the sentiment vocabulary.

Pre-processor: The input to the system can be in various forms of unstructured text such as blogs, reviews, news articles, and call center logs. This input is filtered and cleansed by the pre-processor. The SMSese module replaces the SMSese words, shorthands and slangs known to the system and a domain specific spell checker corrects misspelled words in the sentence. In case of a blog, the pre-processor also captures the thread structure of the blog and its comments. The input is then split into a set of sentences by a sentence-splitter and passed on to the Syntactic Engine, the Semantic Engine and the Idiom module.

Syntactic Engine (SynE): The core of this engine is a statistical parser. Interfaces allow iSEE to work with any of the available parsers (See Results). The parser initially invokes a POS tagger to assign parts of speech to the tokens in the sentence. The Named Entity Extractor (NEE) in the Semantic Engine (SynE) identifies (and tags) domain relevant entities and features and conveys to the parser that these tagged named entities should be treated as a single token with the POS tag for a noun phrase (shown by the informer link from NEE to SynE). Similarly, the idiom module tags idioms in a sentence as a single token with an appropriate POS tag. The parser generates (typically, multiple) parses for such tagged sentences. It also classifies the sentence as a w-h-question, an assertion, a comparison, confirmation seeking statement or a confirmation providing one.

Linking Engine (LE): The LE provides the critical linkage between the syntactic structure of a sentence and its
meaning. It does so by identifying the mapping between the syntactic constituents of a sentence and the roles of the semantic frame that constitutes the meaning of the sentence. These mappings are expressed in terms of linking rules (LRs) whose antecedents are syntactic structures and whose consequents are semantic roles ((Fillmore, Johnson, and Petruck 2003), (Goldberg 1995)). The LE also has a rule prioritizer for resolving conflicts amongst overlapping rules. While an LR with a broader span typically overrides one with a narrower span, the LRs for conjunctive constructs override those for simple declarative sentences and those for comparative constructions have a higher priority over those for conjunctive and simple declarative constructs. The constituents extracted by the LE are passed to the Semantic Engine (SemE), the Common Sense Reasoning Module (CSRM) and the Sentiment Analyzer (SA). An example of an LR for a simple comparative construction - "(Entity 1) is (better than) (Entity 2)" is as follows:

```xml
<LR name="COMP_D" LRs_this_overrides = "D">
<type-head type="VP" head="is,was,are,were">
  <type-head type="VBZ,VBP,VBD" head="is,was,are,were">
    <sibling side="right">
      <type-head type="JJR, RBR" head="better,worse,superior" likely_semantic_role="sentiment expression">
        <sibling side="right">
          <type-head type="IN" head="than,to">
            <sibling side="right">
              <type-head type="NP, NN, NNS, NNP" likely_semantic_role="Entity2"/>
            </sibling>
          </type-head>
        </sibling>
      </type-head>
    </sibling>
  </type-head>
</type-head>
```

In the XML specification for an LR, the type-head tag represents placeholders in terms of their POS tag (attribute ‘type’) and the actual word (attribute ‘head’). The attribute, likely_semantic_role, is used to tell the semantic engine the potential roles each constituent might fill. When a sentence is tested against the LR described, the LE first detects a ‘verb phrase (VP)’ with head is in its parse. It checks if this VP contains a word with the POS tags for comparators (JJR,RBR) and if yes, marks this constituent as the likely Sentiment Expression. The phrase to the right of this word becomes the likely Entity 2 and the one to the left of the VP is the likely Entity 1. As the current application focuses on sentiment analysis, the LRs encoded deal with high-frequency constructions used for expressing sentiments. There are a total of 25 such LRs that cover simple declarative constructs including conjunctions, comparative constructs, questions, and confirmation seeking and providing sentences.

Semantic Engine (SemE): The ‘Named Entity Extractor (NEE)’ of SemE plays a role early on in the processing of sentences. It tags entities and features of interest from preprocessed text through lexicalized lookup augmented with limited pattern matching. It also tags instances of entities about which common sense knowledge is available in the KRs. It alerts the POS tagger in the SynE to treat tagged named entities as a single token with a POS tag NN (for noun phrase). Depending on the degree of match between an n-gram (that has been tagged as a named entity) and a lexical entry in the NEE’s lexicon, the NEE assigns a probability to the POS tag NN. The sentence along with the the POS tags assigned by the NEE are presented to the POSTagger.

The SemE inspects interesting constituents extracted by the LE for the presence of annotated entities. It assigns semantic roles to them based on the mapping indicated by LE. In order to do so, it also checks that the ‘potential filler’ for a semantic role satisfies the requisite semantic type constraint (e.g., the entity should be a ‘Service provider’).

Idiom Module (IM): This component identifies and understands idioms. It forces the tokens in an idiom to be chun-
The inference made is: evidence gathered is that honey is a highly viscous liquid, the speed of the action is low" for the word honey and jar are fetched from the 'Sentiment Expression (SE)' extracted by the KR dictionary in pouring honey from the jar. The loads are like pouring honey from the jar. The inference engine generates inferences (to be con-

Common Sense Reasoning Module (CSRM): The CSRM adds the ability to do common sense reasoning to our engine. It uses common sense knowledge about limited aspects of the real- world (in KR) and an inbuilt inference engine. The rules of inference are triggered by certain words (often verbs) that head a class of metaphorical constructions. The properties/attributes of various entities that participate in the real-world situations relating to this word become antecedents for the inference rules. These rules are tiered according to their strength.

A special set of LRs, with the trigger words as placeholders, are fired on the parse of the potential sentiment expression extracted by the LE (When no LR is fired on a parse of a sentence, the special LRs are fired on the entire parse). They are further checked for class tags assigned by the SemE and knowledge about the tagged entities is retrieved from the KR. The inference engine generates inferences (to be consumed by the SA) on the basis of the evidence presented.

Say, the engine is processing the sentence: TelAir downloads are like pouring honey from the jar. The LE marks pouring honey from the jar as the sentiment expression. The special LR with pour as the placeholder identifies honey as the object being poured and jar as the source for pouring (semantic role assignments). The real world properties of honey and jar are fetched from the KR. A rule of inference for the word pour is that "If the viscosity of the liquid being poured is high, the speed of the action is low". As the evidence gathered is that honey is a highly viscous liquid, the inference made is: {Domain = motion, Aspect = speed, Value = low}.

Sentiment Analyzer (SA): This component drills into the ‘Sentiment Expression (SE)’ extracted by the LE to detect and score the real sentiment. A Sentiment is typed relative or absolute depending on the sentence type (comparison or others) detected by the SynE and is quantified by its strength on a 0-5 scale and a +/- valence. In short: Sentiment = {Type, Valence, Strength}.

If idiom and/or CSR modules have generated inferences for an SE, the value of the inference is mapped to a sentiment grade using heuristics. The analytics engine in the SA assigns the corresponding strength and valence to the sentiment. For example, if the SE contains the idiom snail’s pace, the inference produced by the IM is {Domain = motion, Aspect = speed, Value = low}. The Value ‘low’ in the domain of motion is mapped to the sentiment grade negative and the analytics engine assigns the corresponding score of 3 and valence -.

If no inferences are available, LRs specific to sentiment extraction called SE-LRs are fired on SE to extract potential sentiment words. If there are no extracted SEs, the SE-LRs are fired on the entire parse. Domain knowledge is used to generate inferences from these words and the Value of the inference is mapped to a sentiment grade. For example, the sentiment word crawls is inferred as {Domain = motion, Aspect = speed, Value = low} and the Value ‘low’ in the domain of motion is mapped to the sentiment grade ‘negative’. If this doesn’t yield a grade for the sentiment, a generic sentiment lexicon (which was build from a set of seed words expanded using ‘WordNet’) is used to grade the sentiment. The extracted words are also checked for being modifiers, comparators or negators using the respective lexicons in the KR. The analytics engine assesses the contributions of modifiers and negators to the sentiment extracted. While modifiers increase/decrease the sentiment strength, the negators often reverse the sentiment valence. For example, given the sentiment words very good, the modifier very increases the strength of the sentiment from 3 to 4. The presence of comparators like better results in the sentiment being typed as a ‘relative sentiment’ and it’s valence is set according to the polarity of the comparator. For example, for the sentence TelAir is better than AirVoice, the sentiment word better qualifies as a comparator with a + polarity. So, for the frame for the entity TelAir, the sentiment valence is + and for the AirVoice frame, the valence is - with the type of both frames being ‘relative’.

SA also uses domain knowledge about a feature to determine the sentiment value. It does so based on the utility of an associated feature. For example, cost has a negative utility while speed has a positive utility; at least in the context of broadband services. Hence, even though the sentiment word ‘high’ has a positive connotation in general, for the feature ‘cost’ it implies a negative sentiment.

Frame Manager (FM): The frame manager creates a frame for every unique entity and feature extracted by the SemE, wherein the semantic labels are mapped to the corresponding entity or feature. Different parses of a sentence may result in different constituents being extracted by the LE implying the creation of multiple frames. The FM removes duplicate frames, discards frames contained by other frames and sorts the remaining frames based on the spans over which the LRs that created them fired. Every unique frame is assigned a frequency score which is the ratio of the number of instances of this frame to the total number of frames generated over multiple parses of a sentence. If the frequency score of a frame is below a threshold value, it is eliminated.

The FM binds the extracted sentiment to the corresponding frames to create ‘Sentiment Frames’. When no entity or feature is extracted by the SemE but a sentiment is extracted by the SA, a sentiment frame is still created with this sentiment. The Discourse Analysis Engine (DAE) acts on it at a later stage to fill in the missing entity/feature. The frame is also attributed a belief score depending on how the entity, feature and sentiment where extracted. (The belief score is higher for frames where the entity and/or feature were captured by LRs).

Discourse Analysis Engine (DAE): This module performs elementary frame level discourse analysis on the frames generated by FM. The Syntactic Engine informs it of the class of a sentence (a question, an assertion, a compari-
son or a confirmation seeking or providing statement) from which a frame was derived. For frames that were flagged for anaphora resolution, a trace along the previously occurring frames is done to identify an implicit feature/entity. The frames generated from confirmatory messages are often indicative of the sentiment for a question previously raised. The DAE steps in to accomplish this task.

An Illustrative Example

In this section, we take you through a pass of iSEE for sentiment analysis, with the help of an illustrative example. The outputs at various stages are as shown below:

- **Text Feed**
 TelAir’s download speed is gr8 but its customer svc is no better than AirVoice’s.

- **Pre-processor**
 TelAir download speed is great but its customer service is no better than AirVoice’s.

- **NEE (Semantic Engine) + Syntactic Engine**

```
(ROOT 1857
 (NP (PRP its)) (NN customer service/CS))
 (VP (VBZ is) (ADJP (JJR better)))
 (PP (IN than) (NP (POS AirVoice's/Corp)))
)
```

Note that the named entities have appropriate class ‘tags’ and tokens within them are chunked together.

- **Linking Engine**

 - LR D: (NP (POS TelAir's/Corp)), (NN download speed/DS), (VP(VBZ is))(ADJP JJ great))
 - LR COMPDPOS:
 * (NP (PRPs its)), (NN customer service/CS), (JJR better)
 * (NP (POS AirVoice's/Corp)), (NN customer service/CS), (JJR better)

- **Semantic RA (Semantic Engine)**

 - Set 1: Provider = TelAir, Feature = download speed
 - Set 2:
 * Provider = it, Feature = customer service
 * Provider = AirVoice, Feature = customer service

Note that the semantic roles ‘Provider’ and ‘Feature’ are assigned by correlating the class tags with linkages established by LE.

- **Idiom, Common Sense Reasoning Modules**

 No inferences for this example.

- **Sentiment Analyzer**

 - Sentiment 1: (JJ great) ⇒ [Sentiment = {Grade : very positive, Type : Absolute, Valence : +, Strength : 5}]
 - Sentiment 2: (RB no), (JJR better) ⇒ [Sentiment = {Type : Relative, Valence : -, Strength : 3}]
 [Sentiment = {Type : Relative, Valence : +, Strength : 3}]

- **Discourse Analysis Engine + Frame Manager**

 For this example, the DAE resolves it in Frame 2 to TelAir.

The above example involved a relatively simple sentiment sentence. The iSEE system can handle extended discourse consisting of complex sentences referring to multiple products and features and involving comparisons, conjunctions, questions and the like. It can also deal with idiom and metaphor including productive ones in the limited domain of liquids using CSRM. For example, the system extracts the correct sentiments in the following dialog: S1: How is TelAir’s download speed? S2: It is excellent. S1: But I warn you that TelAir’s customer service is very bad. S2: Then tell me, how is AirVoice? S1: It is better than TelAir. S2: I was told that TelAir has a good customer service in my area. S1: How is its download speed? S2: It is better than AirVoice’s. AirVoice downloads are like pouring molasses in winter. S1: I heard from my friends that AirWave has a good download speed.

4 Results

In order to benchmark our system and find room for improvement, we compared iSEE with the Sentiment Analyzer in the FBS system developed by (Hu and Liu 2004). FBS also performs feature specific sentiment extraction and assigns strength to these sentiments, which makes it a good standard to be compared against. The test data set for this experiment was a set of sentences annotated with feature or entity and the corresponding sentiment. They were gathered from product reviews in Amazon.com and Cnet.com.

In Table 1, we report the performance of iSEE and FBS on a text feed of 225 sentences from the DVD player reviews. The SynE used Stanford NLP Parser (NLP) for statistical parsing. The LE contained 25 different LRs covering commonly used constructions for expressing sentiment. The SemE was provided with a set of 4 entities and 15 features in the domain of DVD-Players.
<table>
<thead>
<tr>
<th>Approach</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>iSEE</td>
<td>0.93</td>
<td>0.85</td>
<td>0.89</td>
</tr>
<tr>
<td>FBS</td>
<td>0.94</td>
<td>0.65</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Table 1: iSEE, FBS - DVD players dataset

It is apparent that iSEE has a much higher recall than FBS and its precision is only marginally lesser than that of FBS. The higher F-score of 12% (absolute) achieved by iSEE over FBS, which is very encouraging.

To validate the argument that our approach to sentiment extraction is not specific to a domain, we tested iSEE’s performance on a set of 242 sentences from the cellular phone reviews annotated by Liu and Hu. Table 2 shows the results.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>iSEE</td>
<td>0.94</td>
<td>0.84</td>
<td>0.88</td>
</tr>
<tr>
<td>FBS</td>
<td>0.95</td>
<td>0.65</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Table 2: iSEE, FBS - cellular phones dataset

Even in this domain, the F-score of iSEE is more than 10% (absolute) higher than that of FBS.

In order to quantify the contribution of the linking rules and the common sense reasoning we tested iSEE without the LE and CSRMs. The limited system had 8% lower precision and 13% lower recall (absolute %).

5 Conclusion

In this paper, we have described a flexible and extensible approach for solving the sentiment extraction problem. The resulting system, iSEE, makes use of statistical methods, classical NLU techniques and probabilistic inference to extract entity- and feature-specific sentiments from extended dialogs and complex sentences involving comparatives and conjunctions. The system makes use of common sense reasoning to understand productive metaphors within limited domains (currently, motion and liquids). The components of iSEE are domain independent and the system can be generalized to new domains by simply adding domain relevant lexicons. The system also analyzes idioms and metaphors for their sentiment. iSEE has its share of limitations. Irony, sarcasm, humour and other such subtle ways of sentiment expression are not handled by the current system. Currently, our focus is on identifying additional constructions for expressing sentiments and on expanding the common sense knowledge base to enable iSEE to draw inferences about a larger set of domains. The flexibility, modularity and extensibility of the engine provide an easy, fast and reliable method for developing solutions across different domains.

6 Acknowledgements

We would like to thank Amar Viswanathan, Bintu Vasudevan, Prasanna Venkatesh, Shabin Hashim, Suman Kumar Chalavadi, Swarna Latha Ramalingam, and Umadas Ravindran for their valuable contributions to the iSEE effort.

References

Goldbo, N.; Srinivasaiah, M.; and Skiena, S. 2007. Large-scale sentiment analysis for news and blogs. In ICWSM.

Jin, W.; Ho, H. H.; and Srinivasaiah, M.; and Skiena, S. 2007. Large-scale sentiment analysis for news and blogs. In ICWSM.

Turney, P. D. 2002. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In ACL ’02.

Wilson, T.; Wiebe, J.; and Hwa, R. 2004. Just how mad are you? finding strong and weak opinion clauses. In NCAI.
