
Designing the Finch:
Creating a Robot Aligned to Computer Science Concepts

Tom Lauwers and Illah Nourbakhsh
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA 15213

Abstract

We present a new robot platform, the Finch, that was de-
signed to align with the learning goals and concepts taught
in introductory computer science courses. The Finch was de-
veloped in the context of the CSbots program, the goal of
which is to improve retention and learning in computer sci-
ence courses through the use of robots and other physically
embodied hardware. This paper concentrates on design con-
straints that were determined in earlier CSbots studies and
how those constraints were instantiated by the Finch. We also
present some preliminary results from pilot studies in which
Finch robots were used in CS1 and CS2 classes.

Motivation and Program Goal
In the context of steeply declining enrollments in Computer
Science (Vegso 2005), the CSbots program focused on de-
veloping curricular modules for introduction to Computer
Science (CS1) classes in which robots are used as educa-
tional tools to motivate students about applications of Com-
puting. Sharp enrollment declines in Computer Science dur-
ing the first half of the 2000s led to a wide number of ap-
proaches to motivate students to study computer science
(Cooper, Dann, and Pausch 2003), (Maloney et al. 2008),
(Bell and Fellows 2010).

Robots, too, have been used by a number of Computer
Science educators, both in introductory Computer Science
courses (CS1) (Fagin and Merkle 2003), (Blank et al. 2007),
and higher level courses (McNally 2006). The results to date
have been mixed, with a very large study using Lego Mind-
storms robots in CS1 (Fagin and Merkle 2003) finding two
critical weaknesses of using robots: Firstly, robots are typ-
ically too expensive for student ownership, and so students
must work on robot programming assignments in labs with
limited hours. Secondly, feedback is delayed due to the need
to observe a program running in the physical environment,
and so students must devote more time to tedious debugging,
and less to developing solutions. These weaknesses can be
seen as failures of alignment of the tool to the ecosystem of
the introductory Computer Science course. A more recent
study in which students had personal ownership of a robot
and could take them home showed significant improvements

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in retention and grades compared to other approaches (Sum-
met et al. 2009).

The aim of CSbots, then, is to create a robot design and
accompanying curriculum that has the advantages of robots
seen in other educational contexts, specifically improved
motivation and interest in studying STEM (Melchior et al.
2005), while eliminating the weaknesses found in the Fa-
gin study. This paper discusses the process of designing the
Finch, a robot specifically designed for introductory com-
puter science education, in the context of the wider approach
taken by the CSbots program.

Project Background and Approach
Prior to the work presented in this paper, we conducted an
initial evaluation of the introductory computer science field
involving a textbook survey and phone interviews with 37
CS educators (Lauwers and Nourbakhsh 2007). We used the
results of this evaluation to create an initial robot platform,
software API, and curriculum, and tested this platform with
roughly 70 students at a local community college (Lauwers,
Nourbakhsh, and Hamner 2009). The initial evaluation and
first design cycle helped us identify crucial design principles
and constraints for the work presented in this paper.

Throughout the CSbots program, we have relied heavily
on three methods; feedback and evaluation driven iteration
of design, deep partnerships with educators working in the
Computer Science field, and alignment of the robot and cur-
riculum with the learning goals and audience of the CS1
class.

Iterative Design
We engage in an iterative design process with deep participa-
tion from computer science educators. The process is com-
posed of the following steps:
Design. The design step involves the creation of a robotic
platform and associated software, and the development of
assignments and course outline.
Pilot. The pilot phase involves the pilot of the designed cur-
riculum and technology in a CS1 course.
Evaluation. Learning, motivation, and retention are tracked
with standard exams, weekly student surveys, and compar-
isons of drop-out rates. These data are used to inform the
next design step.

1902

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

Partnerships
The members of the original design team had no experience
teaching introductory Computer Science, and quickly rec-
ognized the vital importance of partnering with CS1 educa-
tors. Our intention was to develop a partnership that was
more than simply advisory, with a two-way sharing of do-
main knowledge and skill. Some of our partners have been
involved from the start of the first design cycle, allowing
them to test and comment on early versions of the robots
and software, while providing us access to existing curric-
ula and their understanding of what works with students in
the CS1 class. While the details of the robot design have
mostly been left up to us, our partners are full members of
the design team when it comes to the software and curricular
activities accompanying the robot.

Alignment
Alignment is a well-known curriculum design principle; es-
sentially it advises the course designer to align the learning
goals, instruction, and assessment, so that each supports the
other. Although in some cases classes may be intuitively
aligned by their designers, aligning a course is a process
that can be performed in a premeditated, explicit way (Wig-
gins and McTighe 2005). This is often done through a pro-
cess known as backwards design, which begins by detailing
the learning goals for the students, as these goals will drive
the required types of assessment and instruction. Alignment
through backwards design is a method that can be extended
to the design of educational tools, so long as those tools are
targeted at a specifical curriculum or educational activity.
Considering goals, instruction, and assessment as parts of
the design leads to a design process that is qualitatively dif-
ferent than if we were designing a robot outside of an edu-
cational context.

Designing the Finch
The evidence at the end of the first design cycle provided
support for the notion that robots could be effective educa-
tional tools in Computer Science education. Our initial de-
sign was lacking in important ways; we intentionally com-
bined two commercial products (an iRobot Create1 and a
Qwerk controller2) to create a robot platform that was highly
feature rich. The trade-off of this choice was that the robot
was both too expensive and too bulky to be used as a per-
sonal robot. We knew that this was one of the major prob-
lems identified by earlier studies, but also felt that for an
initial design step, an extremely feature rich robot would
help us evaluate which features were actually important to
student interests and to the design of good assignments.

After evaluating our initial pilot we engaged in a redesign
of the robot, software, and curriculum to align with CS1
learning goals and logistics. We discuss the principles be-
hind the new design, the details of the robot, and preliminary
results from pilots next.

1www.irobot.com/create/
2http://www.charmedlabs.com

Design Constraints
Many sources of information informed our redesign: Our
initial evaluation and literature review, our experiences with
high school teachers testing different robot features, our ear-
lier pilot study evaluation results, and much feedback on the
initial robot from students and teachers. From these varying
pieces of data, we formulated a set of evidence based design
constraints:

• The robot should be sufficiently low cost for individual
use. This was borne out both from past studies, from our
own experience running a separate closed robot program-
ming lab in an earlier study, and from feedback from high
school teachers who were constrained to working with a
single robot.

• It should be possible to complete assignments with the
robot at home. This suggests three design constraints:
Firstly, the robot hardware must be sufficiently robust to
survive students’ home environments and transport be-
tween home and school. Secondly, the robot must be
small enough to be carried back and forth easily. Lastly,
the robot software must work on the diverse computer and
OS platforms students have available at home.

• The robot should be aesthetically appealing. In our earlier
study, researchers often observed students personalizing
robots and giving them anthropomorphic agency when
their programs were running. We thought this sense of
agency important to motivating the students, and felt an
aesthetically interesting design would support it.

• The robot should be capable of interesting interaction
with students and with the environment. There was no
one sensor or actuator that we had to include based on
our earlier experiences with the initial design. Instead,
assignments that were successful in earlier studies lever-
aged multiple sensors and outputs to create richly interac-
tive programs.

Robot
Much of the CSbots project time in 2008 was spent formu-
lating the above design constraints and deriving from them
an appropriate robot hardware design. By the end of the
year we had developed a small, inexpensive, highly interac-
tive robot, which we dubbed the Finch. The Finch design is
unusual for a mobile robot - it must be tethered to a com-
puter at all times. Deciding to tether the Finch provided a
number of marked advantages to the design:

• The Finch derives power from the tether, thus there are no
batteries to charge and robot behavior can not be affected
by on-board power levels.

• The Finch has very little need for on-board processing; in-
stead, a low cost microcontroller sends and receives com-
mands over USB to the computer. Programs created by
the student run entirely on the computer. In this way,
the Finch is more of a computer peripheral than an au-
tonomous agent.

• As a USB device, it is relatively easy to support the Finch
in different programming languages.

1903

• Setting up the Finch is simple - one need only install a
USB driver (available for all major operating systems) and
use our cross-platform software package.

• Tethering reduces the need for complexity in the Finch,
which in turn significantly reduces the cost: We estimate
that the Finch can be sold for under $100 commercially.

Due to its tether, the Finch is not a very capable mobile
robot. This is not a reflection of a flaw in the design but
of the design constraints themselves - capability as a mo-
bile robot was ultimately less important than simplicity and
robustness of design. Tethering provided a simple solution
to meeting several of the design constraints simultaneously.
We discuss how we met the constraints of aesthetics and in-
teractivity next.

Our group decided to create a molded plastic shell for the
Finch to both protect the robot electronics and to appeal aes-
thetically to students. We drew up three shell concepts (see
figure 1) and distributed these to the high school teachers in-
volved in CSbots. They and their students voted on which
they preferred and provided comments, leading to a final
concept that borrowed elements from each of the sketches.

Figure 1: Sketches of Finch shell concepts

The final shell pictured in figure 2 intentionally expresses
zoomorphic traits, with a beak, two eyes, a nose with two
openings, and ear holes. Naming the robot Finch is a further
effort to carry on this zoomorphic theme. The shell is de-
signed to be easily grasped by students, with the curvature of
the shell suggesting that it can be held with both hands with
thumbs resting near the ear holes. Additionally, the rear part
of the shell offers a tripod support to allow the Finch to be
placed vertically on a flat surface - this is very useful when
debugging a program in which the Finch’s wheels are mov-
ing.

Figure 2: Finch shells

As the shell supports the notion of physically interact-
ing with the Finch, the robot’s hardware is similarly ori-
ented around interactivity. From our initial pilots we real-

ized that it was not so much a single sensor or actuator that
was critical to successful interactions between students and
the robot, but the combination of a number of features en-
gaging students through multiple sensory paths: The initial
robot could talk, flash lights, sense bumps, and move about;
successful assignments were those in which students needed
to utilize most of these features in a way that also involved
their interacting with the robot in some way (for example by
bumping the bump sensor, listening to the robot speak and
responding, or moving the robot through a GUI designed by
the student). As such, we sought to turn the Finch into a
highly multi-modal device, one that can interact with stu-
dents by engaging a combination of students’ visual, audi-
tory, and kinesthetic senses. The Finch can express motion
through a differential drive system, light through a color-
programmable LED, and sound through a beeper and us-
ing computer speakers. Similarly, it can sense light levels
through two photoresistors, temperature through a thermis-
tor, distance traveled through two wheel encoders, obstacles
placed in front of it, and its orientation in three dimensional
space through an accelerometer (see figure 3 for placement
of the Finch’s actuators and sensors). In addition to these
hardware-based capabilities, the accompanying software al-
lows students to easily have the Finch speak or play songs
over computer speakers, read real-time data from internet
RSS feeds, and react to video from computer webcams.

Figure 3: The Finch robot’s sensors and actuators

Roboticists tend to think of mobile robots as creatures of
their environment - they move within a space and react to
stimuli in that space. Though the Finch is capable of being
programmed to behave in this manner, the Finch’s capabil-
ities provide two other frequently used modes of operation.
Firstly, there are programs that use the Finch as an input de-
vice to the computer; for example, the accelerometer data
can be used to move a cursor on the screen. Secondly, the
Finch can be used as a way to convey information from the
computer and internet to the user in the physical world; for
example, by shivering if it is cold outside or setting an alarm
when an earthquake has struck somewhere in the world. Us-
ing these three loosely defined and overlapping modes, the
Finch expands on the ability of a computer to sense and act
in the world. This enhancement provides students with a

1904

wider range of programs to write, ultimately leading, as we
have tentatively begun to see, to more interesting and rele-
vant assignments and more engaged students.

Software
At the moment, students program for the Finch with Java.
This was a choice we made based on our initial evaluation
of the CS1 landscape; we found that over half of CS1 educa-
tors were using Java and very few were planning to change
languages in the next two years. Additionally, changing the
programming language used was seen as a major undertak-
ing requiring significant buy-in from within and outside the
CS department. As programs written for the Finch execute
on the computer, we intend to to develop support for addi-
tional languages in the near future.

One of the major themes in our conversations with part-
ner educators as we were developing the Java API was to
simplify as much as possible. As such, all of the methods
related to the Finch are encapsulated in a single Finch class.
The students instantiate an object of this class, and then call
get and set methods to operate sensors and actuators. At the
low level, instantiating an object of the class automatically
causes the computer to open a connection to the Finch, and
additional method calls result in data being sent over USB
to and from the Finch. Students are provided with a full
javadoc-style documentation of all of the Finch class meth-
ods. As this listing can be overwhelming to the novice, we
also provide a short listing of the most important method
calls. The software and documentation are freely download-
able3.

The software package also combines three open-source
packages to support native computer capabilities; a pack-
age to generate speech from text, one to read data from RSS
feeds, and one to use video data from attached webcams.
Standalone packages were created to allow teachers not us-
ing the Finch to benefit from these capabilities4. The entire
package is encapsulated in a .jar file that students must in-
clude in java projects using the Finch; this can be done in
any IDE or through the command line, but in our experience
it does present a common stumbling block for novice users
used to compiling a single .java file.

Curriculum
A strong finding of our initial evaluation was that major
changes to the curriculum are difficult to execute indepen-
dently for most computer science faculty. As such, the fo-
cus of our design when it comes to curriculum is to avoid
changing the structure and learning goals of the introduc-
tory Computer Science course and to use the robot primarily
as an additional tool for use in assignments. For example,
when the Finch was used in a local community college pilot,
the lecture slides and tests were not altered from prior years
any more than is typical. The Finch was introduced in the
fourth week of instruction; one lecture was devoted to ex-
plaining the Finch’s features and demonstrating to students
how to create Java projects and compile files within those

3http://csbots.wetpaint.com/page/Downloads
4http://csbots.wetpaint.com/page/No+Robot+Required

Learning Goal(s) Description
Compiling a pro-
gram; printing.

Write a program that prints to
screen.

Variable types; oper-
ators and expressions.

Calculate miles per gallon.

User input. Read in age and print life ex-
pectancy.

Selection structures. Read the Finch’s orientation
(flat, beak up, or beak down)
and say what it is.

Looping Move around the room and
avoid obstacles. Apologize if
there was a near collision.

Student-written
methods.

Students create a note player
method that plays notes read in
from user input.

Student-written
classes.

Write a class that tracks the in-
ternal ’emotional’ state of the
Finch and expresses it when
the playEmotion method is
called.

Arrays. Move the Finch through five
points and collect sensor data
at each point; store sensor data
in an array and get the average,
max, and min.

Begin graphics and
events.

Create a tele-op interface.

Continue graphics. Create a slider based tele-op
interface to control LED.

Table 1: Assignment schedule of a Finch pilot

projects. The delay introducing the Finch was deemed nec-
essary by our partner to allow students time to learn basic
Java syntax as well as the concept of external classes before
beginning with the Finch. Table 1 shows the learning goals
and description of each assignment in this pilot.

Finch Pilots and Evaluation
In January 2009 we built 100 Finch robots and began a lend-
ing program with interested educators. To date, Finches
have been loaned to 16 high schools, 7 universities, 2 af-
ter school programs, and over 150 students at a local com-
munity college. Reviews have generally been favorable. In
two cases, we have collected formal evaluation data from
these pilots; one was a full test at a local community col-
lege in which every student was given a robot, the other was
a loaning program with nine high school teachers. Results
from the high school loaning program have been previously
published (Lauwers, Nourbakhsh, and Hamner 2010). We
present preliminary findings of the community college pilot
here; a full analysis will be published later.

Community College Pilot
Finches were used in the spring and fall 2009 semesters in
the CIT-111 and CIT-130 classes (CS1 and CS2) taught at

1905

the Community College of Allegheny County by one of our
partners. In the spring, three sections of CIT-111 and one
section of CIT-130 used the Finch, and in the fall two sec-
tions of CIT-111 and one section of CIT-130 used the Finch.
Every student in each section was loaned a Finch and could
take the robot home with them.

Students were asked to fill out a pre-survey, a post-survey,
and short surveys after each assignment. Pre/post surveys
sought to determine characteristics of students who success-
fully passed the course, as well as interest in using the Finch.
Assignment surveys were designed to track student interest
and frustration on an assignment by assignment basis.

In addition to these surveys, we also compared the spring
and fall 2009 CIT 111 class to previous courses taught by
our partner; we compared the retention rates in the class and
the average grades of students taking the class. We were
concerned with the grades data primarily as a check that stu-
dents were not performing more poorly due to the Finch.
Though we do not report grades in depth here, the average
grades were not significantly worse than prior years. We did
not do a similar comparison for the CIT-130 classes because
the low number of participants and intermittent teaching of
the course did not provide enough participants to make such
comparisons statistically valid.

Retention
We investigated the retention rate among students who
stayed in the course through the first exam. We did this for
two reasons: Firstly, many students who begin the CCAC
course drop out in the first few weeks because they had a
poor understanding of the course subject matter. Secondly,
the Finch was not introduced until assignment 4, roughly at
the same time as the first exam, and so it likely had no impact
on retention before the first exam.

Comparing the pilot year in this way we see that the spring
pilot slightly underperformed compared to the prior four
years; the retention rate of 52% was lower than the rate seen
in three of the four prior years and was slightly below the
four year average of 56%; even so, none of these differences
was statistically significant and it should be noted that the
retention rate improved compared to 2008.

The fall course outperformed all other years and the four
year average. The 80% retention rate was significantly bet-
ter than 2006 and the earlier pilot year of 2007 (p < 0.01
for both). The rate was markedly above the four year aver-
age of 57% and above 2005 and 2008 as well, though these
differences were not significant. It should be noted that we
reworked the assignments in fall 2009 based on our experi-
ences with the spring pilot, and believe that this coupled with
a greater deal of experience using the Finch contributed to
the improved fall retention rate.

When comparing between the study year and the prior
four years, we see no significant differences in the retention
rate, although the rate for 2009 is higher than for all other
years (65% compared to an average of 56%).

Interest in the Finch
We sought to determine interest students had in the Finch
through three questions. We asked incoming students if they

Figure 4: Retention rates excluding students who dropped
before exam 1

would prefer programming a computer or robot, and asked
outgoing students if they had shown the Finch to anyone,
and if they had worked on programs for the Finch that were
not assigned.

We coded the answers to the first question into three broad
categories - robot better, computer better, and not sure. Table
2 summarizes the answers to these questions split by class.
Generally, roughly 2/3 of incoming students believed they
would prefer programming a robot to programming a com-
puter, with the third split between being undecided and be-
lieving they would prefer programming a computer.

Class Robot
Better

Not sure Computer
Better

CIT 111 68% 18% 14%
CIT 130 66% 10% 24%

Table 2: Percent of students who prefer to program comput-
ers or robots

Regarding the questions to outgoing students, every stu-
dent who answered the post survey indicated they had shown
the Finch to someone - typically friends and family. Most
went on to describe the reactions of the people who saw the
Finch; of these reactions, all but one was positive.

Students were less likely to have written programs for the
Finch for fun; of twenty eight post survey responses, eight
indicated that they had done so. Most of these students wrote
small programs for their friends and family; four students
gave an estimate of the amount of time they spent out of
class on the Finch. Three students spent 3-5 hours on the
Finch, and one indicated that she spent 30-40 hours out of
class using the Finch. Though we don’t have comparable
data of students in regular programming courses at CCAC,
we believe that it is rare in such courses for students to write
programs purely for enjoyment.

Finch Robustness
We tracked failures of the Finch hardware over the course of
the year. There were very few failures of any type:

1906

• One Finch beak LED did not light up correctly due to poor
soldering during assembly.

• On three Finches, screws came loose in the drive mecha-
nism, preventing a wheel from turning.

• One Finch’s USB cord was destroyed by a puppy.
Of these errors, only the LED failure is irreparable by stu-
dents, and this was a manufacturing defect and not a result
of use.

Summary
The 2009 CCAC pilots suggest that our revised design met
some of our objectives: Most importantly, retention im-
proved significantly in the fall course, students continued
to struggle primarily with computer science concepts as op-
posed to robot hardware/software, the Finch robots had very
few hardware failures despite extensive use by students at
home, and students passing the course demonstrated excite-
ment in the class by showing the Finch to friends and fam-
ily and in some cases by working on programs recreation-
ally. At the same time, the relatively poorer retention rates
of the spring course demonstrates the importance both of
properly aligning assignments and activities and of past ex-
perience teaching with a new tool like the Finch. It should
be noted that while the spring course’s retention rates were a
few percent below average, the overall year’s retention was
better than average, and performance may continue to im-
prove with increasing instructor experience using the Finch.

Acknowledgments
Don Smith at the Community College of Allegheny County
has been involved with this project for several years and has
been critically important to both the curriculum design and
to piloting the Finch and our earlier robot platforms. Thanks
also to Chris Bartley for his significant work on the software
environment.

This work was funded by the National Science Foun-
dation’s Cource, Curriculum, and Laboratory Improvement
program.

References
Bell, T., and Fellows, M. 2010. Cs unplugged.
Http://csunplugged.org.
Blank, D.; Kumar, D.; Marshall, J.; and Meeden, L. 2007.
Advanced robotics projects for undergraduate students. In
Symposium on Robots and Robot Venues: Resources for AI
Education.
Cooper, S.; Dann, W.; and Pausch, R. 2003. Teaching ob-
jects first in introductory computer science. Proceedings of
the 34th SIGCSE Technical Symposium on Computer Sci-
ence Education (SIGCSE 2003.
Fagin, B., and Merkle, L. 2003. Measuring the effectiveness
of robots in teaching computer science. In SIGCSE, 307–
311.
Lauwers, T., and Nourbakhsh, I. 2007. Informing curricular
design by surveying cs1 educators. In Proceedings of the
4th International Symposium on Autonomous Minirobots for
Research and Edutainment.

Lauwers, T.; Nourbakhsh, I.; and Hamner, E. 2009. Cs-
bots: design and deployment of a robot designed for the cs1
classroom. Proceedings of the 40th SIGCSE Technical Sym-
posium on Computer Science Education 428–432.
Lauwers, T.; Nourbakhsh, I.; and Hamner, E. 2010. A
strategy for collaborative outreach: Lessons from the csbots
project. Proceedings of the 41st SIGCSE Technical Sympo-
sium on Computer Science Education.
Maloney, J. H.; Peppler, K.; Kafai, Y.; Resnick, M.; and
Rusk, N. 2008. Programming by choice: urban youth
learning programming with scratch. Proceedings of the 39th
SIGCSE Technical Symposium on Computer Science Educa-
tion (SIGCSE 2008.
McNally, M. 2006. Walking the grid: Robotics in cs2. In
Proceedings of the 8th Austalian conference on Computing
education, 151–155.
Melchior, A.; Cohen, F.; Cutter, T.; and Leavitt, T. 2005.
More than robots: An evaluation of the first robotics com-
petition participant and institutional impacts. Heller School
for Social Policy and Management, Brandeis University.
Summet, J.; Kumar, D.; O’Hara, K.; Walker, D.; Ni, L.;
Blank, D.; and Balch, T. 2009. Personalizing cs1 with
robots. SIGCSE Bull. 41(1):433–437.
Vegso, J. 2005. Interest in cs as a major drops among in-
coming freshmen. Computing Research News.
Wiggins, G., and McTighe, J. 2005. Understanding by De-
sign, Expanded 2nd Edition. Prentice Hall.

1907

