
Teaching Introductory Artificial Intelligence
through Java-Based Games

Amy McGovern
School of Computer Science

University of Oklahoma
amcgovern@ou.edu

Zachery Tidwell
School of Computer Science

University of Oklahoma
ztidwell@ou.edu

Derek Rushing
School of Computer Science

University of Oklahoma
Derek.M.Rushing-1@ou.edu

Abstract

We introduce a Java graphical gaming framework that enables
students in an introductory artificial intelligence (AI) course
to immediately apply and visualize the topics from class. We
have used this framework in teaching a mixed undergradu-
ate/graduate AI course for six years. We believe that the use
of games motivates students. The graphical nature of each
game enables students to quickly see how well their algo-
rithm works. Because the topics in an introductory AI course
vary widely, students apply their algorithms to multiple game
environments. A final challenging environment enables them
to tie together the concepts for the entire semester.

Introduction

Our goals in teaching introductory artificial intelligence (AI)
are to create a significant learning experience (Fink 2003)
and to enable students to develop the problem solving and
teamwork skills necessary for success in their future career
(Woods et al. 2000). These goals are intertwined. To achieve
them, students need to be deeply engaged in the subject mat-
ter. Inspired by past success in teaching AI (McGovern and
Fager 2007; DeNero and Klein 2010), we have created and
tested a general gaming framework for projects for an AI
class. We have been teaching a mixed upper level under-
graduate and graduate introductory AI course for six years.
Because such a class covers a wide range of topics, using a
single project paradigm for the entire semester can be dif-
ficult. We have found that the use of graphical game-based
projects keeps the students’ interest level high and engages
them in the projects. In this paper, we introduce a general
Java1 gaming framework that enables us to use a variety of
games and enables students to quickly visualize their agents.
We assume students are either familiar with Java (through
required undergraduate courses) or capable of quickly learn-
ing Java (expected of graduate students).

Fink defines a taxonomy of significant learning that builds
on the traditional Bloom’s taxonomy of learning (Bloom
1956). In Fink’s work, a course that becomes a signifi-
cant learning experience should integrate six dimensions of
learning: 1) foundational knowledge, 2) application, 3) in-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.java.com

tegration, 4) the human dimension, 5) caring, and 6) learn-
ing how to learn (Fink 2003). Traditional course lectures
and exams focus on foundational knowledge. In our teach-
ing, we use active learning to engage students (Prince 2004;
Felder and Brent 2009). We use the projects to focus on all
six dimensions of significant learning.

Specifically the projects 1) enable students to better re-
member their foundational knowledge by 2) applying it to
new domains. By applying the techniques to a variety of do-
mains, they 3) integrate their knowledge and connect ideas
from previous courses. By working within an existing code-
base, they demonstrate and modify their own skills while
working with other students which addresses 4) the human
dimension. Although we do not specifically address caring
5), students gain a new appreciation for AI by participating
in the class and projects and learn that they are interested in
it for some aspect of their career. By working on projects
across a wide variety of domains and skills, we enable stu-
dents to learn about material more deeply and become better
students. And, we encourage creativity through extra-credit,
which motivates many of the students to learn additional ma-
terial about each topic 6).

In addition to the dimensions of learning specified above,
Fink also specifies that a successful learning experience for
students includes high quality and frequent feedback. The
graphical nature of the projects provides this because stu-
dents are able to immediately observe the higher-level be-
havior of their agents. It also enables them to quickly debug
their agents as they refine their overall understanding of the
specific topic.

Computer games have a long history of motivating learn-
ing both outside computer science (for a thorough treatment
of this topic, see Gee, 2007) and within computer science
(e.g. Alice2, Scratch3, introductory programming courses
such as Leutenegger and Edgington, 2007 and Bayliss, 2009
describe, and cross curriculum programs such as Burns,
2008 and Sung 2009). We focus specifically on using games
in teaching AI, a topic discussed at both the 2010 and 2011
Symposium on Educational Advances in Artificial Intelli-
gence (EAAI).

2http://www.alice.org/
3http://scratch.mit.edu/

Proceedings of the Second Symposium on Educational Advances in Artificial Intelligence

1729



Course goals and details

The learning objectives for our introductory AI course are as
follows:

• Select the AI technique best-suited for a novel prob-
lem/domain and justify your choice, including an analysis
of the complexity of your choice

• Implement an AI solution to a complicated real-world
problem and evaluate its effectiveness

• Gain the skills, confidence, and experience to implement
your own AI solutions within an existing large codebase

• Function effectively in a team

The first and second objectives directly relate to a project-
oriented class. By giving the students experience at imple-
menting the AI techniques in a variety of environments, they
can better understand why they should choose a particular
technique for a problem domain and they can immediately
see how effective it is. Although the third and fourth ob-
jectives do not directly relate to the topic of AI, they are
critical for our goal of enabling students to develop problem
solving and teamwork skills that will be useful throughout
their career. We provide an existing codebase for each of the
games and students must implement their agents within this
codebase. For most of the students, this is their first expe-
rience in working with a large existing codebase rather than
implementing their project from scratch, as is traditional in
many classes. By the end of the semester, the students have
gained critical confidence in their skills as computer scien-
tists. For the final objective, we have experimented with a
variety of team-based projects over the six years of teaching
this course. We believe that teamwork is an essential skill
for a computer scientist and we strive to help students gain
skills in this arena by working together.

We divide the topics covered in our course into three the-
matic areas: search, learning, planning/multi-agent systems
(planning overlaps multi-agent systems). We use Russell
and Norvig’s book (Russell and Norvig 2009) as the course
textbook.

We next describe each of the games, the projects corre-
sponding to each environment, and the AI topics covered by
each of the projects.

Asteroids/Spacewar

Inspired by our past success of using Spacewar to teach AI
(McGovern and Fager 2007), we began our games with the
Spacewar source code4. Spacewar is a reimplementation
of the classic arcade game of asteroids (Graetz 1981). In
the original game, a single ship attempts to navigate safely
around an asteroid filled environment and to shoot the other
ships. We have modified this to remove the effects of gravity
and the single central sun. Instead, the environment con-
tains some number of (potentially moving) obstacles and
other ships. Each ship carries an energy cell that fuels its
thrusters, shields, mines, cannons, electromagnetic pulses,
tractor/repulser beams, and life support systems. If the en-
ergy cell is depleted, the ship self-destructs. A ship can

4Available open source at http://code.google.com/p/spacewar/

Figure 1: A single agent moving around the Spacewar en-
vironment. The brown circles are asteroids of varying di-
amters. The green circles are energy beacons. The agent is
aiming for the red circle.

recharge its energy cell by collecting energy beacons from
the environment, or by returning to its home base if it is
available. Ships can also be damaged or destroyed by colli-
sions with asteroids floating in space, from the fire of other
ships, or from mines. They can temporarily invoke a shield
to protect themselves but the shielding costs energy. Ships
become temporarily uncontrollable if they are hit by an elec-
tromagnetic pulse. Asteroids can be damaged or destroyed
by shooting at them. Our original implementation used only
the features noted in (McGovern and Fager 2007). However,
students continued to request additional features and devel-
oped many of them on their own.

Spacewar is an interesting arena for both AI and ma-
chine learning algorithms. Using terms from (Russell and
Norvig 2009), it is partially observable, stochastic, sequen-
tial, dynamic, continuous, multi-agent, and competitive.
This makes it a challenging problem for any AI project. Suc-
cessful agents will avoid collisions as well as shoot oppo-
nents. These individual tasks are difficult and combining
them makes the task even more challenging.

The Spacewar system is quite flexible and enables stu-
dents to work on a variety of projects. We have successfully
used it for introducing A∗ navigation in a more realistic en-
vironment than is typically presented in textbooks, for learn-
ing using both genetic algorithms and reinforcement learn-
ing, for classical planning, and for multi-agent coordination.

Because A∗ search is designed for fully observable, de-
terministic, episodic, static, discrete, single-agent environ-
ments (exactly the opposite of Spacewar), students must
stretch their understanding of A∗ to learn how to apply it to a
more real-world task. Figure 1 shows a single agent Space-
war environment where students program their A∗ agent to
navigate safely around asteroids without the interference of
another agent. This provides a challenging initial project.
For the A∗ navigation project, we give the students the fol-

1730



lowing instructions and guidance. As with our code, the
complete assignment (including rubric) is available at the
URL specified at the end of the paper.

This project will use A∗ search for navigation. However,
because the environment is continuous and the obstacles and
ships are moving about the environment, you will not be able
to use straightforward A∗ search. To deal with the continu-
ous environment, you should implement ONE of the follow-
ing changes to A∗.

• Gridded A∗: Break the environment up into n grid squares
(where you determine the grid spacing). Create a graph
based on these grid squares where adjacent grid squares
are connected unless one of them contains an obstacle or
a ship. Implement A∗ search to traverse the graph and
find a path from the starting state to the goal beacon. You
must design your own admissible heuristic.

• Hierarchical gridded A∗: The idea behind this approach
is similar to the gridded A∗ except that the grid spacing
is not fixed. Instead, the agent searches at a very coarse
granularity (large grid squares) and finds a path in this
easier space. The agent then refines its path by making
finer grid squares along the previous path. This process is
refined until the agent has a reasonable path from the start
state to the goal state. As with the previous approach, this
approach will require you to design your own admissible
heuristic.

• Roadmap A∗: This approach is based on roadmap nav-
igation. Instead of making grid squares of your entire
environment, sample n points from the space and draw a
straight line between each set of points. If the line con-
necting the two points does NOT intersect an obstacle or
ship, connect the two points in your search graph. Imple-
ment A∗ and search on this graph. As with the previous
approaches, this approach will require you to design your
own admissible heuristic.

Any one of these approaches will allow you to create
a navigation plan in a continuous environment using A∗.
However, none of these approaches will allow you to deal
with the dynamics of the environment. This is inherently
a tricky problem and the most straightforward way to deal
with the dynamics is to replan frequently.

The Spacewar environment is flexible enough to design
a variety of games and challenges and we have also used
the capture-the-flag scenario described by (McGovern and
Fager 2007). In this scenario, the ships compete in teams of
three to capture the enemy team’s flag and bring it back to
base. The winning team is the one that captures the most
flags within five minutes. The environment we used for
these games is shown in Figure 2. Here, the asteroids are
not moveable but the other aspects of the game remain the
same and the agents must be careful not to shoot members
of their own team. This year we added a key to the game.
Each team must capture the key and unlock its base before
it can deposit flags.

The following is part of the instructions for the capture-
the-flag assignment. This assignment explicitly integrates
multi-agent system coordination and classical planning.

Figure 2: An example of a team task in the Spacewar envi-
ronment. Here the red team and the blue team are playing
capture the flag. The small purple circle (upper right) is an
electromagnetic pulse shot by one of the red agents. The red
circles represent mines. The white dots are cannon fire. The
sawtooth represents the key and the triangle represents the
flag.

It implicitly also integrates the topics they have learned
throughout the course. This year, we initially implemented
A∗ in Pacman, as described later in the paper.

Your task is outlined below. You will be using planning for
part of the project as well as integrating many of the other
techniques you have learned this semester. We will do some
of the group work in class.

• First, create an agent that can move around the environ-
ment intelligently. You can use the provided A∗ code (see
implementation details for more information on this) for
this or you may write your own. This agent should avoid
the asteroids and move efficiently from one location to an-
other. This will form the basis of many of your high level
behaviors.

• Identify a set of high-level behaviors appropriate for each
capture-the-flag team team member. Implement the set of
high-level behaviors designed by your group. You are not
constrained by a specific method for implementing your
agent but you should use what you have learned so far
this semester. Heuristics, search, and learning are all ap-
propriate tools in your toolbox! Try to make effective use
of the many types of weapons available to your ships as
well as good use of the avoidance strategies.

• Implement planning within your team or within a sin-
gle agent. I suggest that you implement it at the highest
level (e.g. deciding which high-level behavior to choose
at any time) but you could also use planning at a lower
level such as improving A∗ or other navigation functions
or in deciding which weapon to use in a given situation.
For each behavior used by your planner, specify a set of
pre-conditions and post-conditions, appropriate for use in

1731



planning.

• Implement a central command agent that does effective
multi-agent coordination. If you used planning at the
highest level, this can be done using planning. Ensure
that you re-plan as frequently as events warrant, such as
a high-level action completing or sudden loss in energy.
If you put planning at a lower level, then ensure that your
agents are effectively coordinating their actions using an-
other AI approach.

For several years, we used only Spacewar-based projects
in our class but we found that some of the projects were not
as well suited to the topics we wanted to cover. Although A∗
navigation in a continuous environment gives students a bet-
ter idea of how to apply the techniques to realistic problems,
it proved difficult for many students for an initial project.
Similarly, the genetic algorithms match the domain well but
took so long to actually learn a policy that students would
run out of time to investigate different parameter settings
for their learning agents. One of the difficulties with Space-
war that we have been trying to mediate is that making an
agent that can successfully navigate (and shoot other agents
with accuracy) requires a substantial amount of background
material beyond the scope of the class. For example, al-
though we provide the students with proportional-derivative
controllers (Craig 2004) to enable them to control the accel-
eration of their ships, many of them struggle with the ba-
sics of having the ship follow a path. Although we strongly
believe the Spacewar domain is a valuable one for AI, the
students’ initial struggles with it guided us towards iden-
tifying simpler domains for the initial projects. This year,
we reserved Spacewar for the later projects, which integrate
much of the knowledge from the class into an overall in-
telligent agent. Since the environment is more realistic, it
provides an opportunity to integrate their knowledge from
the semester into a challenging final project.

Pacman

Inspired by (DeNero and Klein 2010), one of the authors
(who was a student in our machine learning class at the time)
wrote his own Java Pacman simulator. We integrated it into
the same Java gaming framework that we used for Spacewar
and we used it for the the initial AI projects this semester.

Pacman is a simpler environment than Spacewar. Using
terms from (Russell and Norvig 2009), it is fully observ-
able, deterministic (although the ghosts provide a stochastic
nature to the outcome), episodic, static, discrete, and either
single-agent (if you ignore the ghosts) or multi-agent (if you
pay attention to the ghosts). This makes it easier to apply
traditional search methods. Our theory was that a discrete
environment with simpler dynamics would provide a con-
ceptually easier framework for student’s initial search im-
plementations.

Our implementation of Pacman follows the same rules
as the traditional arcade game5. Pacman’s job is to eat as
many pellets as possible while staying away from ghosts.

5http://en.wikipedia.org/wiki/Pac-Man

Figure 3: An example of a pacman board with pacman part-
way through its search on the board.

Figure 4: An example of a student designed pacman board.

The board shown in Figure 3 is modeled on the original Pac-
man arcade board but students are able to design their own
boards, such as the one shown in Figure 4. The boards con-
tain power pellets, which enable Pacman to temporarily eat
the ghosts. In addition, special high point items appear on
the board periodically, similar to the fruits that would appear
in the arcade version of Pacman.

We used Pacman for uninformed and informed searches.
For their first project, students implemented depth-first-
search and breadth-first-search. For the second project, stu-
dents implemented A∗ and hill climbing searches. For each
search technique, students were given instructions to intelli-
gently choose a location to send Pacman to and then to use
the search technique to determine how Pacman should arrive
at that point. They were encouraged to use other techniques
or heuristics to decide where to send Pacman. For example,
one strategy could be to aim for power pellets when Pac-
man is not in the powered mode and then to eat as much of
the board as possible while in the powered mode. A student
could achieve an “A” project by implementing the search
technique correctly but the student could also potentially re-
ceive extra credit by creating a Pacman agent that received
a consistently high score by eating pellets and ghosts. The
extra credit was awarded from the class-wide competitive

1732



ladder, discussed below.
Although any of the games we present in this paper can

be used for learning, this year we used Pacman for the ge-
netic algorithms. We have successfully used both Spacewar
and Roborally (discussed below) for both genetic algorithms
and reinforcement learning. However, due to the compli-
cated nature of those games, learning typically takes a con-
siderable amount of time, which can frustrate the students.
This year we had the students use evolutionary computation
to make an intelligent Pacman agent. This project required
the students to design an abstract state space and a set of
high-level actions. The following is an excerpt from their
assignment.

For this project, your task is to use genetic algo-
rithms/evolutionary computation to create an intelligent
Pacman agent. Your agent should avoid the ghosts and suc-
cessfully clear any board your agent is given. This project
will require you to design a useful encoding of your chro-
mosomes, potentially to design a set of high-level/abstract
actions for the agent, and to design an appropriate fitness
function to guide the learning of your agents.

Learning will most likely be more successful with high-
level actions rather than only UP/DOWN/RIGHT/LEFT. A
sample list of high-level actions is provided below but this
list is not exhaustive and you should define your own.

• Move to nearest energy pellet (A∗ or other search)
• Move to nearest extra points piece (like the cherries)
• Chase down nearest ghost (if in power mode)
• Run away from nearest ghost

You should design a fitness function that rewards the agent
for performing well and penalizes it for performing badly.
You will need to decide what the criteria for performing well
and badly are but I suggest that you do not make your fitness
function overly complicated. For the fitness function, you
should focus on your goals for your agent and not on how
the agent will accomplish those goals.

Encoding your chromosome will be critical to the success
of evolutionary computation methods. For example, as we
discussed in class for tic-tac-toe players, you may create
a high-level state space and encode a policy of action re-
sponses to each state in your individual. Other encodings
are quite possible as well.

The remaining pieces of an evolutionary computation so-
lution are selection, crossover and mutation. You need to
pick approaches to each of these using what we discussed in
class.

The following is a list of ideas for state space features.
Note that this representation lacks a great deal of informa-
tion. You can’t make a general learning agent that uses Pac-
man’s current x,y coordinates given that the boards will vary
and you want him to play well in any board. You also can’t
represent every possible board state for every board in main
memory so the problem must become partially observable!

• Distance to Inky, Blinky, Pinky, and Clyde
• Distance to nearest power pellet
• Number of power pellets left
• Number of regular pellets left

Figure 5: An example mancala game.

Although the students focused on controlling Pacman us-
ing AI techniques, a viable multi-agent project could be con-
trolling the ghosts intelligently to chase/corner Pacman. The
student who wrote the Pacman simulator used it for exactly
this purpose, with the goal of creating intelligent teams of
ghosts using reinforcement learning.

Mancala

Although we have described the use of several games for
search techniques, students most often arrive in the course
wanting to learn about competitive multi-agent games. For
this, we need an environment well suited to minimax search.
We used the ancient African game of Mancala6. Mancala
has been used in AI courses at several institutions789. There
are a variety of rules for Mancala and we follow the ones
described below.

Mancala is a two-player game played on a board with
seven “pits” per player. Six of the pits are used as temporary
storage for stones during the game. The seventh pit, always
the right-most pit from the point of view of the player, is
called the mancala and it stores all the stones that a player
has won so far during the game. Figure 5 shows the board.

Because mancala is solved for the three, four, five, and six
initial stone versions10, we created a game where the num-
ber of initial stones varied randomly between 3 and 8. This
number was chosen at the beginning of the game and was
available to the agents. This number was used to initialize
each of the 12 pits. The game begins with all of the stones
evenly distributed across the 12 regular pits. A player can
choose to pick up all of the stones from any of the player’s
six pits. The player then distributes these stones one at a
time moving counter-clockwise around the board. A stone
is dropped into the player’s own mancala when passing it
but stones cannot be dropped into the opponent’s mancala.
The game ends when one player has no stones. At the start

6http://en.wikipedia.org/wiki/Mancala
7http://www.apl.jhu.edu/ paulmac/ai-prog.html
8http://cs.gettysburg.edu/ tneller/cs371/hw6.html
9http://www.cs.hmc.edu/courses/2009/spring/cs151/

10http://en.wikipedia.org/wiki/Kalah

1733



of the game, the students can choose whether the stones re-
maining on the opponent’s side will be deposited into the
opponent’s mancala or if they will be ignored. The winner
is the player with the most stones. If the extra stones go
to the opponent, it is not always an advantage to run out of
stones first. Two special rules apply to moving stones. The
first is that if a player places the last stone in the mancala,
that player receives an extra turn. For example, if there were
two stones in the pit two spaces away from the home man-
cala, the player would place one in the final pit and one in
the mancala, gaining an extra turn. We made the second
special rule optional, again specified in the initialization file.
This rule is that if a player places the final stone in an empty
pit on that player’s side, that player steals all the opponent’s
stones from the opposite pit.

Mancala provides an ideal environment for students to ex-
plore minimax search, both with and without α − β prun-
ing. Using terms from (Russell and Norvig 2009), it is fully
observable, strategic, episodic, static, discrete, and multi-
agent/competitive. Although the branching factor is low
(b = 6), students can see the benefits of pruning. In our ex-
perience, students often do not fully understand α−β prun-
ing until they implement it. In addition, due to the length of
the game, students will also explore the creation of effective
evaluation functions.

In addition to implementing minimax search with and
without alpha-beta pruning, we used Mancala for a project
on learning. For this project, both graduate and undergrad-
uate students grew a decision tree to replace their evalua-
tion function for minimax search. Graduate students had
to further implement an additional learning method such as
regression or clustering. Below is a snippet from this assign-
ment.

For this project, all students (undergraduate and gradu-
ate) will implement decision trees and use them to improve
your evaluation functions. There are multiple approaches
to using learning to improve your evaluation function and I
suggest one here but other approaches are possible! The
only rule is that all students must use decision trees and
graduate students must also use another learning method
from clustering, regression, or kernel regression.

One approach to using decision trees in your evalua-
tion function would be to have your agent play hundreds of
games against other agents (your own and the heuristics)
using the rule variations described above. This agent would
record features about each game (e.g. by writing out to a text
file) that describe the current game situation and the even-
tual game outcome. Once sufficient data are acquired, the
agent would learn a decision tree to predict the probability
of a win at each step and use that tree for the evaluation
function. In a similar vein, graduate students could record
data about a specific feature and use clustering to discretize
that feature and then feed the cluster data into the tree (in
addition to the other features). Other approaches are possi-
ble!

Roborally
We have also implemented and used a game inspired by the
Roborally board game, produced by Wizards of the Coast

Figure 6: Example roborally game with two 12x12 boards
next to one another. Within a board, the red and green cir-
cles teleport the robot. The blue areas represent water. The
yellow lines represent walls, and the arrows show conveyor
belts. Black squares are pits, which kill a robot. The robots
are currently on the first flag in the upper left corner of the
board and they are racing to touch flags 1 and 2 in order.

and Hasboro11. This is a capture-the-flag type game where
robots race to be the first to touch a series of flags while
safely navigating an obstacle course. Agents must plan
around a variety of interactive board elements and the other
agents. Agents interact in a variety of ways including push-
ing and firing lasers at one another.

The rules are sufficiently complicated that we only briefly
describe them here12. At each turn, a robot receives a maxi-
mum of 9 cards (fewer cards are given to damaged robots).
The robot must plan its next five moves (called register cy-
cles). The moves are then executed in sequence with the
other robots. The cards enable a robot to move forward one,
two or three steps, backwards one step, and to turn right,
left or 180 degrees. There are additional option cards that
can be used to modify the basic behaviors of the robot and
we implemented several of these, enabling a robot to mul-
tiply its moves or to better absorb laser fire without being
damaged. As the robots move, they can interact in a variety
of potentially challenging ways including damaging nearby
robots or pushing them to an unintended path. The board
elements also interact with the robot by conveying it around
the board, rotating it, killing it (if it runs into a pit), dam-
aging it, slowing it down, making it slide, or even enabling
the robot to teleport to a far away location. Figures 6 and 7
show examples of roborally games. For each game, a sub-
set of the available board templates is chosen. The flags are
placed randomly on blank spaces while ensuring that they
are sufficiently far apart.

As with Pacman, we encouraged the students to design
board templates and they were quite creative. Several of the
student designed boards are highlighted in Figures 6 and 7.

11http://en.wikipedia.org/wiki/RoboRally
12The entire set of rules is available at http://www.wizards.com/

avalonhill/rules/roborally.pdf

1734



Figure 7: An example of two other roborally boards, both
designed by students. In this case, the game is underway
and you can see the lasers firing (blue lines) at the end of
the register cycle.

These boards are challenging and incorporate many of the
possible board elements in very interesting ways. For exam-
ple, the boards in Figure 6 make extensive use of the tele-
porters. The right hand board in Figure 6 has a large area of
water. The boards in Figure 7 contain a variety of conveyors
that try to convey the agent into the pit. This makes it tricky
for the agent to navigate safely. In addition, the board in the
left panel of Figure 7 has several lasers, making it difficult
for the agent to avoid damage.

Roborally is an extremely challenging game for an intro-
ductory AI class. Using terms from (Russell and Norvig
2009), it is partially observable, stochastic (although the
agent’s actions are deterministic, the board elements and the
other agents provide a stochastic nature to the environment),
sequential, static, discrete, and multi-agent/competitive. We
used it for projects focusing on A∗, genetic algorithms, deci-
sion trees, and classical planning. Because the agents do not
know what cards they will be dealt in future hands, we in-
troduced rollouts/Monte-Carlo search (Tesauro and Galperin
1996). While this search technique is used in a variety of
real-world searches, it was challenging for students to im-
plement.

Below is an example of our project description on learn-
ing in this environment.

The goal for this project is to use learning to make your
robot even smarter. Although the goal of touching the most
flags in as few steps as possible remains, your score now
incorporates kills and deaths (so it behooves you to both
stay alive and to kill the other bots):

0.5∗
(

total number of kills
total number of deaths

)
+0.5∗

(
total number of flags

total number of games

)

Because there are so many ways that you can incorporate
learning into your bot’s behavior, this project is more open-
ended than project 1. If you do want to do something other
than the decision-tree approach discussed below, you must
talk to us first. Learning methods can be very labor intensive

and we want to ensure that you don’t choose a project that
can’t be completed in time.

For this project, you should learn at least one probability
estimation tree based on the bot’s behavior. For example,
you could train a tree to predict whether a bot will be suc-
cessful at hitting an opponent robot. Or you could train a
tree to see if your moves will take you to the expected loca-
tion (e.g. interference from another robot). The possibilities
for prediction using trees are quite large! To do this, you
will need to write code to save out all possible attributes
and data to a data file and then run your agent a number
of times to collect data. Once you have the data saved, you
should write a decision tree learner that grows a tree based
on your data. Once you have the tree trained, you should use
the results of the tree back in your bot in an intelligent man-
ner. For example, if you trained a tree to predict probability
of hitting another robot, you might choose to be aggressive
only if you have a high probability of success.

Competition and Creativity

Because many students grew up playing computer/video
games, they are motivated and inspired by them (Gee 2007).
We encourage this by awarding extra-credit for creative so-
lutions. For example, although the assignment may focus on
a search technique such as A∗, there is room for creativity
in how the technique is implemented within that particular
game. Approximately 15-30% of the students were creative
enough for extra-credit on their solutions.

For each project, we also run a class-wide competitive
ladder. Each ladder runs for 1-2 weeks (depending on the
duration of the project) prior to the project’s due date. This
ladder provides students with a chance to explore a variety
of agent behaviors and to see how well they can compete
against their fellow students. Since only some students are
motivated by competition, the ladder is optional and only
used for a limited amount of extra credit. Students must
outperform a random agent in order to actually receive the
credit. In addition, we enter the ladder ourselves and chal-
lenge students to beat us. The top student on the ladder re-
ceives one point of extra credit and the second student re-
ceives one-half point. A student can receive a maximum of
five points of extra credit from the ladder.

Discussion and Conclusions

We have been teaching AI using a combination of the games
described above for six years. We have found these games
to be a very effective tool in enabling the class to be a signif-
icant learning experience. At the beginning of the projects,
numerous students have stated variations of “I understand
algorithm X on paper but I can’t figure out how to apply it
to situation Y.” By the end of the projects, they have become
experts at the application of these algorithms. They can eas-
ily apply the algorithms to new domains and their grades on
the exam questions on these algorithms are typically quite
high. By the end of the semester, due to the variety and depth
of the projects, they have gained considerable confidence in
their own skills. They have experience at implementing al-
gorithms in a large existing software product. Additionally,

1735



they gain experience in working together on the team-based
projects. In our original work with Spacewar, we studied
the effects of the games on students’ learning and found
that the games significantly improved their comprehension
on the project topics, as measured by their performance on
the exams (McGovern and Fager 2007). We have not yet
applied for the necessary Internal Review Board (IRB) ap-
proval to study our current students using the wider variety
of games presented in this paper although it is planned for
future work.

As part of this paper, we are releasing the software for
these games. It is available at http://idea.cs.ou.edu/software/
eaai 2011. As with the original software used for our sim-
ulators (McGovern and Fager 2007), this software is pro-
vided open source. We also provide copies of all of the as-
signments used for the games. We would be eager to host
multi-institution competitions and interested parties should
contact the lead author with such requests.

Since we are actively using this gaming framework in our
AI classes, we will continue development. In future work,
we would like to add a multi-player game suited for mini-
max, such as Uno13 as well as continue to make improve-
ments to the games described above.

Acknowledgments

The authors wish to acknowledge Jason Fager’s original
Spacewar framework and all of the students in our AI classes
for the past six years who have contributed both ideas and
code.

References

Bayliss, J. D. 2009. Using games in introductory courses:
tips from the trenches. In Proceedings of the ACM SIGCSE
technical symposium on Computer Science Education.
Bloom, B. S. 1956. Taxonomy of Educational Objectives:
The Classification of Educational Goals. Handbook I: Cog-
nitive Domain. New York: McKay.
Burns, B. 2008. Teaching the computer science of com-
puter games. Journal of Computing Sciences in Colleges
23(3):154–161.

Craig, J. J. 2004. Introduction to Robotics: Mechanics and
Control. Prentice Hall, third edition.
DeNero, J., and Klein, D. 2010. Teaching introductory
artificial intelligence with Pac-man. In Proceedings of the
1st Symposium on Educational Advances in Artificial Intel-
ligence (EAAI).
Felder, R. M., and Brent, R. 2009. Active learning: An
introduction. ASQ Higher Education Brief 2(4).
Fink, L. D. 2003. Creating Significant Learning Ex-
periences: An Integrated Approach to Designing College
Courses. Jossey-Bass.
Gee, J. P. 2007. What video games have to teach us about
learning and literacy. Palgrave Macmillan.
Graetz, J. M. 1981. The origin of spacewar. Creative Com-
puting 56–67.

13http://en.wikipedia.org/wiki/Uno (card game)
Leutenegger, S., and Edgington, J. 2007. A games first ap-
proach to teaching introductory programming. In Proceed-
ings of the ACM SIGCSE technical symposium on Computer
Science Education, 115–118. Academic Press.
McGovern, A., and Fager, J. 2007. Creating significant
learning experiences in introductory artificial intelligence.
In Proceedings of SIGCSE 2007, Technical Symposium on
Computer Science Education, 39–43.
Prince, M. 2004. Does active learning work? a review of the
research. Journal of Engineering Education 93(3):223–231.
Russell, S., and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach. Prentice Hall, third edition.
Sung, K. 2009. Computer games and traditional CS courses.
Communications of the ACM 52(12):74–78.
Tesauro, G., and Galperin, G. R. 1996. On-line policy im-
provement using Monte-Carlo search. In Advances in Neu-
ral Information Processing: Proceedings of the Ninth Con-
ference. MIT Press.
Woods, D. R.; Felder, R. M.; Rugarcia, A.; and Stice, J. E.
2000. The future of engineering education III developing
critical skills. Chemical Engineering Education 34(2):108–
117.

1736


