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Abstract 
With the growth of online information, many people are 
challenged in finding and reading the information most 
important for their interests. From 2008-2010 we built an 
experimental personalized news system where readers can 
subscribe to organized channels of information that are 
curated by experts. AI technology was employed to 
radically reduce the work load of curators and to efficiently 
present information to readers. The system has gone through 
three implementation cycles and processed over 16 million 
news stories from about 12,000 RSS feeds on over 8000 
topics organized by 160 curators for over 600 registered 
readers. This paper describes the approach, engineering and 
AI technology of the system. 

 Problem Description
It is hard to keep up on what matters. The limiting factor is 
not the amount of information available but our available 
attention (Simon 1971). In the context of news, traditional 
mainstream media coverage cannot address this issue. 
Although most people are interested in some of the topics 
covered in the mainstream, they also have specialized 
interests from their personal lives, professions, and hobbies 
that are not popular enough to be adequately covered there. 
A news service which can optimize our individual 
information foraging (Pirolli 2007) needs to be 
personalized to our interests.  
 A snapshot of a personal information appetite or 
“information diet” reveals further nuances. Some interests 
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are enduring. Some interests are transient, following the 
events of life. When we form new interests, a topically-
organized orientation helps to guide our understanding of a 
new subject area.  

We believe that this approach will be of interest to 
information providers that want to grow their audience by 
providing personalized information delivery and targeting 
groups with focused interests. Specialized information 
diets and organized presentations may be useful beyond 
news for information analysts and other “sensemakers”.  

Readers and Curators 
Our approach is powered by the expertise of curators. 
Curators or traditional editors set standards for 
information, both for the quality of sources and the 
organization of its presentation. In traditional publishing, 
the number of editors and the scope of subject matter are 
necessarily limited. Publishers arrange to have enough 
material to satisfy their audiences and enough curators to 
vet and organize the material. 

 We depart from tradition by enabling any user to be a 
curator, publishing and sharing articles in topically-
organized channels. The idea is to reach down the long tail 
(Anderson 2006) of specialized interests with a growing 
group of curators. This approach draws on three sources of 
power that we call the light work of the many (the readers), 
the hard work of the few (the curators), and the tireless 
work of the machines (our system). 
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over Hadoop’s distributed file system. Hadoop also runs 
other jobs that pre-compute information for the news 
presentations.  
AI Technology for Robust Topic Identification  
In manual curation the most time-consuming part is finding 
and identifying articles for topics. Kiffets classifies 20 to 
30 thousand articles by topic every day. Manual curation is 
practical for traditional newspapers and magazines because 
the number of topics is small and the articles are drawn 
from very few sources. Our approach extends curation to a 
regime of information abundance, where there can be 
thousands of sources, a proliferation of topics, and where 
information for narrow and specific topics may be sparse 
in the sources. Restated, our approach enables systematic 
curation on the web. 

Many online news systems classify articles 
automatically by matching a user-supplied Boolean query 
against articles. However, several common conditions can 
cause this approach to be unsatisfactory. One issue is that 
common words often have multiple meanings. Does a 
search for “mustang” refer to a horse, a car, or something 
else? User expectations of precision are much higher for 
automatic article classification than for results of search 
engines. When someone uses a search engine, they face a 
trade-off between carefully developing a precise query and 
spending time foraging through the results. In a search 
setting, it can be acceptable if 50 percent or more of the 
results are off topic as long as a satisfactory article appears 
in the top few results. However, readers perceive such 
imprecision as unacceptable when a system supplies its 
own query and there are many off-topic articles. 

Skilled searchers and query writers can address this 
issue to a degree by writing more complex queries. We 
have found, however, that complex queries are prone to 
errors and refining them is often beyond the skill and 
patience of our curators.  

One way that we have addressed query complexity is by 
developing a machine learning approach to create optimal 
queries. In this approach a curator marks articles as on-
topic (positive training examples) or off-topic (negative 
training examples). The system searches for the simplest 
query that matches the positive examples and does not 
match the negative ones.  

Because we have reported on this approach earlier 
(Stefik 2008), we describe it here only briefly. Our system 
employs a hierarchical generate-and-test method (Stefik 
1995) to generate and evaluate queries. The queries are 
generated in a Lisp-like query language and compiled into 
Java objects that call each other to carry out a match. The 
articles themselves are encoded as arrays of stemmed 
words represented as unique integers. With query-
matching operations implemented as operations on 
memory-resident numeric arrays, the system is able to 

consider tens of thousands of candidate queries in a few 
seconds. This is fast enough for interaction with a curator. 

The query terms are chosen from the training examples, 
focusing on words that have high TFIDF ratios, that is, 
words whose frequencies in the training examples are 
substantially higher than their frequencies in a baseline 
corpus. The generated query relationships are conjunctions, 
disjunctions, n-grams, and recursive compositions of these. 
Candidate queries are scored according to matching of the 
positive and negative training examples and structural 
simplicity.  

Although the optimal query generator automates writing 
queries, this approach does not get around fundamental 
problems with using queries alone to classify articles. For 
example, it does not distinguish cases where articles match 
a query incidentally, such as when article web pages 
contain advertisements or short descriptions provided by a 
publisher to draw a reader to unrelated articles. From the 
perspective of article classification, this information on a 
web page is noise. The query approach also does not 
distinguish articles that are mainly on-topic from articles 
that are mainly off-topic, but which contain tangential 
references to a topic. For this reason, we characterize the 
query approach as having high precision and high 
vulnerability to noise. 

To reduce noise vulnerability, we incorporate a second 
approach to classifying articles. The second approach 
complements query matching and has opposite 
characteristics. In contrast to the query approach, it has low 
vulnerability to noise but also low precision.  

The second approach considers an article as a whole, 
rather than focusing on just the words and phrases in a 
query. It represents an article as a term vector, pairing basis 
words with their relative frequencies in the article. We 
compute the similarity of the term vector for an article to a 
term vector for the topic as derived from its training 
examples. This is a variant of standard similarity 
approaches from information retrieval. With a cosine 
similarity metric, the score approaches one for a highly 
similar article and zero for a dissimilar article.  A similarity 
score of about 0.25 is a good threshold for acceptability.  

In summary, our system combines two topic models 
with opposite characteristics to provide a robust 
classification of articles by topic. An article is classified as 
on-topic if it matches the query for a topic and has a high 
enough similarity score. This combined method has proven 
precise enough for topics and robust against the noise 
found in most articles. It requires that curators identify 
good examples of on-topic and off-topic articles. The 
curator knowledge is captured from the training examples 
that they select. For most topics, three to six training 
examples of each type are enough for satisfactory results. 
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� A hot-topics detector prioritizes topics according 
to growth rates in editorial coverage across 
sources, identifying important breaking news.  

� A related-topic detector helps users discover 
additional channels for their interests. 

� A near-misses identifier finds articles that are 
similar to other articles that match a topic, but 
which fail to match the topic’s query. The near-
miss articles can be inspected by curators and 
added as positive examples to broaden a topic. 

� A source recommender looks for additional RSS 
feeds that a curator has not chosen, but which 
deliver articles that that are on topic for a channel. 

Interweaving Development and Evaluation 
This project was inspired by “scent index” research (Chi, 
Hong, Heiser, Card, and Gumbrecht 2007) for searching 
the contents of books. That research returned book pages 
as search results organized by categories from the back-of-
the-book index. For example, a search query like “Ben 
Bederson” in an HCI book returned results organized by 
topics corresponding to Bederson’s research projects and 
institutional affiliations. We thought it would be exciting to 
extrapolate from a given index to organize web search 
results.  

 The key technological uncertainty was whether a 
machine learning approach could accurately model index 
topics. A one-person internal project was started that built 
and developed the first version of an optimal query 
generator. After a few months we showed that it could 
quickly generate queries that accurately matched pages for 
all 900 index entries in a book, essentially reproducing 
results of the original index (but finding errors in it).  

Alpha and Beta Testing 
In April 2008 we created a two-person team to explore the 
application of this technology. The initial business 
objective was to create a prototype product suitable for an 
advertising-based business delivering personalized news. 
Later the objective evolved to provide information 
processing services for news organizations. 

 In October 2008 we opened our first prototype to alpha-
testing by a dozen users. We had a flash-based wizard for 
curators and a simple web interface for readers. Each of the 
curators built a sample index and used it for a few weeks. 
Four more people joined the team, focusing on release 
testing, user interviews, design issues, and fund raising. 

Although the system was able to collect and deliver 
articles when we built the channels, it became clear that 
curation was too difficult for our first curators. They had 
difficulty finding RSS feeds and did not completely grasp 
the requirements of curating. Extensive interviews and 

observation session helped us to identify key usability 
issues. We came to understand that the system would not 
be a commercial success unless it went viral. This required 
making it much easier to use. 

We began learning about lean start-up practices and 
became obsessed with meeting customer needs. We 
followed a ruthless development process that divided user 
engagement into four stages: trying the system, 
understanding it, being delighted by it, and inviting friends. 
We divided possible system improvements into a track for 
curators and a track for readers. We built performance 
metrics into the system and monitored user engagement 
with Google Analytics. In 2010 we measured 1300 unique 
visitors per month with about 8900 page views. The 
average user stayed for about eight minutes, which was 
high. Every month we interviewed some users. Every 
morning we met for an hour to prioritize and coordinate the 
day’s development activities.  

The development and deployment of AI technology was 
driven by the goal of meeting user needs. For example, 
when article classification began failing excessively due to 
noisy articles from the web, we combined our symbolic 
query-based approach with the statistical similarity-based 
approach. For another example, multi-level topic 
presentation was developed to improve user experience on 
big channels. Other additions such as the source 
recommender were prioritized when they became the 
biggest obstacles to user satisfaction. 

Over time we came to understand user and curator habits 
more deeply. For example, when we recognized that 
curators wanted to tune their topic models while they were 
reading their daily news, we eliminated the separate 
“wizard” for curators and incorporated curation controls 
into the news reading interface. This required changing 
how the machine learning algorithms were triggered. They 
went from being requested explicitly in a curation session 
to being requested implicitly when articles were added to 
topics (positive examples) or when articles were marked as 
off-topic during reading. We did not always gain our 
biggest insights through user interviews and metrics. Some 
of our insights came from being heavy users ourselves. 

Performance Tuning 
In early 2009 we began beta-testing with about 60 users. 
The system load from users and articles increased to a level 
where we had to prioritize scaling and robustness issues.  
The first version of the system began to stagger when we 
reached 100 thousand articles. A recurring theme was to 
reduce the I/O in processes, since that dominated running 
time in most computations. For example, an early version 
of the classifier would read in arrays representing articles 
and use our optimized matching code to detect topic 
matches. Recognizing that most of the time was going into 
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I/O, we switched to using Solr to compute indexes for 
articles when they were first collected. The classifier could 
then match articles without re-reading their contents. 

 We switched to a NoSQL database for article contents to 
support the millions of articles that the system now held. 
We periodically re-worked slow queries and found more 
ways to pre-compute results on the back-end in order to 
reduce database delays for users. In June of 2010, we 
started an open beta process by which any user could come 
to the system and try it without being previously invited. 
By August, the system had over 600 users and was able to 
run for several months without crashing. 

Competing Approaches 
At a conference about the future of journalism, Google’s 
Eric Schmidt spoke on the intertwined themes of 
abundance and personalization for news (Arthur 2010).  

The internet is the most disruptive technology in 
history, even more than something like electricity, 
because it replaces scarcity with abundance, so that 
any business built on scarcity is completely upturned 
as it arrives there. 

He also reflected on the future of mass media and the 
news experience. 

It is … delivered to a digital device, which has text, 
obviously, but also color and video and the ability to 
dig very deeply into what you are supplied with. … 
The most important thing is that it will be more 
personalized. 

There is little question that the news industry is being 
disrupted and that news is currently abundant. However, 
although it is appealing to busy people, at the time of this 
writing we know of no big commercial successes in 
personalizing news. That said, many news aggregation and 
personalization services have appeared on the web over the 
last few years.  Some of these services have been popular, 
at least for a while. In the following we describe the 
elements that are similar or different from our approach.  

Choosing Who to Follow 
A few years ago RSS (“Really Simple Syndication”) 
readers were introduced to enable people to get 
personalized news. RSS readers deliver articles from RSS 
feeds on the web, created by bloggers and news 
organizations. RSS readers do not organize news topically 
and do not provide headlines of top stories. Rather, they 
display articles by source. A news consumer can read 
articles from one source and then switch to read articles 
from another one. Different reader systems vary in whether 
they are web-based or computer applications and in how 
they keep track of the articles that have been read. 

According to a 2008 Forrester report (Katz 2008), 
however, consumer adoption of RSS readers has only 
reached 11%, because people do not understand them. 

The Pew Internet & American Life Project studies 
changes in how people consume and interact with news. 
Much of the growth in online services with news is in 
systems like Twitter and Facebook, which are similar to 
RSS readers in that users specify their interests in terms of 
sources or people that they want to follow. According to 
Pew, internet sources have now surpassed television and 
radio as the main source of news for people under 30.   

Matching Key Words
News alert systems ask users to provide key words or a 
query that specifies the news that they want. This approach 
treats personalization as search. Typical users receive news 
alert messages in their email. 

Since news alert system maintain a wide spectrum of 
sources, they sidestep the problem of asking users to locate 
or choose appropriate RSS feeds on the web. However, a 
downside of using a broad set of sources to answer queries 
is that many of the articles delivered are essentially noise 
relative to the user’s intent, due to unintended matches to 
incidental words on the web pages containing the articles. 

Another disadvantage of news alert systems is that the 
precision of queries inherently limits their potential for 
surprise and discovery. In struggling to get just the right 
query, news consumers potentially miss articles that 
express things with different words. Furthermore, news 
consumers want to find out about what’s happening 
without anticipating and specifying what the breaking 
news will be.  

Personalized News by Mainstream Publishers 
Some major news publishers let their customers choose 
from a pre-defined set of special interest sections such as 
(say) “Science and Technology” or allow them to specify 
key words that are matched against news articles from the 
publisher. The pre-defined sections are manually curated, 
and the key word sections rely on simple matching. 
According to a private communication from a technology 
officer of a major national news publisher, fewer than three 
percent of their mainstream news customers enter any form 
of customizing information. 

Systems like Google News offer a similar combination 
of methods except that they draw from many sources. They 
offer predefined channels (World, Business, Sci/Tech) on 
broad topics which seem to achieve topical coherence by 
showing only articles from appropriate manually-curated 
feeds. Any user-defined channels based on key words have 
the same noise problems as other key word approaches. 
Google News also uses a clustering approach to identify 
hot articles. Lacking sections defined by topic trees, it does 
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A major challenge was in making curation easy and 
reliable given the limited time that curators have available. 
It is easy for us to train curators in a couple of short 
sessions. It is more challenging to attract people on the 
web to try the system, to understand what it does, and to 
invest in becoming a curator. 

 During our trial period about one registered user in 
three created a channel and about one in four of those 
created a complex channel. We do not know ultimately 
what fraction of users might be expected to become 
curators. Many users create very simple channels without 
bothering to set up topics. We believe that there are very 
interesting pivots to make on new mobile devices and in 
engagements with online communities. There are also 
other applications of the classification technology beyond 
personalized news. 

Further development on this project depends on finding 
external funders or investors. The news business is 
increasingly undergoing rapid change and economic 
challenges. It is changing on several fronts, including how 
news is delivered (mobile devices), how it is being 
reported (citizen journalists and content farms), how it is 
paid for (subscription services, pay walls, and advertising). 
This project opens a further dimension of change: how 
abundant news can be curated.  

Kiffets was designed, implemented, and deployed by 
two people over two and a half years. Other project 
members worked on evaluation, channel development, user 
experience, release testing, and business development. 
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