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Abstract 
In this paper we provide insight into the BodyMedia FIT® 
armband system - a wearable multi-sensor technology that 
achieves the goals of continuous physiological monitoring 
(especially energy expenditure estimation) and weight 
management using machine learning and data modeling 
methods. This system has been commercially available 
since 2001 and more than half a million users have used the 
system to track their physiological parameters and to 
achieve their individual health goals including weight-loss. 
We describe several challenges that arise in applying 
machine learning techniques to the health care domain and 
present various solutions utilized in the armband system.
We demonstrate how machine learning and multi-sensor 
data fusion techniques are critical to the system’s success. 

Introduction
In the United States alone, approximately $2.3 trillion was 
spent on health care in 2008. It is well recognized that 
regular and accurate self-monitoring of physiological 
parameters and energy expenditure (calorie burn) can 
provide important feedback that increases self-awareness 
for personal health. Such awareness and tracking are            
pre-requisites for cost-effective health management, illness 
reduction, health-conscious decision making and long-term 
lifestyle changes. There are several technologies available 
for physical activity, energy expenditure tracking and 
weight management. Many of these are accurate, but are 
bulky, expensive and only used in laboratory settings 
(Holdy 2004). At the other extreme, there are several 
single-sensor devices in the market (predominantly 
accelerometer-based) that are cheaper and light-weight at 
the expense of accuracy (Beighle et al. 2001, Crouter et al.
2003). Moreover, there is the doubly labeled water 
technique, a medical procedure that is guaranteed to give 
accurate measures of energy expenditure (Schoeller et al.
1986), but is very expensive and only gives readings for a 
10-14 day period, making it impractical for continuous or 
short term monitoring. 
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We believe that a physiological monitoring device 
providing estimates such as energy expenditure should be 
accurate, provide continuous feedback to the user of the 
system, be easy-to-use and be able to work during all the 
activities of the user’s daily life (free-living conditions). 
Moreover, the device should be cost-effective. The 
presented BodyMedia FIT armband system (BodyMedia 
2011) achieves these goals. The effective use of machine-
learning methodologies and a combination of basic sensors 
used in a smart manner can rival medical grade equipment 
in terms of accuracy. The key reasons that the BodyMedia 
FIT system is able to provide accurate free-living estimates 
are:  
 i) It uses a data-centric approach and estimates (as 
opposed to measures) most of the key physiological 
parameters using state-of-the-art data modeling and 
machine learning techniques. 
 ii) It uses multiple sensors - providing a sense of the 
current activity context of the user, and then it provides a 
context sensitive estimate of the physiological parameters. 

This paper will describe some problems of estimating 
energy expenditure, the BodyMedia FIT armband, the 
machine learning techniques used in developing the 
estimation algorithms, the results of several studies on the 
accuracy of the device, and results indicating the utility of 
the device in a weight loss scenario.  

Background  
Overview of the system: (Fig. 1) shows the armband 
device (model MF). It is worn on the upper arm. The 
current commercial version uses five types of sensors: a 
three-axis accelerometer tracks the movement of the upper 
arm and body and provides information about body 
position. A synthetic heat-flux sensor measures the amount 
of heat being dissipated by the body to the immediate 
environment. Skin temperature and armband-cover 
temperature are measured by sensitive thermistors. The 
armband also measures galvanic skin response (GSR), the 
conductivity of the wearer's skin, which varies due to 
sweating and emotional stimuli.   The armband contains a 
transceiver radio and a USB (Universal Serial Bus) port, 
allowing wireless transmission as well as wired 
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downloading of data. The armband is made predominantly 
of natural ABS (Acrylonitrile Butadine Styrene) and 304 
grade stainless steel and attaches to the arm with an elastic 
Velcro strap. The armband is approximately 55x62x13 mm
(2.2x2.4x0.5 inch) and weighs 45.4 grams (1.6 oz), it
stores more than 14 days of continuous body data and has 
enough power for 5-7 days of wear from a rechargeable 
battery, when worn 23 hours a day. Each sensor is sampled 
32 times per second. Other BodyMedia armband monitors 
are available that record the same sensor information but 
differ in other features such as using Bluetooth® wireless 
or increased memory capacity. 

The system collects physiological data on a continuous 
basis from the person wearing the armband. Data is 
conditioned, analyzed, interpreted and stored within the 
device. The device's on-board algorithms estimate and 
provide real-time estimation of key physiological measures 
of interest such as the energy expenditure, total number of 
steps, number of minutes of moderate activity and number 
of minutes of vigorous physical activity. These key 
measurements can be displayed wirelessly on a 
BodyMedia FIT display device or a Bluetooth-enabled cell
phone using a mobile application (such as the iPhone

                (a)                                
              

      (c)                                      (d)
Fig. 1. BodyMedia System overview (a) BodyMedia armband 
device and its sensor layout. The figure shows the side of the 
device worn against the skin. (b) Sensor description (c) Front of 
the armband (showing the cover temperature sensor) and a 
display device that provides real-time feedback of physiological 
parameters to the end-user (d) iPhone application that provides 
real-time feedback

application shown in Fig. 1(d)). Additionally, the data can 
later be transferred electronically (via USB or wirelessly) 
to a computer or to a BodyMedia web account, where the 
software re-analyzes the data and makes a definitive high-
level analysis of the data with algorithms that are too 
computationally expensive to run in the device’s firmware.

Introduction to Energy Expenditure Measurement 
The number of calories a person burns is an important and 
actionable parameter for many health goals and disease 
conditions. These include metabolic disorders such as 
diabetes, weight control (loss, gain, or maintenance), and 
sports performance. True total energy expenditure (TEE) is 
very difficult to measure, and nearly all techniques make 
use of approximations of one kind or another. The 
following are a few methods commonly used for energy
expenditure estimation:
Indirect Calorimetry: Metabolic carts measure the 
oxygen and carbon dioxide a person inhales and exhales 
and then indirectly compute the calories burned. This 
technique of measurement is currently very widely 
accepted in the sports medicine research community. 
Based on a survey of the literature, devices of this category 
differ from one another by 5–10% for EE measurements 
and differ even on repeated measurements of the same 
activity by around 5–10% (Yates et al. 2004, Wells et al.
1998). Most metabolic carts are rather large and bulky and 
are not suited for monitoring outside of the laboratory 
setting while portable devices are not as accurate. These 
devices are expensive, costing upward of US$20,000 for a 
basic system and US$40,000 for a portable oxygen 
analyzer (Holdy 2004, Berntsen et al. 2010) . 
Doubly Labeled Water (DLW): The DLW stable isotope 
method is considered the gold standard for measuring TEE 
during free living (Schoeller et al. 1986). This method is 
based on the principle that in a loading dose of 2H2

18O, the 
18O is eliminated as CO2 and water, while deuterium is 
eliminated from the body as water. The rate of CO2
production, and thus energy expenditure, is calculated from 
the difference of the two elimination rates. Limitations of 
the DLW method include a high cost, the need for 
specialized equipment and expertise to implement the 
techniques, and the fact that the method can only be used 
to measure expenditure over a long period of time (e.g. 10–
14 days).  
Self-Report Techniques: Self-report methods include 
questionnaires, interviews, and activity diaries. There are 
some advantages to using self-reports or 24-hour recalls, as 
they are inexpensive and easy to administer. However
estimating duration and energy expenditure with these can
only provide a rough and inaccurate estimate of activity 
level.
Pedometers: Pedometers, by definition, measure footfalls. 
The clear advantage of pedometers is their low cost, 

Skin Temperature: measures the 
surface temperature of the body
Galvanic Skin Response:
measures skin conductivity, which 
reflects the sweat content of the 
skin
Heat Flux: Measures the rate of 
heat dissipation from the body
3-axis accelerometer: measures 
motion in each of 3 dimensions
Cover Temperature: (placed in 
front) measures the immediate 
ambient temperature 

(b)
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ranging from $15 to $300 (Beighle et al. 2001; Freedson et 
al. 2000). In general, pedometers are not accurate when 
used for activities that do not involve footfalls (e.g. weight 
lifting, biking, household activities).  

Heart Rate Monitors: Heart rate is one of the 
fundamental vital signs and is related to the level of 
physical exertion. Especially for moderate to strenuous 
activity, a person’s heart rate increases linearly with 
oxygen consumption (Freedson et al. 2000; Welk 2002). 
However for activities such as rest that do not involve large 
muscle groups, heart rate does not have a linear 
relationship to energy expenditure. Heart rate monitoring 
is quite common and is often used as part of an exercise 
prescription. Chest-strap heart rate monitors can be a 
burden to participants because of the constriction required 
across the chest to maintain good skin contact. Electrode-
based heart monitors are difficult to wear, as placement, 
skin treatment and irritation can be significant issues and 
detriments to long-term wear.
Accelerometers: Accelerometers operate by measuring 
acceleration along a given axis, using any of a number of 
technologies, including piezoelectric, micromechanical 
springs and changes in capacitance. Often, multiple axis 
measurements are bundled into a single package, allowing 
two and three axes accelerometers. There is no simple 
linear relationship between acceleration and energy 
expenditure, but for certain activities, for example walking, 
there are well-understood basic principles in physics 
(work) and physiology (muscle efficiency) that can aid in 
developing appropriate equations. 

Modeling and Design 
Challenges :  BodyMedia's approach in addressing the 
estimation of energy expenditure is non-conventional and 
different from the approaches mentioned above, since it 
employs machine learning to solve the problem. Machine 
learning in this context is faced with some significant 
challenges.
 First and foremost is the need for high quality data,
which can be very expensive to obtain on a broad enough 
set of activities and subjects.   
 The second issue is in the inherent variability present in 
the data set and in the target user-base. Each armband user 
is different in terms of their physical characteristics such as 
age, weight, gender and fitness levels, and all of these 
characteristics affect the relationships between measured 
parameters and energy expenditure.  Moreover, there is 
variation in data due to geographical and environmental 
differences, including different humidity and external 
temperatures.  Additional sources of variation include the 
different calibration of medical gold-standard equipment. It 
is required that the final models should be robust enough to 
tackle the aforementioned variations whether known to be 
present in the training data or not.

 The third challenge is with the fact that the gold-
standard data used for building the EE estimation models 
can only be collected on a limited set of activities in lab 
settings, whereas the actual use-case of these models is in 
free-living settings where the users perform a multitude of 
complex activities. Making EE estimation models in these 
circumstances violates a fundamental assumption of 
machine learning that both the training and testing 
distribution should be the same.   
 The fourth challenge is in the fact that the models 
themselves have to satisfy multiple objectives. For 
example, the model should be accurate for a minute-to-
minute real-time feedback for specific activities as well as 
for weeks-long free-living protocols comprised of a 
multitude of activities. These different use cases can make 
model selection difficult.  
 Another challenge is that algorithms need to continue to 
work as hardware improves (including miniaturization and 
simplifications that result in reduced costs).
 Finally, many models have a requirement of providing 
real-time results. In this event, an on-board processor that 
has limited memory and computational capability 
computes the algorithm. This influences the underlying 
features and machine learning methods, in that we prefer 
methods that are efficient in terms of time and space 
complexity. 
Modeling Process : BodyMedia's modeling process can be 
defined in the following steps: 
i)  Data collection 
ii) Data Cleaning 
iii) Feature Generation 
iv) Development of Context Detectors  
v) Development of Regression Models 
vi) Internal and External Validation 

Data Collection: Any non-trivial machine learning method 
needs good data. To tackle the challenge of obtaining high 
quality data, BodyMedia conducts data collection studies at 
multiple clinical sites spread across the globe. We have 
worked to enlist many academic researchers as colleagues 
and advisors, allowing us to obtain data from far more 
studies than we could fund ourselves.  Data collection is 
designed in a manner so that it provides sufficient samples 
to capture the variability present in the domain. As specific 
examples, the data used in the algorithms range from 5-
year old children to retirees in their 70s; it represents 
unhealthy subjects suffering from multiple diseases at one 
end of the spectrum to highly elite athletes participating in 
sports events at the other. We capture data from people 
engaging in many different activities as well, ranging from 
restful activities such as sleep and lying down to highly 
vigorous activities such as sprinting, stair-master, rowing 
and mountaineering.  The collected data is either free-
living (user-annotated activities) or it could be a part of a 
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strict protocol in a laboratory or controlled environment. 
For most lab studies, data from high accuracy gold-
standard equipment (such as metabolic carts or metabolic 
chambers) is also collected for training and testing 
purposes.  It is to be noted that the free-living data consists 
of many activities and is used for activity classification. 
The lab data is limited to a certain subset of activities and it 
is used primarily for building EE estimation models. 
Data Cleaning: We have developed a rigorous process for 
cleansing data and preparing it for machine learning. 
Armband sensor data in each data file is verified; cases of 
sensor malfunction are detected by comparing the armband 
sensor data with the sensors' standard distribution. If 
outliers are found in the sensor values, those data points 
are discarded. In the cases where gold-standard medical 
equipment data is also being collected, each data point is 
carefully aligned using semi-automated procedures.
Occasionally, the gold-standard equipment is not properly 
calibrated, and the equipment has a tendency to 
overestimate or underestimate. Such cases are identified 
based on its compliance to standard METs (Metabolic 
Equivalent, essentially energy cost per unit of mass) ranges 
for the corresponding activities (Ainsworth et al. 2000).
Moreover, the data sets are checked for correctness of the 
activity annotations (in most cases inserted manually by 
the user or experimenter).  The activity annotations are 
verified for correctness by comparing the sensor values 
with the standard sensor value distribution for the activity 
and applying other such heuristics. As an example, most 
cases of resting activities provide little or minimal changes 
in motion sensors and GSR sensors. If it is found that the 
sensors recorded high amount of motion and/or steep rises 
in GSR, it is very likely that the activities were annotated
incorrectly. For cleaning of the activity annotations, the 
philosophy is to err on the side of caution, as we have 
found that allowing even small amounts of poorly labeled 
or misaligned data can have outsized effects on algorithm 
performance.  
Feature Generation: The sensors used in the armband are 
sampled at 32 Hz, whereas the armband records data every 
minute (this can be adjusted through software).  Thus 
compressed and summarized features are calculated and 
created from the raw data. Currently more than 50 features 
of this multi-dimensional raw data stream are gathered as 
separate channels. For example, the variance of the heat 
flux is a channel, as is the average of the heat flux values. 
Some channels are fairly standard such as standard 
deviation, frequency, peaks and averages. Others are 
complex proprietary algorithms embedded in the on-board 
processor of the armband.  Then typically these summary 
features for each minute epoch are stored and the raw data 
discarded to conserve memory.  Typically, we refrain from 
calculating computationally complex and storage-
expensive operations (such as Fourier transforms) in order 

to conserve the on-board processor's memory and finish the 
calculation of the feature in each epoch / duty cycle. 
Approximations are also used if the actual feature is 
computationally expensive to create. 
 The next stage of feature generation is done on the 
recorded data retrieved from the armband.  This is done to 
find features that aid us in recognizing patterns of activity 
and for calibrating various measures against one another.  
For example, relative values of GSR are often more useful 
than absolute readings. Multiple methods are used to 
extract these features. Some features are derived using 
domain knowledge of exercise and physiology. Some are 
derived using an automated feature generation technique 
similar to genetic programming where features must pass a 
few standard statistical tests (such as high correlation to the 
ground-truth EE in all or some activities). Some features 
are derived using standard machine learning feature 
generation techniques such as Principal Components 
Analysis (PCA) and Independent Component Analysis 
(ICA). Some are added based on intuition and visual 
observation. At the end of this phase, a feature space of 
more than 500 variables is created. 
Development of Context Detectors: The next stage of the 
modeling process is to develop a series of classifiers that 
break down a user’s activity into primary components for 
which good models of energy expenditure can be created. 
Classifiers are created for the following basic activities: 
walking, running, stationary biking, resting, weight-lifting, 
motoring, road biking, sleep and rowing. Many popular 
computationally inexpensive machine learning methods 
such as naive Bayes and decision trees are tried out for 
feature selection and training for the classifiers.  
 To avoid overfitting, all the feature selection and 
classification algorithms use k-fold cross-validation. In our 
experience it is not sufficient to perform k-fold data-based 
cross-validation (i.e. creating folds at the level of 
individual data points) to ensure robustness and 
generalization capabilities, as there are many subject-
specific traits present in the data. Instead, the entire data of 
each subject is assigned to one of the k folds. We refer to 
this strategy as k-fold by-subject cross-validation. Using 
by-subject cross-validation results in algorithms that 
generalize well to unseen subjects. Moreover, to avoid 
overfitting by the classifiers, it was found necessary to 
avoid features that include subject-specific traits (such as 
demographic information).  
 It should be noted that the use of multiple sensors 
provides orthogonal sets of features in the feature space, 
helping to provide more discriminating capability to the 
classifiers.  
 Fig. 2 represents signal values of one accelerometer-
based feature and a heat-flux based feature during various 
activities. It is seen that the values for the accelerometer 
feature for "climbing stairs" and "walking around the 
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Fig. 2. A sample of armband signals during various activities. 
Multiple sensors allow better activity classification. 

block" are very similar, making it complex for the 
classifiers to infer the activity based on the accelerometer 
data. With the introduction of heat flux, even a simple 
classifier can distinguish between the two activities.  
 Typically, the classifier model is designed as a 
hierarchical combination of various sub-classifier 
responses. A base classifier classifies the data into generic 
activities, and the next level of the classifier model 
provides a more fine-grained label to the activities. For 
example, one can think of the base classifier only 
classifying an activity as "biking", and the second-phase 
classifier classifying all the "biking" data points into 
"stationary biking" and "road biking". The classifier model 
makes use of several sub-classifiers spread across multiple 
levels of hierarchy. 
Development of Regression Models: In this phase, 
several regression models are built that provide energy 
expenditure estimates. Usually the models are built for a 
specific activity (or for a set of very similar types of 
activities). The regressions are then combined according to 
the probabilities output from the activity classifiers. Many 
prevalent AI-based regression techniques such as robust-
regression and locally-weighted regression are used for 
fitting the data. Feature selection and training for the 
regression models is also performed using k-fold by 
subject cross-validation.
 Most of the physiological measures of interest estimated 
by the armband are dependent on subject-specific traits 
(e.g. mass). Rather than predicting absolute measures, 
regressions are tuned to predict relative measures that are 
subsequently adjusted for the subject. For example, in the 
case of energy expenditure, the regression models are 
actually trained on the relatively subject-independent unit 
METs (Ainsworth et al. 2000) instead of absolute units 
such as kJoules or kcalories. These steps of activity 
prediction and value estimation overlap one another and 
are addressed simultaneously. Multiple iterations result in 
improved algorithms. 
Internal and external validation: For each algorithm 
release cycle, certain data sets are kept untouched for the 

entire development period, and performance of the model 
is evaluated on those validation sets. The models are 
approved and released only if they pass pre-defined criteria 
on the validation sets as well as the training sets. Just like 
the training data sets, the validation sets are ensured to 
provide sufficient data samples for each activity with a
broad variety of subjects. Some of the validation sets target 
particular areas of concern such as a demographic group 
(children, unhealthy adults and athletes) or specific 
activities. Some types of data sets are only good to serve as
validation sets, for example the doubly labeled water 
dataset, where there is only one reading of TEE (Total 
Energy Expenditure) every two weeks. At the alpha and 
beta stages of the release, results of the models are 
observed, and minor changes are made to the model if 
necessary. Many researchers also carry out independent 
external validation and performance evaluation of the 
system, providing helpful cues to further improvement (St. 
Onge et al. 2007, Welk et al. 2007, Jakicic et al. 2007, 
Malavolti et al. 2007). 

Results 
BodyMedia armbands have been commercially available 
since 2001, and currently the fifth generation of the system 
is in the market. There are more than half a million users of 
the system spread around the world. To date, BodyMedia 
has collected more than 10 billion minutes of armband 
data. The system has recorded more than 170 billion steps 
and estimated more than 20 billion calories.  
Data Sets: In the most recent energy expenditure 
algorithm created at BodyMedia, a data set with roughly 1 
million minutes featuring around 800 users was used for 
training the context detectors. All the minutes were 
carefully annotated by the users and they were cleaned to 
make it suitable for modeling. Developing the regressions 
required a gold-standard data set which had 658 subjects 
and approximately 40,000 data points. 
 The datasets had a wide range of demographic 
variations: age range varied from 5 years to 78 years, 
weight range varied from 18kg to 152kg (40lbs to 335lbs). 
The data was collected from more than 50 different studies, 
conducted at external clinician sites spread across the 
world and from studies conducted in-house. 
Classification:  Tables 1 & 2 show classification results 
for the most recent algorithm  for major activities. Notice 
that some of the true-positive rates are seemingly quite 
low. Further inspection reveals that much of the 
misclassification happens between similar types of 
activities. For example, misclassification between 
motoring and resting occurs often, but from an energy  
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Unknown Walking Running S. Biking Rest W. lifting R. Biking Rowing
0

1

2

3

4

5

6

7

8

9  

metabolic-cart-mets

mets (new algorithm)
mets-(old algorithm)

Table 1: Classification results for prominent activities, evaluated 
using by-subject cross-validation 
expenditure (EE) standpoint the misclassification does not 
cost much because their EE ranges are very similar. 
 Table 2 shows the four most frequently predicted classes 
for each true class (the confusion in classification). Tables 
1 & 2 show results evaluated by using by-subject cross-
validation. The model also generalizes well to unseen 
subjects' data, with the overall accuracy of the unseen 
subjects' dataset just 1% less than the accuracy obtained for 
by-subject cross-validation.
Regression Models: Fig. 3 shows results of average METs 
for a new release candidate versus a recent model already 
in use per each activity. The METs value can be thought of 
as the relative activity intensity and energy requirement. It 
is seen that the release candidate bars are much closer to 
true average METs, hence showing the improvement in the 
algorithm.  
 Typically, the errors on the regression models are 
measured in Mean Absolute Percentage Error (MAPEs). 
MAPEs are calculated at each minute, as well as for each 
entire session of continuous observation. The new release 
candidate algorithm has 15% session MAPEs over all the 
lab data. The new release candidate algorithm proved to be 
providing robust estimates for children too, with the 
session MAPEs as low as 13.7%. Daily MAPEs for adults 
are expected to be lower than the lab data suggests. The lab 
data is comprised predominantly of subjects engaged in 
exercise, whereas a typical day is made up of mostly sleep  
(about 30%), restful activities (about 60%), and a small 
amount of moderate to vigorous activity. 
Doubly Labeled Water Data: As mentioned earlier, 
doubly labeled water is the most accurate method to 
estimate energy expenditure, but provides only one reading 
per 14 days.  

Table 2: Four most predicted classes per activity. Only the 
activities that have more than 1% of prediction are displayed. 

Fig. 3. Average METs per activity - (ground truth computed from 
metabolic carts, for current algorithm and new release 
candidate)

Fig.  4.  DLW results compared with estimated EE for 30 adult 
subjects (14 days per subject). Blue is armband model Pro3, red 
is model MF. 

  

True 
Positive 
Rate %

True 
Negative 
Rate%

Accuracy

Walking 91.5 94.2 94.0

Running 90.6 99.1 98.6

Stationary Biking 60.4 96.0 95.1

Rest 82.6 72.6 75.8

Weight Lifting 34.7 98.4 97.0

Motoring 62.4 94.8 90.0

Road Biking 89.0 99.3 98.9

Sleep 69.6 97.7 94.4

Rowing 83.6 99.8 99.8

Walking 91.5% walking, 6.2% running

Running 90.6% running, 9.1% walking
Stationary 
Biking

60.4% stationary biking,9.9% rest,
9.6% motoring, 9.1% walking

Rest 82.6% rest, 7.9% motoring, 4.9% sleep, 3.1% 
S. Bike

Weight 
Lifting

34.7% weight lifting, 28.3% rest, 17.0%
stationary biking, 9.9% walking

Motoring 62.4% motoring, 27.6% rest, 4.5%
stationary biking, 2.0% sleep

Road 
Biking

89.0% road biking,3.1% stationary biking, 
2.7% rest,  2.0% motoring

Sleep 69.6% sleep, 29.6% rest

Rowing 83.6% rowing, 13.3% walking , 2.2% 
stationary biking
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Fig. 4 shows a scatter plot showing that the estimated 
TEE values match well with the actual TEE calculated 
from the DLW method. The data was collected on 30 adult  
individuals and 30 children wearing two versions of 
armbands (2008-2010 model Pro3 and 2010 model MF), 
one on each arm for a period of two weeks. The MAPE 
value is less than 10% for adults, and the correlation 
between the true and estimated TEE is 0.88 (Johansen et 
al. 2010). A similar study was also conducted for children, 
and the MAPE value was under 15% (Calabró et al. 2011). 
 An independent study (Bernsten et al. 2010) validated 
the accuracy of the armbands in simulated free-living 
conditions, where 20 subjects participated in 60 to 120 
minutes of realistic daily activity. The estimation error 
from the armbands was less than 10%. These results 
demonstrate that the models are generic enough to work 
for unseen subjects performing free-living activities.
Accelerometers-only Versus Multi-sensors: A study was 
conducted to measure the efficacy of models built based on 
the current sensor set versus models built only on the 
accelerometer and motion based signals (but still using 
Bodymedia’s pattern recognition methods). Over 30 
subjects participated in various exercise activities. It was 
found that models that used all the sensors had 8% per-
subject error, whereas the models that used only the 
accelerometers had 12-15% per-subject error. The study 
also provided comparative evaluation of BodyMedia 
armband devices with other commercially available energy 
expenditure estimation devices and it was found that 
BodyMedia armband system provided the most accurate 
results (Lee et al. 2011) in comparison to other devices. 
The next best device had 14% per-subject error, in 
comparison to BodyMedia system’s 8% per-subject error. 
Commercial Applications: The BodyMedia armband is in 
use in several commercial applications, including the 
BodyMedia FIT product and the bodybugg ® product from  
24 Hour Fitness.  Not only is the armband in use by many 
users but it appears to significantly help users in achieving 
their weight-loss and lifestyle goals.  A study performed at 
the University of South Carolina showed that participants 
who used armbands in their weight-loss program lost more 
than twice the weight compared to the subjects who did not 
use the armbands (Barry et al. 2010; Sui et al. 2010). A
weight-loss study done at the University of Pittsburgh 
achieved similar results (Pellegrini et al. 2011).

Various versions of the armband have been in active use 
by hundreds of thousands of users over the last nine years.  
The earlier products were larger, heavier, and more 
expensive to manufacture and the earliest of these had only 
a two-axis accelerometer rather than the current three axis 
model.  Additionally, the algorithms have been updated 
numerous times over the years as more lab data provides  

Fig. 5.  Comparison of Display EE Vs.Offline EE. The correlation 
between them is 0.98 and the mean difference is 2.3%. 
for more accurate and refined algorithms.  By having the 
computations performed on our websites, modifying the 
algorithms is straightforward.  From time to time, when 
users upload data, firmware updates are pushed out to the 
armbands. 
Real-time Vs. Offline EE Estimates: It has been observed 
that the real-time EE estimates match accurately with the 
offline EE estimates.  The data from the DLW experiment 
mentioned earlier (30 adult subjects, 14 days wear) found 
that the mean difference between the Real-time EE 
(display-EE) and the offline-EE was 2.3% per day (about 
66 kcal) with a median difference of 1.7% per day, Fig. 5.

Conclusions and Future Work 
With healthcare costs spiraling each year, people can 
benefit from an effective, inexpensive, easily wearable and 
accurate physiological monitoring device: BodyMedia 
armbands attempt to provide that solution in a non-
conventional way using sensor fusion and state-of-the-art 
machine learning and artificial intelligence techniques.  

In this paper, the modeling process for estimating the 
physiological parameters (especially energy expenditure) 
has been described. The results presented here demonstrate 
the capability of the armband sensors and models to 
provide accurate results for various activities for a large 
range of users in both lab and free-living settings. 
 BodyMedia is engaged in continued refinements to the 
platform and the development of new body monitoring 
capabilities. These include the integration of new sensors 
and the ongoing development of data models to extract 
new physiological features and contextual activities. Some 
of the other projects that BodyMedia is focusing on 
include: blood glucose estimation (Vyas et al. 2010, 
Rollins et al. 2009), heart rate estimation (Al-Ahmad et al.
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2004), critical care parameter estimation (Convertino et al.
2010), fine-grained sleep detail and estimation of total 
calories consumed. All of these projects extensively use 
data-driven methods and sophisticated machine learning 
techniques.      
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