
Online Planning to Control a Packaging Infeed System

Minh Do, Lawrence Lee, Rong Zhou, Lara Crawford, and Serdar Uckun
Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto, CA 94304
minh.do, lawrence.lee, rzhou, lcrawford, uckun at parc.com

Abstract

In this paper, we investigate a novel application of online
planning and scheduling: controlling an automated infeeder
for a packaging line of food and consumer packaged goods.
In this system, products arrive continuously at high-speed
from the end of the production line and need to be arranged
into a specific configuration for downstream primary and sec-
ondary packaging machines. In collaboration with a domain
expert from the packaging industry, we developed an inno-
vative design for a reconfigurable parallel infeed system us-
ing a matrix of interchangeable smart belts. We also adapted
our online model-based Plantrol planner to this domain. Our
planner can control various configurations of the new in-
feed system through simulation both in nominal planning and
when runtime failures occur. We are also building a small
physical prototype to validate the new design and our soft-
ware framework.

Introduction
The Tightly Integrated Parallel Printer (TIPP) project at
PARC (Ruml et al. 2005; Do et al. 2008) shows that general
purpose online planning algorithms can successfully control
a complex production manufacturing system. To utilize our
Plantrol software framework started by the TIPP project, the
Embedded Reasoning Area (ERA) at PARC has been inves-
tigating new applications that share similar characteristics.
In this paper, we describe our recent effort in one such ap-
plication: high-speed packaging machines. Specifically, we
address the problem of controlling the infeed system of the
flow-wrapper machines.

In the food industry, an automated packaging line nor-
mally consists of several main components:
• The conveyor from the production line: The items that

need to be packaged come out from the end of a produc-
tion line or a storage system such as a freezer. When
transported on the conveyor, they can often shift out of
alignment, both transversely in rows and inline in lanes.

• The infeed system: The items are then transferred into an
infeed system that can collate them into a well-aligned
pattern that is synchronized with a downstream packaging
machine such as a flow wrapper.

• The packaging line: The flow wrapper wraps the items
in a specified configuration to create the packaged prod-
uct that can be transferred to cartoning, case-packing, and

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

other secondary and tertiary packaging machines to com-
plete the packaging process.

Depending on how the output of the production machine
and the input of the flow wrapper are specified, there can
be different designs for the infeed system. There are sev-
eral problems with the typical existing cross-feeder: (1) they
tend to jam when products are not aligned well; (2) they do
not have active control over the products so that an extra
cross-feeder and packaging line are needed to act as spare
or backup capacity for temporary increases in volume from
the production line; (3) they are not easily reconfigurable
to handle different wrapping configurations; (4) they have a
large footprint.

To overcome these drawbacks, we have developed a new
infeed system design that assimilates TIPP’s modular struc-
ture. More specifically, a new infeed system is made up of
a matrix of interchangeable smart belt modules that can be
controlled individually. Figure 1(a) shows one example of
the design. In this figure, products come out of the produc-
tion line or storage system from the right in an unordered
manner and enter the infeed system, which in this case is
made up of a 5 × 5 matrix of smart belt modules. By con-
trolling the speed and acceleration of each smart belt when
a given product is on it, the matrix is able to collate and
synchronize multiple parallel output lanes to achieve a de-
sired configuration. Advantages of the new design are: (1)
higher flexibility to create many different modular versions
of the infeed system simply by deciding the dimensions of
the matrix and the specification of each smart belt module;
(2) higher operational efficiency: any lane can be taken of-
fline for cleaning or service while other lanes continue op-
erating (instead of requiring a complete shutdown of the
packaging line); (3) higher reconfigurability: products can
be collated for any possible wrapping configuration without
re-programming; (4) smaller footprint due to an inline de-
sign that not only reduces the space needed for a right-angle
transfer but also eliminates the need to keep a spare infeed
and packaging line.

One of the keys to the success of this new design is
the ability to control the matrix composed of individual
modules. This is a challenging problem given that the
incoming rate of products can be very high, up to several
hundred per minute per lane and the products are not
well-aligned in rows. For this task, we have adapted our fast
online Plantrol planner, originally developed for the TIPP
project. Our results in simulation confirmed that our online

Proceedings of the Twenty-Third Innovative Applications of Artificial Intelligence Conference

1636



(a) Modular smart-belt infeed system

(b) Modular infeed system with robotic-hand as end-effector

Figure 1: Exemplary modular smart-belt infeed system designs
with either stacking or pick-and-drop end finish.

planner can indeed successfully control various modular
infeed system designs.

Project History: In 2007, upon discussion with experts in
the field, we identified advantages for modular packaging
machine designs similar in spirit to the TIPP printer. In late
2007 we invited a domain expert with a long history of build-
ing packaging machines to be a paid Entrepreneur in Resi-
dence (EIR) at PARC to co-develop machines with this new
modular design. While our EIR had experience in hardware
and customized control software for individual machines, he
had no experience in model-based software that works for
multiple reconfigurable configurations of this complex na-
ture. After he learned about our software’s capabilities, our
EIR identified that infeed collation for primary packaging
lines would be the highest value problem we could solve in
consumer packaging. While he was able to confirm hard-
ware feasibility for the design concept (machines using a
single line of smart belts had been previously built), our EIR
did not know how our software would operate in a multi-
ple line array configuration. As a result, we created soft-
ware simulations for multiple configurations of the novel de-
sign based on the hardware specifications/constraints given
by our EIR in order to convince ourselves of the feasibility
of the complete system. In 2008 we attended PackExpo and
Interpack, which are the main U.S. and international con-
sumer packaging tradeshows to do further market and com-
petitive analysis. In this time period we also presented the
whole concept, including software simulations, to two large
food packaging companies with positive feedback.1 Starting
from 2010, we have been building a simple hardware proto-
type to further test the concept. However, this process has
been slow due to personnel turnover and several other diffi-
culties. We will elaborate on our current results in the later
part of this paper.

1Due to confidential information, we cannot list the names of
the companies.

Product

Fixed�Speed�
Spacing�Belt�:
(170�u/m�x 5)

Controllable
Variable�Speed�

Intelligent
Servo�Belt

Controllable�speed�
Flow�wrapper�Input�System
(Vavg =�170×5/6 =�141.67)

Layered�3x2
Package

Lane:�����1�����2�����3�����4�����5

Row:

1

2

3

4

Segment�������������������4������������������������3��������������������������2�����������������������1

1

2

1

1 1

2

2
2 2

3

3

3x2 Stack

111213

212223

Figure 2: Detailed description of a modular infeed system

Intelligent Infeed System: Design and Control

Figure 1(a) shows one example of the infeed system using
our modular design. A more complex system may have sev-
eral infeeds of the same design sharing the input from the
production machine. Other designs may have different end-
effectors that can collate different types and quantities of
products for different packaging configurations (Figure 1(b)
shows one such example). We will use the design outlined
in Figure 1(a) as the running example.

Figure 2 shows a more detailed view of our leading exam-
ple system. Products enter the infeed system from a fixed-
speed spacing belt. While the average incoming rate for
each lane is known (170 units/minute/lane in this example),
the exact timing when each product starts to enter the smart
belt system is unknown. There are photosensors placed at
the entry point of each smart-belt module to recognize the
time instant at which a product enters each module. For the
first row of modules (just next to the spacing belt), the sensor
feedback provides the timing information when new prod-
ucts enter the system.

The flow-wrapper input system, which is at the bottom of
Figure 2, consists of continuously arriving empty segments
on a belt and the speed of this input system is also control-
lable. The flow wrapper is preconfigured to wrap packages
as specified by the operator of the infeed system. In our ex-
ample, each package is a stack of 3×2 products (three stacks
of two units each). Each segment needs to either be filled
up to the specification (i.e., in a 3 × 2 stack) or left empty.
Given that each lane only aligns with a given slot in each
segment (there are 6 slots in a 3× 2 package configuration)
at a brief moment in time, the planner needs to decide when
to speed up or slow down different product units by adjusting
the speed of each of the four belt modules that each product
will pass through so that it will arrive at the wrapper-input
line at the exact moment when that intended segment/slot
is aligned with that lane. One feature that is not clear from
Figure 1(a) and Figure 2 is the ability to skip a given prod-
uct by making it “bypass” the wrapper input. This is done
by mechanically extending the last belt module over the top
of the wrapper input (this is a common hardware design in
the food packaging industry).

The main objective function is to minimize the total num-
ber of empty segments with the following constraints:

1637



• No partially filled segments.
• There are limits on the maximum acceleration or deceler-

ation of each module.
• For more precise control and tracking, multiple products

cannot be on the same module at any given time.
In summary, the planning/scheduling problem is to con-

trol the movement of known products through the smart belt
modules so that collectively they are synchronized to fill up
every segment of the wrapper input system, obeying all con-
straints listed above. Given that the overall path of each
product is well-defined and the only choice is whether or not
to “bypass” a product, this problem has more of a scheduling
flavor than planning. The main challenge is that the products
arrive randomly at high speed and high volume (up to 1000+
products/minute) and all need to be controlled individually
within the constraints listed above.

The Plantrol Framework
Starting from TIPP (Ruml et al. 2005;
Do et al. 2008), the Embedded Reasoning Area at
PARC has been building the Plantrol framework that
tightly integrate high-level planning and low-level control.
We believe it is applicable in a wide range of on-line
continual decision-making settings; the packaging machine
control problem described in this paper is one of several
applications that we are investigating. While the frame-
work is designed to be general and applicable to multiple
applications, certain adaptation to a specific domain is
needed at both the planning and control levels. However,
the adaptation effort is meant to be minimal compared to
building customized software for each domain instance. For
the rest of this section, we will discuss how we adapted
Plantrol’s planning component to the intelligent infeed
system. In a later section, we will outline the current work
on the prototype hardware and low-level control framework.

Adaptation to Packaging Domain: While both this and the
TIPP application are of online-continual production nature,
there are a couple of key differences between them: (1)
the packaging machines contain fewer parts and the product
paths are simpler with less interactions; (2) the productiv-
ity of packaging machines are higher; and most importantly
(3) while we can control when to feed a paper in the printer
domain, we can not control the incoming food product. If
we stop the printer or take too much time to find the plan in
TIPP, we only suffer lower productivity. However, the food
products will crash/jam if the infeeder is stopped or the con-
troller is slow to respond. The last two differences enforce
the planner to produce valid plans with less amount of time
and at a much more consistent planning time.

Figure 3 shows the pseudo-code of the overall Plantrol
planning framework, as outlined above, adapted to this
packaging-infeeder control domain. Specifically, lines 1-
9 outline the main steps within the Plan Manager to re-
ceive online messages and call appropriate functions to ei-
ther conduct nominal planning or replanning to fill in all
incoming segments. The rest of this section will concen-
trate on the two key functions: (1) PlanSegment that finds a
plan/schedule to fill up an individual segment with arrived
but unplanned products; and (2) Replanning that handles
real-time failures/repairs.

On-line Planner for Modular Packaging Infeed System
01. repeat
02. Analyze new online message
03. if new product arrival message
04. then update the list of unplanned products
05. if failure/repair message
06. then call Replanning function
07. Call the PlanSegment function
08. Send the found plan to the machine controller
09. until stopped

PlanSegment: heuristic search to fill in segment S
10. if not enough unplanned products then return no-plan
11. Order the set of unplanned products P
12. repeat
13. pick the next unplanned products pi in (ordered) P
14. branch over unfilled slots l in S eligible for pi
15. assign pi to l and post temporal constraints
16. backtrack if temporal constraint violation
17. until S is filled or search-space exhausted
18. if S is filled then return the complete assignments
19. else return no-plan

Replanning: handle failure/repair messages
20. Adjust the wrapper-input speed
21. Replace the planned products lost due to failure
22. Call PlanSegment for affected segments
23. Rebalance for the incoming segments

Figure 3: Plantrol planning adapted to packaging domain

Nominal Planning

In nominal planning, the planner is (continually) given a
goal of filling an arriving segment. Figure 4 shows an exem-
plary stage in this continual planning process. At this stage,
we have already finished planning/scheduling for segments
#1-4 and are planning to fill up the next arriving segment
#5. At any given time, the planner knows about all products
that are currently on the smart-belt matrix (i.e., all numbered
products with backgrounds in black or white). Among those,
all white-background products are already scheduled to be
put in slots in segments #3 and #4 and so are not available
to be candidates for segment #5. The planning problem is to
find a subset of 6 candidate products such that: (1) they can
fill out all slots in the wrapper-input segment #5 and (2) all
the constraints listed in the previous section are satisfied.

The main steps of the planning search algorithm are
outlined in line 10-19 of Figure 3.

Defining Planning Search Space: Our planner/scheduler
uses heuristic search. Therefore, we need to define the root
node, the expansion function, and the goal satisfying condi-
tions to terminate the search.
Root Node: The initial planning state (i.e., root search node)
contains information on: (1) all candidate products and their
locations; (2) all 6 slots 11-23 (referring to the right side of
Figure 4) are empty; (3) a Simple Temporal Network (STN)
represents all temporal constraints.

Expansion/Heuristic: Our current approach first statically
orders all known candidate products P (line 11 in Figure 3)
and then branches over feasible slots that P can fill in (line

1638



already
planned

candidates
for�next�segment

3x2�Stack

111213

212223

Segment���������������4���������������������3��������������������������2������������������������1

Lane:�����1�����2�����3�����4�����5

Row:

1

2

3

41 1
1

1

2
2

2 2
3

1

4
3

2 33
slot

Figure 4: A planning stage example.

13 in Figure 3). Thus, expanding a search node at depth i
corresponds to picking the ith candidate product pi from P
and branching over the k slots that pi can go in plus 2 addi-
tional branches for bypassing or saving pi for later segment.
Heuristics for ordering search nodes are:

• Candidate product ordering: with regard to all the con-
straints listed in the previous sections, let d = [ts, te]
be the time window bounding the time instant at which
a given product p can arrive at the wrapper-input, and t1,
t2, t3 be the time instants that slots 11 (and 21), 12 (and
22), 13 (and 23) align with the lane at which p was on. We
order the candidate products based on: (1) between prod-
ucts in the same lane: the earlier one is selected first (e.g.,
on lane 1 in Figure 4, product #2 is ordered before #3);
(2) between different lanes: we select the one with the
smaller number of candidate slots (i.e., smaller number of
cases in which ts ≤ ti ≤ te with 1 ≤ i ≤ 3).2

• Best-First-Search open-list ordering: Generated nodes
are ordered in the open list with higher priority given to:
(1) smaller total number of bypassed products in the path
from root node to a given node; (2) break-tie over the
higher number of filled slots.

Goal Satisfaction & Final Plan/Schedule: a goal state is
reached when all slots in a given segment are filled. At
this point, the final destination for the planned products are
decided: a particular slot in the arriving segment, bypassing
the wrapper-input, or remain unplanned. However, the
actual duration each product spends on each belt module
is not decided yet and thus some scheduling decisions
should be made. We run each planned product as quickly as
allowed by the various temporal constraints on the earlier
modules and as slowly as possible in the later modules. For
example, the product #1 in lane 2 will run as quickly as
allowed through row 3 and slow down in row 4. The main
purpose is to increase the inter-product gaps and allow more
control flexibility for the subsequent unscheduled products.

2The second criterion is inspired by CSP’s most-constrained-
variable-first ordering heuristic.

Temporal Constraints: A Simple Temporal Network
(STN) (Dechter et al. 1991) manages various time-points
and constraints between them. Time points represent the
instants at which each product enters or leaves a given
smart-belt module. In our ongoing example, for each prod-
uct p, we create 8 time-points representing its trajectory.
There are temporal constraints: (1) between consecutive
time-points on a trajectory of each product to enforce maxi-
mum/minimum speed and acceleration/deceleration limits;
(2) between time-points at which consecutive products
enter or leave a given smart-belt module to ensure that
only a single product can be on that belt module at any
time. For example, if a given product p enters a module s
running at speed v at time point t1, given that we know the
minimum speed vm, maximum speed vM , and the maxi-
mum acceleration/deceleration values aM , am of s, we can
calculate the upper and lower-bound values u, l on the du-
ration p spends going through s. We then add the constraint
l ≤ t2−t1 ≤ u with t2 being the time-point when p leaves s.

Pruning: Given that the system productivity is very high,
it’s very critical to consistently plan really fast for each seg-
ment. Therefore, it’s useful to have effective pruning tech-
niques to reduce the branching factor:

• For a given product p from the first lane (e.g., #2 on lane
1 in Figure 4), the candidate slots can only be 11, 12, or
13 because to be able to get into 21, 22, or 23, it needs to
have some other product already residing on 11, 12, or 13
at the time of p’s arrival; which is physically impossible.
Similarly, candidate slots for products from the last lane
(lane 5) can only be the upper ones: 21, 22, or 23.

• Limit the number of products from a single lane by the
number of horizontal slots. In our example, no more than
3 products from a single lane can fill in a single segment.

• Two products from a single lane cannot be stacked on top
of each other.

• Two products stacked on top of each other should also
arrive in the order that is physically possible: the lower
slot should be filled before the top slot.

Exception Handling

An operating smart-belt module can fail or need to be turned
off for maintenance. A failed module can also be repaired
and put back into operation. When this happens, the en-
tire lane is taken either offline or online and the planner
has to transition smoothly to planning for the decreased or
increased number of operating lanes, without stopping the
whole machine.

We will use as a running example the scenario shown in
Figure 5 where the third lane is taken offline due to failure in
one of its modules. When failure happens, products on the
infeed system from both the already planned and candidates
for next segment groups are affected. This potentially leads
to: partially filled segments and/or not having enough can-
didates to plan for the next empty segment. In our running
example, if product #1 in the failed lane 3 was scheduled
to fill in segment #4, then if we don’t find a replacement,
segment #4 will end up as a partially-filled segment. The
removal of products #2 and #3 on lane 5 may also lead to
not having enough products to fill in the upcoming segment

1639



already
planned

candidates
for�next�slot

Segment��������������4�� 3��������������������������2������������������������1

Lane:�����1�����2�����3�����4�����5

Row:

1

2

3

41 1
1

1

2
2

2 2
3

1

4
3

2 33

incoming products ignored

automatically�adjusting
input�speed

Figure 5: An example of a failure scenario.

#5. Lines 20-23 in Figure 3 shows the main steps for the
replanning routines to handle the problems outlined above:
Adjust the wrapper-input speed: Given that the total incom-
ing rate of product decreases as lanes fail, the outgoing rate
of product into the wrapper needs to be adjusted accordingly
to avoid empty segments. The question is when and how:
• At wall-clock time tf when failure occurs, we identify the

wall-clock time t ≥ tf at which the last planned product
gets into the intended segment.

• Let n be the total number of operational lanes before the
failure, m < n be the number of operational lanes after
the failure (normally m = n − 1), and s be the current
speed of the wrapper-input system. We schedule to adjust
at t the input speed to s′ = s×m÷ n.

• Using the speed profile of the wrapper input such that it
will go at speed s until t and continue with s′ after t, we
can calculate the time instants at which each slot in the
unfinished segments (#3, #4, and later) align with each
of the five lanes. We use that information to replan the
remaining candidate products.

Replace the planned products that are lost due to failure:
In our example, product #1 on lane 3 was planned but now
lost. We find another product from the remaining unplanned
products to replace it and then continue with the subsequent
segments (exactly like the nominal planning case).
Rebalance for the incoming segments: even if we adjust the
speed perfectly, in many failure cases the planner needs to
“bypass” some products and leave one empty segment dur-
ing the transition period and then fill in all subsequent seg-
ments. For example, segment #5 is left empty while it by-
passes three products from the candidate product set, then
fills in all segments starting from #6. Our planner does this
automatically.

Our planner operates similarly when a lane is repaired,
but some steps are done in a reversed manner. For example,
the wrapper-input speed is increased instead of reduced.

Empirical Results
We modeled different configurations following the two de-
signs shown in Figure 1. Figure 1(a) contains the main de-
sign (which has been used as the running example), which

we have tested more extensively (i.e., more variations) while
the design shown at the bottom of the figure has been tested
with fewer variations. The main difference between them
is that the second design has a special finishing component
that collates multiple products at the end of each line before
dropping them into the wrapper’s input line. This design is
less flexible, more complex and expensive for hardware but
is suitable for some particular food products and also can
handle much faster product incoming rates. For the rest of
this section, we will refer to the design shown in Figure 1(a)
as Config-1 and the design shown in Figure 1(b) as Config-2.
Config-#1: testing scenarios are characterized by:

• Matrix size: range from 5× 4 to 8× 5.
• Stacking configuration: tested sizes ranged from 1 × 2

to 3 × 3 (our running example is 3 × 2). The higher the
number of slots in the stacking configuration, the more
products need to be coordinated.

• Product incoming rate: ranged between 60-240 prod-
ucts/lane/minute. Thus, depending on the particular num-
ber of lanes, the overall throughput ranged from 300 -
1200 products/minute. The higher the throughput, the less
planning/scheduling time is allowed to keep up.

• Product incoming randomness: if the average incoming
rate is 240 products/min/lane, for example, then if there
is no uncertainty, the arrival time of the nth product in
a given lane should be t = n × 0.25. Our test genera-
tion program randomly injects up to 40% randomness in
arrival time. Thus, the nth product will arrive randomly
between (n−0.4)×0.25 and (n+0.4)×0.25. The higher
the randomness, the harder it is to control all products.

Config-#2: In this design, shown at the bottom of Figure 1,
we tested with up to 8 lanes and product incoming rates of
up to 8× 600 = 4800 products/minute.

The planner can run on either Linux or Windows ma-
chines. It is able to handle both nominal planning and re-
planning for the configurations specified above. For all con-
figurations, we tested in simulation between a few hundreds
to few thousands products. The planner can keep up with
the high throughput rates in all cases. In nominal planning,
the planner never left any segment empty or had to bypass
any product. Thus, it allows the system to run optimally.
In exception handling mode, the user can randomly fail or
repair/restore a lane through a GUI connected in real-time
with the planner. In all random test scenarios, the planner
leaves at most 1 empty segment during the transition period
(i.e., failure recovery duration) and bypasses the minimum
number of products.

Figure 6 shows the average running time for the example
configuration (i.e., 5× 4 stacking into 3× 2 segments) with
the total product incoming rate of 1200 products/minute for
the first 240 products (40 segments). The solving time is
quite stable between 0-4 msec/segment, which is more than
enough to keep up with the incoming segment rate of 200
segments/minute or 300 msec/segment. Note that the plan-
ning time is not important in this domain, as long as the
planner can generate plans/schedules fast enough to keep up
with the incoming rate. In cases of failures/repairs, the re-
planning time is very similar to normal planning time.
Visualization: We also developed a visualization tool that
works with the Plantrol planner. It can:

1640



0

0.001

0.002

0.003

0.004

1 6 11 16 21 26 31 36

time�(sec)

Figure 6: Planning/scheduling time for 5× 4 stacking into 3× 2
segments with a throughput of 240 × 5 = 1200 products/minute
at 40% ramdomness. The horizontal axis shows the segment se-
quencing number and the vertical axis shows the planning time.

Figure 7: Interactive visualization tool.

• Display in real-time the trajectory of all products accord-
ing to the plan/schedule found by the Plantrol planner.

• Through the visualizer (Figure 7), we can randomly inject
exceptions by “failing” or “repairing” different lanes in
real-time. When failure or repair happens, we can also
see the adjusted wrapper-input speed, product bypass and
transition as described in the previous section.

Hardware Prototype: In order to execute the planner-
generated product plans in a physical system, the plans must
be translated into commands for each servo belt module. Al-
though the planner specifies time points at each servo belt
module, it does not specify the velocity profile of the prod-
uct on the belt, leaving the controller free to define this pro-
file. In addition to meeting the time points imposed by the
planner, the controller must take into account speed and ac-
celeration limits of the physical system, which may include
limitations imposed by the need to maintain friction or a vac-
uum connection between the product and the belt.

These issues and others not addressed in simulation, such
as network communication and sensing, will be addressed
in a modular infeed prototype that is currently under devel-
opment. This proof-of-concept prototype, shown in Figure
8, will consist of several lanes of belt modules with mul-
tiple outgoing conveyors representing inputs to flow wrap-
pers. The servo motors, the most critical components, are
from Bosch-Rexroth and follow the industry standard.

Related Work and Discussion

Previous to TIPP, constraint-based scheduling was used for
online planning and planning for print shops and offices
world-wide (Fromherz et al. 1999; 2003). Unlike ours, these
approaches use hand-coded domain knowledge to guide the
scheduling process. In contrast to much work on contin-
ual planning (desJardins et al. 1999), the tight constraints
and the requirement that all slots in any segment need to be
filled require that we produce a complete plan/schedule for

Incoming�product

Outgoing�conveyor

Figure 8: Our packaging prototype.

each segment before we can send it down to the controller
for execution. While the constraint set involved with our do-
main is quite simple compared to other continuous schedul-
ing applications, such as scheduling for airlift and tanker re-
sources (Smith et al. 2004), our domain requires a very fast
planning/scheduling time to react to very high throughput
and real-time component failures.
Commonalities between different Plantrol applications: The
packaging machine discussed in this paper is the second of
four applications that we have adapted our fast online plan-
ner to solve. The general shared characteristics we observed
are: (1) they all require fast planning time (less than 1 sec-
ond), interleaving goal arrival, planning, and execution; (2)
they have “logistic” flavor (which is one of the easier classes
of planning problem); (3) makespan optimization; and (4)
planning for invididual goals sequentially (instead of con-
currently for all known goals) produce good overall quality
solutions.

References
Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint
networks. Artificial Intelligence, 49:61–95, 1991.
Marie E. desJardins, Edmund H. Durfee, Charles L. Ortiz, Jr., and
Michael J. Wolverton. A survey of research in distributed, contin-
ual planning. AI Magazine, 20(4):13–22, 1999.
Minh Do, Wheeler Ruml, and Rong Zhou. On-line planning and
scheduling: An application to controlling modular printers. In
Proc. of AAAI08, 2008.
Markus P.J. Fromherz, Vijay A. Saraswat, and Daniel G. Bo-
brow. Model-based computing: Developing flexible machine con-
trol software. Artificial Intelligence, 114(1–2):157–202, October
1999.
M.P.J. Fromherz, D.G. Bobrow, and J. de Kleer. Model-based com-
puting for design and control of reconfigurable systems. AI Maga-
zine, 24(4):120–130, 2003.
Wheeler Ruml, Minh B. Do, and Markus Fromherz. On-line plan-
ning and scheduling for high-speed manufacturing. In Proc. of
ICAPS-05, pages 30–39, 2005.
S. Smith, M. Becker, and L. Kramer. Continuous management of
airlift and tanker resources: A constraint-based approach. Mathe-
matical and Computer Modeling – Special Issue on Defense Trans-
portation: Algorithms, Models and Applications for the 21st Cen-
try, 39(6-8):581–598, 2004.

1641


