
Monitoring Entities in an Uncertain World:
Entity Resolution and Referential Integrity

Steven N. Minton1 2 3 2

4, 2, Matthew Michelson 2 5 Greg Barish Craig A. Knoblock , and Raymond Liuzzi
, Sofus A. Macskassy, Peter LaMonica, Kane See,

 1InferLink Corp. 2 Fetch Technologies 3Air Force Research Laboratory 4USC Information Sci. Inst. 5Raymond Technologies
 El Segundo, CA El Segundo, CA Rome, NY Marina Del Rey, CA Whitesboro, NY

Abstract

This paper describes a system to help intelligence analysts
track and analyze information being published in multiple
sources, particularly open sources on the Web. The system
integrates technology for Web harvesting, natural language
extraction, and network analytics, and allows analysts to
view and explore the results via a Web application. One of
the difficult problems we address is the entity resolution
problem, which occurs when there are multiple, differing
ways to refer to the same entity. The problem is particularly
complex when noisy data is being aggregated over time,
there is no clean master list of entities, and the entities under
investigation are intentionally being deceptive. Our system
must not only perform entity resolution with noisy data, but
must also gracefully recover when entity resolution
mistakes are subsequently corrected. We present a case
study in arms trafficking that illustrates the issues, and
describe how they are addressed.

Introduction
In this paper we describe a system that monitors and

analyzes information published on the Web about people,
organizations and other entities of interest. The system is
the result of collaborative effort by corporate, government
and university researchers. Our goal is to reduce the
manual effort required by intelligence analysts to track data
on a large, diverse set of Web sources. As an example of
an application of interest to Air Force Intelligence
Analysts, we will describe a case study tracking
information about entities related to arms trafficking.

A difficult technical issue that arises when aggregating
data from multiple sources is that there may be multiple
ways to refer to the same entity. For example, “Air Cess”
headquartered in “Sharjah” is the same company as
“Aircess International” registered in the “UAE”. This
problem, which we refer to as Entity Resolution, has been
addressed by many researchers (see e.g., Knoblock et al.,
2007; Koudas et al., 2006) and a variety of commercial
solutions have been developed. However, most existing
approaches focus on matching entity references to a clean
master list, or reference set, of entities. In the application
addressed here, the entity resolution problem is particularly

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

difficult for two reasons. First, there is no pre-existing
reference set. The application continuously aggregates
information about entities over time from sources that may
mention new entities at any time, and those mentions can
be noisy/dirty. Second, this application tracks individuals
that may purposely attempt to be furtive or deceptive.
Individuals may be associated with multiple aliases and
multiple suspect organizations, and they may purposely
engage in activities to thwart tracking, such as relabeling
the tail numbers of airplanes.

This paper focuses on how the entity resolution problem
is addressed within the larger architecture of a knowledge-
based application. We point out that entity resolution
cannot simply be treated as an “added feature”, but must be
carefully designed into the architecture. The system may
discover over time that two entities that were initially
believed to be distinct are the same entity, or conversely,
that the records describing what was initially inferred to be
one entity actually correspond to two or more entities. The
system must be able to make these corrections over time,
revising its representation of the entities appropriately. If
this issue is not carefully addressed, it can lead to problems
such as referential inconsistency in the system’s
knowledgebase, which can in turn make it difficult to run
network analytics and other analysis algorithms. We
discuss how our initial design for the system was
eventually improved based on our experiences, and suggest
advice for others implementing solutions where entity-
resolution is a consideration.

An Application Domain
As the fight against asymmetric threats continues to

grow, intelligence analysts have stepped up their efforts to
track information on the Web. Our work with ENTEL
(Entity Intelligence Portal) is intended to help intelligence
analysts track and analyze information being published in
multiple sources, particularly open sources on the internet
(“Open Source Intelligence”, or OSINT). One particular
domain of interest to the Department of Defense is the
illicit transportation of goods that are often associated with
terrorist activities (Hoffman, 2006).

To illustrate the issues involved in this type of tracking
and analysis, we will describe the case of Russian

Proceedings of the Twenty-Third Innovative Applications of Artificial Intelligence Conference

1681

businessman Viktor Bout. Bout was the owner of several
air cargo companies that have allegedly facilitated illicit
trafficking of contraband. In addition, Bout is currently
being tried in the United States on several conspiracy
charges, including providing support to a designated
foreign terrorist organization. This case is illustrative of
the issues that are involved in tracking suspected entities.
Because of the publicity surrounding the case, many details
of the case are public and therefore can be discussed here.

In tracking a suspected arms trafficker such as Viktor
Bout, intelligence analysts would collect as much
information as possible about the air cargo companies he is
associated with, the planes used by those companies, the
plane’s capabilities, known routes that they have flown,
reported observations of those planes, and other people,
organizations and companies that Bout deals with or
communicates with. In addition, analysts would attempt to
infer any aliases or front companies he uses, and document
any suspicious and/or deceptive behavior.

Deceptive behaviors come in many forms. One common
behavior which Bout allegedly engaged in is transferring
aircraft between multiple companies. Doing so makes
tracking more difficult, since an aircraft can be re-
registered with a new tail number when it is transferred.

There are many information sources on the Web that can
aid an analyst. Sites like airliners.net and myaviation.net
have millions of pictures of aircraft at airports around the
world, submitted by professionals and amateurs. The ASN
Aviation Safety Database and AeroTransport Data Bank
have large databases with public records about aircraft and
air transport companies. In addition, news, blogs and
internet forums can contain relevant data.

The site ruudleeuw.com includes a substantial Viktor
Bout dossier. The site, authored by a private individual,
includes detailed documentation describing Bout’s
activities, and is illustrative for our purposes. For instance,
one page (www.ruudleeuw.com/vbout12.htm) lists over 35
companies with Bout connections, and details the history
of a fleet of 5 planes that belonged to one these companies,
Air Cess, tracing a series of tail number re-registrations
and transfers to other companies.

This history illustrates some of the problems inherent in
monitoring entities, even relatively simplistic entities such
as airplanes. For instance, the site includes the following
statements about an Il-18 (Ilyushin-18) aircraft, with tail
number 3D-SBZ:

“In Jan.2004 a photo appeared on Airliners.net of a shot up Il-
18 at Kalemie, Katanga…while the registration is not shown, it
seems to have the Air Cess c/s and "Air" can be read on the
fuselage. …Another photo [of the plane] appeared on
Airliners.net, again at Kalemie but now seen robbed of all its part
(07Dec04); unfortunately the tail number has been painted over.

…[Another Ilyushin] was purchased from Santa Cruz in 1999,
possibly as replacement for Il-18D ([construction #] 188010903)
3D-SBZ (ex/SP-FNZ) which had disappeared from sight….

Michel Bonnardeaux went to Kalemie to check for the wrecked
Il-18 again and have just returned. Identity of 3D-SBZ in faded Air
Cess colours is confirmed."

Note that the tail number (the registration number) of the
plane is not a unique identifier, due to the fact that the
planes can be re-registered (3D-SPZ previously was
registered as SP-FNZ), and it is not always observable. The
authors also refer to the construction number of aircraft – a
unique serial number assigned by the manufacturer – but
though this doesn’t change, it is even less frequently
observable. Over time, earlier observations such as the
photo referred to above (shown in Figure 1) can be linked
to a distinct serial number, as additional evidence is
collected.

ENTEL: System Architecture
We have been building an end-to-end system to address

the operational and analytical requirements for monitoring
and tracking entities of interest. This system, called
ENTEL, is possible due to many years of AI research in
areas such as information extraction, information
integration and aggregation, entity resolution and
knowledge management.

The ENTEL system architecture, depicted in Figure 2,
can be viewed as an information pipeline. The high-level
information flow starts with (1) the Fetch Agent Platform,
a commercial AI system for harvesting Web data. The
harvested data is aggregated and stored on an ongoing
basis (2). The data can consist of structured records and/or
or unstructured text. The unstructured text is then further
processed to extract structured facts and relations about
entities (3). Up to this point in the pipeline, any entities

Figure 1: Photo of IL-18 aircraft linked to Viktor Bout

1682

that we have information about are simply represented by
strings. Our EntityBase component resolves these
references to persistent unique entity identifiers (EIDs)
which we use for analysis and exploration (4). Finally, we
publish the entity-resolved data to the entity knowledge
store (5). The knowledge store is used for various
analytics and maintains more sophisticated data structures.
For example, the system maintains a network of related
entities and keeps track of watchlists of entities of interest.

Once the data is in the entity knowledge store, then we
can use a Web interface to query the data through a REST-
based API layer. As Figure 2 depicts, the Web Interface
interacts both with the entity knowledge store as well as
the EntityBase component. These communication paths
allow a user both to search for entities (entered as strings)
and also explore what is known about entities in the
knowledge store. We will now briefly describe each of
these main components.

Data Harvesting (1)
The Fetch Agent Platform harvests semi-structured

information from online Web sources on a scheduled basis.
The Fetch Agent Platform is a commercial system that
enables users to rapidly build web agents to retrieve data
from websites. This process employs machine learning
methods so that extractors can be induced by example
(Muslea et al., 2001; Ticrea & Minton, 2003). At runtime,
the system navigates to the target data and can extract news
articles, lists, structured records, and so forth. The
harvested data is stored in a feed database, which serves as
a staging area for data ingestion into ENTEL.

Information Integration and Aggregation (2)
The Ingest component takes the raw data from the feed

database and integrates it into the system. It does this
using a multi-step process where it first converts incoming
data into raw RDF (Resource Description Framework)
graphs centered around the entities appearing in the data.
These RDF graphs are an intermediate data format which
are then further processed to resolve entities and added to

the ENTEL knowledge store. The nodes in the raw RDF
graphs represent either entities or literals (e.g., the string
“113 Main St”), and edges represent either simple
attributes (e.g., “address”) or relations (e.g., “CEO of”
where the nodes at each end-point represent an entity).

Harvested data which is structured (such as lists and
structured records) is directly converted into RDF graphs.
Harvested data which is unstructured text is fed into
natural language components (see the Fact Extraction
component below) that extract facts and relations and
return them as RDF graphs.

Fact Extraction from Unstructured Text (3)
In the first step of ingestion, any unstructured text is

processed by natural language components to extract RDF
graphs. At this point, the RDF is relatively raw, since the
extracted entities are simply names mentioned in the text.

The fact extraction module is written as a plug-and-play
component making it easy to integrate a variety of fact
extractors. It integrates output from these extractors into a
single RDF graph for each piece of text. We currently use
multiple third-party natural language-based text-mining
tools including the Reuters OpenCalais service1 and the
Semantex engine from Janya Inc.2

Entity Resolution (4)
Entity resolution is critical to ENTEL, as having entity

resolved data is essential for relational or network
analytics. As we mentioned earlier, there may be multiple
ways to refer to the same entity, including aliases and more
commonly, there can be misspellings and errors in the
extracted data. Our EntityBase component (Knoblock et
al., 2007) imports RDF descriptions of entities, and
clusters them so that (ideally) each cluster corresponds to a
distinct entity in the world. EntityBase maintains a name
space where each cluster is associated with a unique entity
identifier, referred to as an EID.

1 http://www.opencalais.com
2 http://www.janya.com/products/the-semantex-platform/overview

Figure 2: ENTEL System Architecture

Figure 3: Clusters in EntityBase

1683

The input to EntityBase is generated from the RDF graphs
described earlier. In particular, the system decomposes the
RDF to create a distinct sub-graph for each entity
mentioned. We define a descriptor to be a set of RDF
triples, (subject, attribute, object) describing an entity,
where the subject is a Descriptor ID, the attribute is a
predicate name, and the object is a literal. The Descriptor
ID, or DID, is a unique ID for each descriptor. Each
descriptor can be thought of as a database record, though
as we have discussed, the descriptors in ENTEL are
harvested from both structured sources and unstructured
text.

Figure 3 illustrates our representation scheme. Each
cluster consists of an EID and a set of descriptors. For
instance, Entity E4293 is a cluster of 4 descriptors. On the
right of the figure, two of these descriptors are expanded to
show their details. The top descriptor consists of three
triples with Descriptor ID3 S4-7123, indicating a name,
phone number and address. The second description has
DID S5-381, and contains attributes for name and number
of employees. Note that because multiple records can have
the same attributes, there can be multiple names, addresses,
etc. associated with any given entity.

An incoming descriptor is added to exactly one cluster,
either a pre-existing cluster, or a new cluster that is created
with a new EID. EntityBase’s clustering is based on
probabilistic inference. During the import process, the
system estimates the probability that a descriptor belongs
in a cluster, and only places it in the cluster if it exceeds a
predefined probability threshold (e.g., 99.4% in Figure 3).

Note that the addition of new data can also provide
evidence that existing clusters should be merged or split.
We discuss this issue later in this paper.

The Knowledge Store and Analytics Engine (5)
Once we have resolved entities, we tag all the entity

nodes in the RDF graph with their respective entity IDs.
We use these to incorporate the data into a continuously
growing network of entities -- a social network. The social
network is stored as triples of the form <EID, predicate,
EID> for relations between entities. These triples are
stored locally, with the rest of the RDF triples, in the “Fact
Store”. We call each such triple a fact. The original
content from the data feeds are stored in the “Content
Store” with a reference pointer back to their original online
location. We only store one copy of any single fact in our
fact store, but keep an “attribution” mapping from each
fact to the record it appeared in. The result is that we have
a compact set of facts, which make up our entity graph for
analytics, as well as a complete set of attributions so that

3 By convention, the Descriptor ID is composed of two hyphenated parts,
the first part identifying a data source, and the second part identifying the
data record within the source.

we can always trace back where a fact came from. We also
create and store metadata about each entity, such as its
canonical name (currently the most frequent name) and
when it was seen first and last.

As information is integrated into the knowledge store,
ENTEL performs up-front analytics by executing
“persistent queries” so that watchlists and other monitoring
functions can be accomplished.4 For example, ENTEL
monitors incoming content to see if any entities of interest
appear and flags them for the user. These lists and matches
are stored in the “Analytics” database.

Web Interface
While the primary goal in ENTEL is the generation,

maintenance and analysis of entity graphs, it also needs a
user interface in order to make it useful as an application.
We developed a front end to support various analytic use
cases, some of which we have described above. An
example page from the Web interface is shown in Figure 4
where it shows the details of a plane spotting record. This
data was extracted from a semi-structured website (as
opposed to being extracted from text). It contains useful
information such as the name of an airline (with a link to
the page about that airline), the name of an airport (with a
link to the page about that airport), the type of plane, and
even the tail number and serial number of the plane.
Details of the record are shown in the left pane, together
with the picture from the site. On the right we see some of
the literal facts we pulled out of this record. The Web
interface provides links to all entities, facts and relations as
well as watchlists, profile pages and more. These
capabilities depend on having entity resolved data.

4 Note that the watchlists themselves can be acquired from online sources
(e.g., online sources of known terrorists, banned airlines, etc.) as well as
from users who can use the Web interface to build their own lists.

Figure 4: ENTEL Web Interface

1684

Status and Performance
ENTEL is currently being evaluated by Air Force

personnel. We note that the system relies on multiple
technologies that are the subject of current AI research,
including entity and fact extraction, and entity resolution.
Because these components are not perfect, and can interact
in unexpected ways, ENTEL sometimes makes mistakes
that seem naïve. Nevertheless, our preliminary
experiments show that the system can be quite useful. For
example, in one recent experiment we harvested 217 text
documents, and had a contractor mark up these documents
(with a markup tool) to identify entities and facts, and to
resolve the entities. This process took 66 man hours, and
ENTEL processed these same documents in under 10
minutes. The fact extraction component extracted at least
one RDF graph per document. A total of 2524 entity nodes
were generated, of which 748 were identified as named
persons and 1776 were identified as named organizations
(companies, airports, airlines, etc.). In addition, 3583
attributes and 408 relations were extracted.

From this data, EntityBase produced 343 person
clusters. One split and nine merges were required to revise
this initial clustering to produce a “correct” clustering of
329 person entities (according to human judges). The
average precision5 across all person clusters was .997 and
average recall was .987. As for organizations, a total of
586 clusters were created, which required 3 splits and 19
merges to produce a correct clustering of 571 entities. The
average precision was .989 and average recall was .988.

 We caution that these figures provide a very limited
view of the system’s performance. An in-depth empirical
analysis is in preparation.

An Imperfect World: Splits and Merges
As described above, EntityBase clusters incoming data

records and assigns each cluster a unique Entity Identifier,
or EID. However, our knowledge about entities in the
world is not perfect. When new information is acquired,
evidence may suggest that the clusters should be merged or
split up by EntityBase (Knoblock et al., 2007). For
instance, earlier we explained that, over time, we might
conclude that the aircraft in Figure 1 is the same as the
aircraft reported to have tail number 3D-SPZ. In
EntityBase, such a conclusion would result in the clusters
representing the two entities being merged. Similarly, if
we discovered that the registration number 3D-SPZ was
used by two aircraft with different construction numbers,
this would result in the entity being split.

5Precision for an entity E is computed by identifying the cluster CE which
best corresponds to entity E, and then determining the proportion of
descriptors that correctly refer to E in cluster CE. Recall for entity E is
computed as the proportion of descriptors that describe E which were
correctly put into cluster CE.

In some cases, entities such as companies can also split
and merge in the world, as in a corporate merger. For the
purposes of this paper, we consider only split and merge
operations that correct previous, imperfect clustering
decisions. That is, these splits/merges constitute belief
revisions intended to correct the system’s belief state.

There are a variety of reasons why an incorrect
clustering decision may be made. One reason is that the
incoming data may be noisy. For example, a natural
language extractor may misparse text that starts
“Outspoken Qatar Airways chief Akbar...” and return
“Outspoken Qatar Airways” as a named entity. Depending
on the order in which facts are encountered, these types of
parsing mistakes can result in separate clusters that need to
be merged.

A second source of mistakes is due to the statistical
entity resolution process, which makes heuristic
probability estimates. For instance, the system may
assume that “Iran Air” is the same as “Iran Air Force” due
to an overly generous estimate that “Force” was simply
missing in the mention of “Iran Air”.

A third type of mistake occurs when there is simply not
enough data to determine the correct clustering. For
instance, we may have two texts that refer to a person
named “Harold Knopf Merriweather”, and only later
encounter additional information indicating there are two
different people with this name (unlikely as that may be).

While the first two sources of error can be addressed by
developing more accurate extraction and resolution
algorithms, the uncertainty due to incomplete data depends
on what data we have about each entity, and the order that
the data is ingested. In fact, one way to improve the
performance of an entity resolution system is to first feed
the system a source of clean, complete data, often called a
reference set, so as to create a perfect initial clustering
(where each cluster contains a single prototypical data
description). Then, when descriptions from subsequent
data sources are imported, they are simply inserted into
existing clusters. This strategy is often the default approach
used in commercial enterprise applications.

While EntityBase can accommodate this strategy,
reference sets do not exist for every domain. In particular,
consider the arms trafficking domain that we described
earlier. We can feed the system a list of all the world’s
airports, since these are essentially unchanging. And we
can feed the system a list of all the major airlines and their
executives. However, there is no complete list of all the
entities the system might encounter. New airlines, cargo
companies, associated individuals, etc. can be expected to
turn up in the shadowy world of arms trafficking, and they
need to be tracked.

Thus, entity resolution mistakes that are due to
incomplete data may be unavoidable in many domains. To
handle these situations, EntityBase includes the capability

1685

to merge and split clusters. In particular, the system can be
configured to automatically split clusters that have many
inconsistent attributes, and to merge clusters when two or
more clusters closely match a new incoming description.
In addition, analysts can also manually specify
merges/splits through the Web Interface when EntityBase’s
probabilistic inference capabilities are insufficient.

As a consequence of merges and splits, EIDs are retired.
When a merge happens between two or more formerly
distinct clusters, the EIDs of the old clusters are retired,
and a new EID is created for the new cluster. Similarly,
when a split occurs, the old EID is retired, and new EIDs
are created for the new clusters.

Maintaining Referential Integrity
Merges and splits can create difficulties for client

systems that interact with EntityBase. In particular, when
EIDs are retired and new clusters created, this constitutes a
form of belief revision that a client system may need to be
aware of. In this section, we describe two interaction
modes that we developed to support EntityBase clients,
and their advantages/disadvantages.

The first mode of interaction, which we call “Refer-by-
Identifier”, supports EntityBase clients that need to store
and use Entitybase’s EIDs. Consider, for instance, the
social network maintained by ENTEL’s Analytics Engine
and Knowledge Store, which represents the relationships
between entities. ENTEL naturally relies on EntityBase’s
EIDs to represent the nodes in the network. However, this
dependency comes at a cost. When entities in EntityBase
merge/split, the social network must be similarly updated
to maintain referential integrity. Otherwise, when EIDs are
retired, the network would contain EIDs that would, in
effect, be dangling pointers. This loss of information would
in turn degrade the performance of the analytics.
Moreover, any intelligence report based on the network
critically depends on the network being as accurate and up-
to-date as possible.

Below we summarize the main API functions that
EntityBase supports to implement Refer-by-Identifier:

EIDQuery(query)
 returns ((probability, EID) (probability, EID)..)
RetrieveDescByEID(EID)
 returns SetOfDescriptors
Update(LastUpdateID)
 returns (SyncOperation, SyncOperation,…)
The first call, QueryForID, enables a client to find the

EIDs of all entities that match a query (a partial description
of an entity). The second call retrieves, for any EID, the
full set of the descriptors associated with an EID. The last
call is used to maintain referential integrity with
EntityBase. A SyncOperation is simply a specification of a
merge/split enabling the client to update its own database
to maintain consistency with EntityBase.

One pattern of interaction using Refer-by-Identifier is
shown in Figure 5. The user issues a query via the GUI to
find a plane with tail number AOK-293. EntityBase finds
two possible matches, one of which is a close match,
E590187. The user then wants to view the relationships
between E590187 other entities in the social network. To
achieve this, the GUI calls the Knowledge Store, which
updates the social network to make sure it is consistent
with EntityBase, and then displays the entities related to
590187 (the local neighborhood in the graph) to the user.

A client that uses Refer-by-Identifier is responsible for
synchronizing its belief state to be consistent with
EntityBase. For instance, consider the process of
maintaining the social network. When a split/merge occurs,
the client must rebuild the relations that refer to any entity
whose EID has changed. In particular, when a merge
occurs, all of the links associated with the two old EIDs
must be updated to reflect the EID of the new merged

Figure 6: Refer-by-Description, Example Interaction

EntityBase

GUI
(<A1 “TailNumber” “AOK-293”>)

EIDQuery

GUI
((.995 E590187)
(.005 E789543)…)

KS

E590187

EntityBase
Update

KS

GUI

[Merge ……]
[Split ….]

Figure 5: Refer-by-Identifier, Example Interaction

EntityBase

GUI[<A1 “TailNumber” “AOK-293”>]
DescriptionQuery

((.995
[<S1-1234 “OwnedBy” “Air Cess”>
<S1-1234 “TailNumber” “AOK-293”>
<S5-290 “ConstructionNum” 0238831>…])

(.005 [<S1-3499 “OwnedBy” “Air China”>
<S1-3934 “Tail Number” “AOK-292”>…]))

GUI

GUI

EntityBase

…..

S1-1234
RetrieveDescByDID

[<S1-1234 “OwnedBy” “Air Cess”>
<S1-1234 “TailNumber” “AOK-293”>
<S5-290 “ConstructionNumber” 02382831>
<S5-2313 “MentionedIn” Article-23SSAB>…]

GUI

1686

entity. Similar, with a split, the system must examine every
relation associated with the old EID and determine which
of the new EIDs should replace it. This requires examining
the attribution mapping for that relation to identify the
descriptor that was responsible for creating the relation,
and then determining which new EID is now associated
with that descriptor.

Obviously, synchronization has a cost, not only in time,
but also in terms of the effort involved in implementing the
synchronization code. Refer-by-Description is designed to
shield clients from these costs. Refer-by-Description
allows clients to refer to clusters indirectly, via the
descriptors encompassed by the cluster. To illustrate this,
let us consider another ENTEL use case. In particular,
consider a simple Web GUI for querying EntityBase,
where one could, for instance, ask for all companies owned
by Victor Bout. This type of GUI simply needs to display
each matching entity to the user, and allow the user to click
on an entity if he/she wants to find out more details. The
GUI may allow the user to bookmark a set of “favorite”
entities (i.e., creating a simple form of a watchlist). For
such a lightweight application it is be prohibitively
expensive to implement the synchronization process. On
the other hand, if a merge/split does indeed happen, we
would also prefer not to throw an error if the user selects
an entity that has been merged/split.

To support this type of use case, EntityBase allows
clients to refer to an entity cluster using any Descriptor ID
in the cluster. Specifically, EntityBase supports Refer-by-
Description through the following calls:

DescriptionQuery(Query)
 returns ((probability, SetOfDescriptors)

 (probability. SetOfDescriptors)..)
RetrieveDescByDID(DescriptorID)

 returns SetOfDescriptors

The first call enables a client to find all the entities that
match a query. The complete set of entity descriptors are
returned, rather than EIDs, since in the Refer-by-
Description paradigm the client does not retain EIDs.
(That is, the system returns the clusters themselves, rather
than their EIDs.) The second, RetrieveDescByDID, gives
clients the capability to “follow up” on an initial query.
For instance, returning to our GUI example, the user may
search for information about a plane with tail number
AOK-293. As shown in Figure 6, the GUI sends a query to
EntityBase, which returns two potential matches to display
to the user, one of which is an exact match to the tail
number, and one which is a close match. Notice that
EntityBase sends the descriptions of the entities, not the
EIDs. Later, the user might issue a followup query to find
out more about that aircraft. Without an EID to refer to,
how can the GUI phrase this query? Since each predicate
in the entity descriptors includes a DescriptorID assigned

by the source, the GUI can select any individual
DescriptorID (in the figure, the selected DescriptorID is
S1-1234), and via RetreiveDescByDID, map this back to
its current entity (which could have changed in the
meantime) and obtain a full entity description. This
process effectively shields the client from the
responsibility of maintaining EIDs.

The advantage of Refer-by-Description is that the client
need not implement synchronization. A DescriptorID
functions as an pointer to the cluster in which the
descriptor belongs. We note that our original design for
ENTEL was based solely on Query-by-Description, since
we believed that we could confine the complexity of
splits/merges to EntityBase. However, once we began
building more sophisticated clients, we found that the need
for synchronization favored Refer-by-Identifier.

In fact, we can classify clients into two categories,
depending on how they use EntityBase. Formally, if we
describe EntityBase’s knowledge state by a set of formulas
E, then a series of split/merge operations will transform
state E1 to state E2. After these operations, a client with
state C1 that was consistent with E1 may be forced to revise
its state to C2 to preserve consistency with E2. For clients
that may need to make such revisions, Refer-by-Identifier
is likely to be an appropriate strategy because it supports
synchronization. On the other hand, if a client never needs
to revise its own state to preserve consistency, then Refer-
by-Description is a viable approach, and is simpler to
implement.

Related Work
Mechanisms for maintaining referential integrity are of

growing importance as the Web matures and using
distributed knowledge becomes a real possibility. As we
have pointed out, it can be painful to enforce referential
integrity. Because of the costs involved, many application
designers choose to simply ignore referential integrity;
instead, they simply throw an error when an out-of-date ID
is dereferenced. For instance, on the Web, when a URL is
out of date, Web browsers often simply report a 404 “Page
Not Found” error, and users have learned to understand
what this means. However, it is possible to do better, and
in certain applications, such as the ENTEL arms trafficking
domain, referential integrity is critical if the application is
to be useful.

The issues we have raised here will eventually be a
concern for Semantic Web applications. Using OWL, the
owl:sameAs predicate can be used to declare that two
different URIs denote the same thing. If the statement is
later discovered to be incorrect, it can be retracted. Some
systems, such as the BigOWLIM semantic repository
(Bishop et al., 2007) include special purposes
optimizations for handling SameAs inferences and for

1687

handling retractions, both of which can be potentially
expensive. However, approaches for efficiently revising
beliefs about entity identity on the Semantic Web have
only just begun to receive consideration (Glaser, Jaffri, &
Millard, 2009).

Many modern relational database management systems
offer automated processes for enforcing referential
integrity. In a relational database, referential integrity
refers to the requirement that each foreign key value in a
table exists as a primary key in the referenced table. One
enforcement mechanism is to simply issue a warning
whenever referential integrity is violated. Some systems
offer alternative enforcement mechanisms such as
“cascading deletes”, which upon identifying an integrity
violation automatically deletes offending rows as well as
any offending rows in related tables. The simplistic
approaches offered by traditional database systems are
based on the assumption that we have perfect knowledge
about entities. In the application described here, as well as
many other practical applications, this is clearly not
practical.

To handle noisy data, some commercial firms offer more
sophisticated Master Data Management approaches, which
allow data to be matched against clean reference sets or
“master data lists” (e.g., White et al., 2006) which are
carefully expanded over time. However, while this
approach accommodates noise in the incoming data,
ENTEL addresses an even more challenging situation. In
our case, there is no known reference set. Instead, data is
automatically aggregated from noisy, uncertain data
sources over time. It is not acceptable to discard incoming
data even when it is uncertain which entity the data refers
to. At some later point, the system may find additional
facts which allow previously-acquired records to be linked.

Ultimately, our application requires a form of belief
revision. AI researchers have proposed a variety of general
formalisms for sophisticated belief maintenance and belief
revision (e.g., Hunter & DelGrande, 2011). However, the
practical issues involved in designing software systems
that perform belief revision remain challenging.
Fortunately, ENTEL does not need to revise arbitrary
inferences. In our application we limit our focus to
dynamic entity resolution and its ramifications. Our
approach offers the choice of minimal support for entity
splits/merges, or alternatively more extensive maintenance
of entity IDs in a shared namespace.

Conclusion and Discussion
This paper introduced ENTEL, a system that integrates

several AI technologies to help intelligence analysts track
and analyze information being published on the Web. The
system has been aggregating live data over the past few

months, and is currently being deployed so that analysts in
the Air Force can informally try using it in practice.

As we described, entity resolution is an important
capability but also introduces complexity. Persistent entity
identifiers are necessary for advanced analytics, such as
network analysis, but changing those identifiers due to
belief revision has downstream ramifications. Whereas in
other applications, referential integrity may not be critical
(witness Web links that can become out-of-date), in
intelligence applications keeping track of entity references
is critical. In fact, in ENTEL, splits/merges are most likely
to occur when deception is being practiced. These are the
most interesting and challenging cases and it is precisely
on these cases where the system must perform well.

Acknowledgements
The project described here was based partly upon work at
Fetch Technologies supported by the Air Force Research
Laboratory under contracts FA8750-10-C-0055, FA9550-
09-C-0064 and FA8750-09-C-0015 and by DARPA under
contract W91CRB-11-C-0037. The opinions and findings
expressed here are solely those of the authors.

References
Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z.,
Velkov, R. (2011) OWLIM: A family of scalable semantic
repositories, Semantic Web, (Pre-Release), DOI: 10.3233/SW-
2011-0026
Glaser, H., Jaffri, A. and Millard, I. (2009) Managing Co-
reference on the Semantic Web. WWW2009 Workshop: Linked
Data on the Web (LDOW2009).
Hoffman, F.G. (2006). Complex irregular warfare: The next
revolution in military affairs. Orbis, 50(3), 395-411.
Hunter, A.,and Delgrande, J. P. (2011) "Iterated Belief Change
Due to Actions and Observations", Journal of Artificial
Intelligence Research, Volume 40, pages 269-304
Knoblock, C.A., Ambite, J.L., Ganesan, K., Muslea, M., Minton,
S., Barish, G., Gamble, E., Nanjo, C., See, K., Shahabi, C. and
Chen C.C. “EntityBases: Compiling, Organizing and Querying
Massive Entity Repositories”, Proc. of the International
Conference on Artificial Intelligence (ICAI'07) , 2007.
Koudas, N., Sarawagi,S., and Srivastava, D. 2006. Record
linkage: similarity measures and algorithms. Proc. SIGMOD
2006
Muslea, I., Minton, S.N. & Knoblock, CA (2001) Hierarchical
Wrapper Induction for Semistructured Information Sources.
Autonomous Agents and Multi-Agent Systems 4(1/2): 93-114
Ticrea, S.I &, Minton, S. (2003) Inducing Web Agents: Sample
Page Management. Proc. Information and Knowledge
Engineering - IKE 2003: 399-403
White, A., Newman, D., Logan, D. and Radcliffe, J. (2006)
Mastering Master Data Management. #G0013695, Gartner Group

1688

