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Abstract 

This paper describes a system to help intelligence analysts 
track and analyze information being published in multiple 
sources, particularly open sources on the Web.  The system 
integrates technology for Web harvesting, natural language 
extraction, and network analytics, and allows analysts to 
view and explore the results via a Web application.  One of 
the difficult problems we address is the entity resolution 
problem, which occurs when there are multiple, differing 
ways to refer to the same entity. The problem is particularly 
complex when noisy data is being aggregated over time, 
there is no clean master list of entities, and the entities under 
investigation are intentionally being deceptive.  Our system 
must not only perform entity resolution with noisy data, but 
must also gracefully recover when entity resolution 
mistakes are subsequently corrected. We present a case 
study in arms trafficking that illustrates the issues, and 
describe how they are addressed.  

Introduction
In this paper we describe a system that monitors and 

analyzes information published on the Web about people, 
organizations and other entities of interest.  The system is 
the result of collaborative effort by corporate, government 
and university researchers. Our goal is to reduce the 
manual effort required by intelligence analysts to track data 
on a large, diverse set of Web sources.  As an example of 
an application of interest to Air Force Intelligence 
Analysts, we will describe a case study tracking 
information about entities related to arms trafficking.

A difficult technical issue that arises when aggregating 
data from multiple sources is that there may be multiple 
ways to refer to the same entity.  For example, “Air Cess” 
headquartered in “Sharjah” is the same company as 
“Aircess International” registered in the “UAE”.  This 
problem, which we refer to as Entity Resolution, has been 
addressed by many researchers (see e.g., Knoblock et al., 
2007; Koudas et al., 2006) and a variety of commercial 
solutions have been developed. However, most existing 
approaches focus on matching entity references to a clean 
master list, or reference set, of entities.  In the application 
addressed here, the entity resolution problem is particularly 
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difficult for two reasons. First, there is no pre-existing 
reference set.  The application continuously aggregates 
information about entities over time from sources that may 
mention new entities at any time, and those mentions can 
be noisy/dirty.  Second, this application tracks individuals 
that may purposely attempt to be furtive or deceptive.  
Individuals may be associated with multiple aliases and 
multiple suspect organizations, and they may purposely 
engage in activities to thwart tracking, such as relabeling 
the tail numbers of airplanes. 

This paper focuses on how the entity resolution problem 
is addressed within the larger architecture of a knowledge-
based application.  We point out that entity resolution 
cannot simply be treated as an “added feature”, but must be 
carefully designed into the architecture.  The system may 
discover over time that two entities that were initially 
believed to be distinct are the same entity, or conversely, 
that the records describing what was initially inferred to be 
one entity actually correspond to two or more entities.  The 
system must be able to make these corrections over time, 
revising its representation of the entities appropriately.  If
this issue is not carefully addressed, it can lead to problems 
such as referential inconsistency in the system’s 
knowledgebase, which can in turn make it difficult to run 
network analytics and other analysis algorithms.  We 
discuss how our initial design for the system was 
eventually improved based on our experiences, and suggest 
advice for others implementing solutions where entity-
resolution is a consideration. 

An Application Domain
As the fight against asymmetric threats continues to 

grow, intelligence analysts have stepped up their efforts to 
track information on the Web.  Our work with ENTEL 
(Entity Intelligence Portal) is intended to help intelligence 
analysts track and analyze information being published in 
multiple sources, particularly open sources on the internet 
(“Open Source Intelligence”, or OSINT).  One particular 
domain of interest to the Department of Defense is the 
illicit transportation of goods that are often associated with 
terrorist activities (Hoffman, 2006).

To illustrate the issues involved in this type of tracking 
and analysis, we will describe the case of Russian 
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businessman Viktor Bout.  Bout was the owner of several 
air cargo companies that have allegedly facilitated illicit 
trafficking of contraband.  In addition, Bout is currently 
being tried in the United States on several conspiracy 
charges, including providing support to a designated 
foreign terrorist organization.  This case is illustrative of 
the issues that are involved in tracking suspected entities.  
Because of the publicity surrounding the case, many details 
of the case are public and therefore can be discussed here. 

In tracking a suspected arms trafficker such as Viktor 
Bout, intelligence analysts would collect as much 
information as possible about the air cargo companies he is 
associated with, the planes used by those companies, the 
plane’s capabilities, known routes that they have flown, 
reported observations of those planes, and other people, 
organizations and companies that Bout deals with or 
communicates with.  In addition, analysts would attempt to 
infer any aliases or front companies he uses, and document 
any suspicious and/or deceptive behavior. 

Deceptive behaviors come in many forms. One common 
behavior which Bout allegedly engaged in is transferring 
aircraft between multiple companies.  Doing so makes 
tracking more difficult, since an aircraft can be re-
registered with a new tail number when it is transferred.  

There are many information sources on the Web that can 
aid an analyst.  Sites like airliners.net and myaviation.net 
have millions of pictures of aircraft at airports around the 
world, submitted by professionals and amateurs.  The ASN 
Aviation Safety Database and AeroTransport Data Bank 
have large databases with public records about aircraft and 
air transport companies.  In addition, news, blogs and 
internet forums can contain relevant data. 

The site ruudleeuw.com includes a substantial Viktor 
Bout dossier.  The site, authored by a private individual,
includes detailed documentation describing Bout’s 
activities, and is illustrative for our purposes.  For instance, 
one page (www.ruudleeuw.com/vbout12.htm) lists over 35 
companies with Bout connections, and details the history 
of a fleet of 5 planes that belonged to one these companies, 
Air Cess, tracing a series of tail number re-registrations 
and transfers to other companies.  

This history illustrates some of the problems inherent in 
monitoring entities, even relatively simplistic entities such 
as airplanes. For instance, the site includes the following 
statements about an Il-18 (Ilyushin-18) aircraft, with tail 
number 3D-SBZ: 

“In Jan.2004 a photo appeared on Airliners.net of a shot up Il-
18 at Kalemie, Katanga…while the registration is not shown, it 
seems to have the Air Cess c/s and "Air" can be read on the 
fuselage. …Another photo [of the plane] appeared on 
Airliners.net, again at Kalemie but now seen robbed of all its part 
(07Dec04); unfortunately the tail number has been painted over. 

…[Another Ilyushin] was purchased from Santa Cruz in 1999, 
possibly as replacement for Il-18D ([construction #] 188010903) 
3D-SBZ (ex/SP-FNZ) which had disappeared from sight…. 

Michel Bonnardeaux went to Kalemie to check for the wrecked 
Il-18 again and have just returned. Identity of 3D-SBZ in faded Air 
Cess colours is confirmed." 

Note that the tail number (the registration number) of the 
plane is not a unique identifier, due to the fact that the 
planes can be re-registered (3D-SPZ previously was 
registered as SP-FNZ), and it is not always observable. The 
authors also refer to the construction number of aircraft – a
unique serial number assigned by the manufacturer – but 
though this doesn’t change, it is even less frequently 
observable.  Over time, earlier observations such as the 
photo referred to above (shown in Figure 1) can be linked 
to a distinct serial number, as additional evidence is 
collected. 

ENTEL: System Architecture
We have been building an end-to-end system to address 

the operational and analytical requirements for monitoring 
and tracking entities of interest.  This system, called 
ENTEL, is possible due to many years of AI research in 
areas such as information extraction, information 
integration and aggregation, entity resolution and 
knowledge management.  

The ENTEL system architecture, depicted in Figure 2,
can be viewed as an information pipeline.  The high-level 
information flow starts with (1) the Fetch Agent Platform, 
a commercial AI system for harvesting Web data. The 
harvested data is aggregated and stored on an ongoing 
basis (2).  The data can consist of structured records and/or 
or unstructured text. The unstructured text is then further 
processed to extract structured facts and relations about 
entities (3).  Up to this point in the pipeline, any entities 

Figure 1: Photo of IL-18 aircraft linked to Viktor Bout
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that we have information about are simply represented by 
strings.  Our EntityBase component resolves these 
references to persistent unique entity identifiers (EIDs) 
which we use for analysis and exploration (4).   Finally, we 
publish the entity-resolved data to the entity knowledge 
store (5).  The knowledge store is used for various 
analytics and maintains more sophisticated data structures. 
For example, the system maintains a network of related 
entities and keeps track of watchlists of entities of interest. 

Once the data is in the entity knowledge store, then we 
can use a Web interface to query the data through a REST-
based API layer.  As Figure 2 depicts, the Web Interface 
interacts both with the entity knowledge store as well as 
the EntityBase component. These communication paths 
allow a user both to search for entities (entered as strings) 
and also explore what is known about entities in the 
knowledge store. We will now briefly describe each of 
these main components. 

Data Harvesting (1)  
The Fetch Agent Platform harvests semi-structured 

information from online Web sources on a scheduled basis.  
The Fetch Agent Platform is a commercial system that 
enables users to rapidly build web agents to retrieve data 
from websites.  This process employs machine learning 
methods so that extractors can be induced by example 
(Muslea et al., 2001; Ticrea & Minton, 2003). At runtime, 
the system navigates to the target data and can extract news 
articles, lists, structured records, and so forth.  The 
harvested data is stored in a feed database, which serves as 
a staging area for data ingestion into ENTEL.

Information Integration and Aggregation (2) 
The Ingest component takes the raw data from the feed 

database and integrates it into the system.  It does this 
using a multi-step process where it first converts incoming 
data into raw RDF (Resource Description Framework) 
graphs centered around the entities appearing in the data.   
These RDF graphs are an intermediate data format which 
are then further processed to resolve entities and added to 

the ENTEL knowledge store.  The nodes in the raw RDF 
graphs represent either entities or literals (e.g., the string 
“113 Main St”), and edges represent either simple 
attributes (e.g.,  “address”) or relations (e.g., “CEO of” 
where the nodes at each end-point represent an entity).  

Harvested data which is structured (such as lists and 
structured records) is directly converted into RDF graphs. 
Harvested data which is unstructured text is fed into 
natural language components (see the Fact Extraction 
component below) that extract facts and relations and 
return them as RDF graphs. 

Fact Extraction from Unstructured Text (3) 
In the first step of ingestion, any unstructured text is 

processed by natural language components to extract RDF 
graphs. At this point, the RDF is relatively raw, since the 
extracted entities are simply names mentioned in the text.  

The fact extraction module is written as a plug-and-play 
component making it easy to integrate a variety of fact 
extractors.  It integrates output from these extractors into a 
single RDF graph for each piece of text. We currently use 
multiple third-party natural language-based text-mining 
tools including the Reuters OpenCalais service1 and the 
Semantex engine from Janya Inc.2

Entity Resolution (4) 
Entity resolution is critical to ENTEL, as having entity 

resolved data is essential for relational or network 
analytics.  As we mentioned earlier, there may be multiple 
ways to refer to the same entity, including aliases and more 
commonly, there can be misspellings and errors in the 
extracted data.  Our EntityBase component (Knoblock et 
al., 2007) imports RDF descriptions of entities, and 
clusters them so that (ideally) each cluster corresponds to a 
distinct entity in the world. EntityBase maintains a name 
space where each cluster is associated with a unique entity 
identifier, referred to as an EID.

                                                
1 http://www.opencalais.com 
2 http://www.janya.com/products/the-semantex-platform/overview 

Figure 2: ENTEL System Architecture

Figure 3: Clusters in EntityBase
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The input to EntityBase is generated from the RDF graphs 
described earlier.  In particular, the system decomposes the 
RDF to create a distinct sub-graph for each entity 
mentioned.  We define a descriptor to be a set of RDF 
triples, (subject, attribute, object) describing an entity, 
where the subject is a Descriptor ID, the attribute is a
predicate name, and the object is a literal.  The Descriptor 
ID, or DID, is a unique ID for each descriptor. Each 
descriptor can be thought of as a database record, though 
as we have discussed, the descriptors in ENTEL are 
harvested from both structured sources and unstructured 
text. 

Figure 3 illustrates our representation scheme. Each 
cluster consists of an EID and a set of descriptors. For 
instance, Entity E4293 is a cluster of 4 descriptors. On the 
right of the figure, two of these descriptors are expanded to 
show their details. The top descriptor consists of three 
triples with Descriptor ID3 S4-7123, indicating a name, 
phone number and address.  The second description has 
DID S5-381, and contains attributes for name and number 
of employees.  Note that because multiple records can have 
the same attributes, there can be multiple names, addresses, 
etc. associated with any given entity. 

An incoming descriptor is added to exactly one cluster, 
either a pre-existing cluster, or a new cluster that is created 
with a new EID.  EntityBase’s clustering is based on
probabilistic inference.  During the import process, the 
system estimates the probability that a descriptor belongs 
in a cluster, and only places it in the cluster if it exceeds a 
predefined probability threshold (e.g., 99.4% in Figure 3).

Note that the addition of new data can also provide 
evidence that existing clusters should be merged or split.  
We discuss this issue later in this paper. 

The Knowledge Store and Analytics Engine (5) 
Once we have resolved entities, we tag all the entity 

nodes in the RDF graph with their respective entity IDs.  
We use these to incorporate the data into a continuously 
growing network of entities -- a social network.  The social 
network is stored as triples of the form <EID, predicate, 
EID> for relations between entities.   These triples are 
stored locally, with the rest of the RDF triples, in the “Fact 
Store”.  We call each such triple a fact.  The original 
content from the data feeds are stored in the “Content 
Store” with a reference pointer back to their original online 
location.  We only store one copy of any single fact in our 
fact store, but keep an “attribution” mapping from each 
fact to the record it appeared in.  The result is that we have 
a compact set of facts, which make up our entity graph for 
analytics, as well as a complete set of attributions so that 

                                                
3 By convention, the Descriptor ID is composed of two hyphenated parts, 
the first part identifying a data source, and the second part identifying the 
data record within the source. 

we can always trace back where a fact came from. We also 
create and store metadata about each entity, such as its 
canonical name (currently the most frequent name) and 
when it was seen first and last. 

As information is integrated into the knowledge store, 
ENTEL performs up-front analytics by executing 
“persistent queries” so that watchlists and other monitoring 
functions can be accomplished.4 For example, ENTEL 
monitors incoming content to see if any entities of interest 
appear and flags them for the user.  These lists and matches 
are stored in the “Analytics” database.

Web Interface 
While the primary goal in ENTEL is the generation, 

maintenance and analysis of entity graphs, it also needs a 
user interface in order to make it useful as an application.  
We developed a front end to support various analytic use 
cases, some of which we have described above.  An 
example page from the Web interface is shown in Figure 4 
where it shows the details of a plane spotting record.  This 
data was extracted from a semi-structured website (as 
opposed to being extracted from text). It contains useful 
information such as the name of an airline (with a link to 
the page about that airline), the name of an airport (with a 
link to the page about that airport), the type of plane, and 
even the tail number and serial number of the plane.  
Details of the record are shown in the left pane, together 
with the picture from the site.  On the right we see some of 
the literal facts we pulled out of this record.  The Web 
interface provides links to all entities, facts and relations as 
well as watchlists, profile pages and more.  These 
capabilities depend on having entity resolved data. 

                                                
4 Note that the watchlists themselves can be acquired from online sources 
(e.g., online sources of known terrorists, banned airlines, etc.) as well as 
from users who can use the Web interface to build their own lists. 

Figure 4: ENTEL Web Interface
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Status and Performance 
ENTEL is currently being evaluated by Air Force 

personnel.  We note that the system relies on multiple 
technologies that are the subject of current AI research, 
including entity and fact extraction, and entity resolution.
Because these components are not perfect, and can interact 
in unexpected ways, ENTEL sometimes makes mistakes 
that seem naïve.  Nevertheless, our preliminary 
experiments show that the system can be quite useful.  For 
example, in one recent experiment we harvested 217 text 
documents, and had a contractor mark up these documents 
(with a markup tool) to identify entities and facts, and to 
resolve the entities.  This process took 66 man hours, and 
ENTEL processed these same documents in under 10 
minutes.  The fact extraction component extracted at least 
one RDF graph per document.  A total of 2524 entity nodes 
were generated, of which 748 were identified as named 
persons and 1776 were identified as named organizations 
(companies, airports, airlines, etc.).   In addition, 3583 
attributes and 408 relations were extracted.

From this data, EntityBase produced 343 person 
clusters. One split and nine merges were required to revise 
this initial clustering to produce a “correct” clustering of 
329 person entities (according to human judges).  The 
average precision5 across all person clusters was .997 and 
average recall was .987.  As for organizations, a total of 
586 clusters were created, which required 3 splits and 19 
merges to produce a correct clustering of 571 entities. The 
average precision was .989 and average recall was .988.  

 We caution that these figures provide a very limited 
view of the system’s performance. An in-depth empirical 
analysis is in preparation. 

An Imperfect World: Splits and Merges
As described above, EntityBase clusters incoming data 

records and assigns each cluster a unique Entity Identifier, 
or EID.  However, our knowledge about entities in the 
world is not perfect.  When new information is acquired, 
evidence may suggest that the clusters should be merged or 
split up by EntityBase (Knoblock et al., 2007).  For 
instance, earlier we explained that, over time, we might 
conclude that the aircraft in Figure 1 is the same as the 
aircraft reported to have tail number 3D-SPZ.  In 
EntityBase, such a conclusion would result in the clusters 
representing the two entities being merged.  Similarly, if 
we discovered that the registration number 3D-SPZ was 
used by two aircraft with different construction numbers, 
this would result in the entity being split.

                                                
5Precision for an entity E is computed by identifying the cluster CE which 
best corresponds to entity E, and then determining the proportion of 
descriptors that correctly refer to E in cluster CE. Recall for entity E is 
computed as the proportion of descriptors that describe E which were 
correctly put into cluster CE.   

In some cases, entities such as companies can also split 
and merge in the world, as in a corporate merger. For the 
purposes of this paper, we consider only split and merge 
operations that correct previous, imperfect clustering 
decisions.  That is, these splits/merges constitute belief 
revisions intended to correct the system’s belief state. 

There are a variety of reasons why an incorrect 
clustering decision may be made.  One reason is that the 
incoming data may be noisy.  For example, a natural 
language extractor may misparse text that starts 
“Outspoken Qatar Airways chief Akbar...” and return 
“Outspoken Qatar Airways” as a named entity. Depending 
on the order in which facts are encountered, these types of 
parsing mistakes can result in separate clusters that need to 
be merged.   

A second source of mistakes is due to the statistical 
entity resolution process, which makes heuristic 
probability estimates.  For instance, the system may 
assume that “Iran Air” is the same as “Iran Air Force” due 
to an overly generous estimate that “Force” was simply 
missing in the mention of “Iran Air”.  

A third type of mistake occurs when there is simply not 
enough data to determine the correct clustering.  For 
instance, we may have two texts that refer to a person 
named “Harold Knopf Merriweather”, and only later 
encounter additional information indicating there are two 
different people with this name (unlikely as that may be).

While the first two sources of error can be addressed by 
developing more accurate extraction and resolution 
algorithms, the uncertainty due to incomplete data depends 
on what data we have about each entity, and the order that 
the data is ingested.  In fact, one way to improve the 
performance of an entity resolution system is to first feed 
the system a source of clean, complete data, often called a 
reference set, so as to create a perfect initial clustering 
(where each cluster contains a single prototypical data 
description).  Then, when descriptions from subsequent 
data sources are imported, they are simply inserted into 
existing clusters. This strategy is often the default approach 
used in commercial enterprise applications.   

While EntityBase can accommodate this strategy,
reference sets do not exist for every domain.   In particular, 
consider the arms trafficking domain that we described 
earlier. We can feed the system a list of all the world’s 
airports, since these are essentially unchanging.  And we 
can feed the system a list of all the major airlines and their 
executives.  However, there is no complete list of all the 
entities the system might encounter. New airlines, cargo 
companies, associated individuals, etc. can be expected to 
turn up in the shadowy world of arms trafficking, and they 
need to be tracked.  

Thus, entity resolution mistakes that are due to 
incomplete data may be unavoidable in many domains.  To 
handle these situations, EntityBase includes the capability 
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to merge and split clusters.  In particular, the system can be 
configured to automatically split clusters that have many 
inconsistent attributes, and to merge clusters when two or 
more clusters closely match a new incoming description.  
In addition, analysts can also manually specify 
merges/splits through the Web Interface when EntityBase’s 
probabilistic inference capabilities are insufficient. 

As a consequence of merges and splits, EIDs are retired.  
When a merge happens between two or more formerly 
distinct clusters, the EIDs of the old clusters are retired,
and a new EID is created for the new cluster.  Similarly, 
when a split occurs, the old EID is retired, and new EIDs 
are created for the new clusters. 

Maintaining Referential Integrity 
Merges and splits can create difficulties for client 

systems that interact with EntityBase. In particular, when 
EIDs are retired and new clusters created, this constitutes a 
form of belief revision that a client system may need to be 
aware of.  In this section, we describe two interaction 
modes that we developed to support EntityBase clients,
and their advantages/disadvantages. 

The first mode of interaction, which we call “Refer-by-
Identifier”, supports EntityBase clients that need to store 
and use Entitybase’s EIDs.  Consider, for instance, the 
social network maintained by ENTEL’s Analytics Engine 
and Knowledge Store, which represents the relationships 
between entities.  ENTEL naturally relies on EntityBase’s 
EIDs to represent the nodes in the network.  However, this 
dependency comes at a cost.  When entities in EntityBase 
merge/split, the social network must be similarly updated 
to maintain referential integrity.  Otherwise, when EIDs are 
retired, the network would contain EIDs that would, in 
effect, be dangling pointers. This loss of information would 
in turn degrade the performance of the analytics.
Moreover, any intelligence report based on the network 
critically depends on the network being as accurate and up-
to-date as possible.

Below we summarize the main API functions that 
EntityBase supports to implement Refer-by-Identifier: 

EIDQuery(query)
   returns ((probability, EID) (probability, EID)..)
RetrieveDescByEID(EID)  
   returns SetOfDescriptors 
Update(LastUpdateID) 
   returns (SyncOperation, SyncOperation,…)
The first call, QueryForID, enables a client to find the 

EIDs of all entities that match a query (a partial description 
of an entity).  The second call retrieves, for any EID, the 
full set of the descriptors associated with an EID.  The last 
call is used to maintain referential integrity with 
EntityBase.  A SyncOperation is simply a specification of a 
merge/split enabling the client to update its own database 
to maintain consistency with EntityBase.  

One pattern of interaction using Refer-by-Identifier is 
shown in Figure  5.  The user issues a query via the GUI to 
find a plane with tail number AOK-293. EntityBase finds 
two possible matches, one of which is a close match, 
E590187.  The user then wants to view the relationships 
between E590187 other entities in the social network.  To 
achieve this, the GUI calls the Knowledge Store, which 
updates the social network to make sure it is consistent 
with EntityBase, and then displays the entities related to 
590187 (the local neighborhood in the graph) to the user. 

A client that uses Refer-by-Identifier is responsible for 
synchronizing its belief state to be consistent with 
EntityBase.  For instance, consider the process of 
maintaining the social network. When a split/merge occurs, 
the client must rebuild the relations that refer to any entity 
whose EID has changed. In particular, when a merge 
occurs, all of the links associated with the two old EIDs 
must be updated to reflect the EID of the new merged 

Figure 6: Refer-by-Description, Example Interaction
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Figure 5: Refer-by-Identifier, Example Interaction
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entity. Similar, with a split, the system must examine every 
relation associated with the old EID and determine which 
of the new EIDs should replace it. This requires examining 
the attribution mapping for that relation to identify the 
descriptor that was responsible for creating the relation, 
and then determining which new EID is now associated 
with that descriptor.

Obviously, synchronization has a cost, not only in time, 
but also in terms of the effort involved in implementing the 
synchronization code.  Refer-by-Description is designed to 
shield clients from these costs.  Refer-by-Description 
allows clients to refer to clusters indirectly, via the 
descriptors encompassed by the cluster. To illustrate this, 
let us consider another ENTEL use case. In particular,
consider a simple Web GUI for querying EntityBase, 
where one could, for instance, ask for all companies owned 
by Victor Bout.  This type of GUI simply needs to display 
each matching entity to the user, and allow the user to click 
on an entity if he/she wants to find out more details.  The 
GUI may allow the user to bookmark a set of “favorite” 
entities (i.e., creating a simple form of a watchlist).   For 
such a lightweight application it is be prohibitively 
expensive to implement the synchronization process.  On 
the other hand, if a merge/split does indeed happen, we 
would also prefer not to throw an error if the user selects 
an entity that has been merged/split. 

To support this type of use case, EntityBase allows 
clients to refer to an entity cluster using any Descriptor ID 
in the cluster. Specifically, EntityBase supports Refer-by-
Description through the following calls: 

DescriptionQuery(Query)
  returns ((probability, SetOfDescriptors)

                         (probability. SetOfDescriptors)..) 
RetrieveDescByDID(DescriptorID)  

  returns SetOfDescriptors  

The first call enables a client to find all the entities that 
match a query.  The complete set of entity descriptors are 
returned, rather than EIDs, since in the Refer-by-
Description paradigm the client does not retain EIDs.
(That is, the system returns the clusters themselves, rather 
than their EIDs.) The second, RetrieveDescByDID, gives 
clients the capability to “follow up” on an initial query.  
For instance, returning to our GUI example, the user may 
search for information about a plane with tail number 
AOK-293. As shown in Figure 6, the GUI sends a query to 
EntityBase, which returns two potential matches to display 
to the user, one of which is an exact match to the tail 
number, and one which is a close match.  Notice that 
EntityBase sends the descriptions of the entities, not the 
EIDs. Later, the user might issue a followup query to find 
out more about that aircraft.  Without an EID to refer to, 
how can the GUI phrase this query?  Since each predicate 
in the entity descriptors includes a DescriptorID assigned

by the source, the GUI can select any individual 
DescriptorID (in the figure, the selected DescriptorID is 
S1-1234), and via RetreiveDescByDID, map this back to 
its current entity (which could have changed in the 
meantime) and obtain a full entity description.  This 
process effectively shields the client from the 
responsibility of maintaining EIDs.  

The advantage of Refer-by-Description is that the client 
need not implement synchronization.  A DescriptorID 
functions as an pointer to the cluster in which the 
descriptor belongs. We note that our original design for 
ENTEL was based solely on Query-by-Description, since 
we believed that we could confine the complexity of 
splits/merges to EntityBase.  However, once we began 
building more sophisticated clients, we found that the need 
for synchronization favored Refer-by-Identifier.

In fact, we can classify clients into two categories, 
depending on how they use EntityBase. Formally, if we 
describe EntityBase’s knowledge state by a set of formulas 
E, then a series of split/merge operations will transform 
state E1 to state E2.  After these operations, a client with 
state C1 that was consistent with E1 may be forced to revise 
its state to C2 to preserve consistency with E2.  For clients 
that may need to make such revisions, Refer-by-Identifier 
is likely to be an appropriate strategy because it supports
synchronization.  On the other hand, if a client never needs 
to revise its own state to preserve consistency, then Refer-
by-Description is a viable approach, and is simpler to 
implement. 

Related Work 
Mechanisms for maintaining referential integrity are of 

growing importance as the Web matures and using 
distributed knowledge becomes a real possibility.  As we 
have pointed out, it can be painful to enforce referential 
integrity.  Because of the costs involved, many application 
designers choose to simply ignore referential integrity; 
instead, they simply throw an error when an out-of-date ID
is dereferenced. For instance, on the Web, when a URL is 
out of date, Web browsers often simply report a 404 “Page 
Not Found” error, and users have learned to understand 
what this means.  However, it is possible to do better, and 
in certain applications, such as the ENTEL arms trafficking 
domain, referential integrity is critical if the application is 
to be useful. 

The issues we have raised here will eventually be a 
concern for Semantic Web applications.  Using OWL, the 
owl:sameAs predicate can be used to declare that two 
different URIs denote the same thing. If the statement is 
later discovered to be incorrect, it can be retracted.  Some 
systems, such as the BigOWLIM semantic repository 
(Bishop et al., 2007) include special purposes 
optimizations for handling SameAs inferences and for 
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handling retractions, both of which can be potentially 
expensive.  However, approaches for efficiently revising 
beliefs about entity identity on the Semantic Web have 
only just begun to receive consideration (Glaser, Jaffri, & 
Millard, 2009). 

Many modern relational database management systems 
offer automated processes for enforcing referential 
integrity.  In a relational database, referential integrity 
refers to the requirement that each foreign key value in a 
table exists as a primary key in the referenced table.  One 
enforcement mechanism is to simply issue a warning 
whenever referential integrity is violated.  Some systems 
offer alternative enforcement mechanisms such as 
“cascading deletes”, which upon identifying an integrity 
violation automatically deletes offending rows as well as 
any offending rows in related tables. The simplistic 
approaches offered by traditional database systems are 
based on the assumption that we have perfect knowledge 
about entities.  In the application described here, as well as 
many other practical applications, this is clearly not 
practical.   

To handle noisy data, some commercial firms offer more 
sophisticated Master Data Management approaches, which 
allow data to be matched against clean reference sets or 
“master data lists” (e.g., White et al., 2006) which are 
carefully expanded over time. However, while this 
approach accommodates noise in the incoming data, 
ENTEL addresses an even more challenging situation. In 
our case, there is no known reference set. Instead, data is 
automatically aggregated from noisy, uncertain data 
sources over time.  It is not acceptable to discard incoming 
data even when it is uncertain which entity the data refers 
to.  At some later point, the system may find additional 
facts which allow previously-acquired records to be linked. 

Ultimately, our application requires a form of belief 
revision.  AI researchers have proposed a variety of general 
formalisms for sophisticated belief maintenance and belief 
revision (e.g., Hunter & DelGrande, 2011).  However, the 
practical issues involved in designing software systems 
that perform belief revision remain challenging.  
Fortunately, ENTEL does not need to revise arbitrary 
inferences.  In our application we limit our focus to 
dynamic entity resolution and its ramifications.  Our 
approach offers the choice of minimal support for entity 
splits/merges, or alternatively more extensive maintenance 
of entity IDs in a shared namespace. 

Conclusion and Discussion 
This paper introduced ENTEL, a system that integrates 

several AI technologies to help intelligence analysts track 
and analyze information being published on the Web.   The 
system has been aggregating live data over the past few 

months, and is currently being deployed so that analysts in 
the Air Force can informally try using it in practice.  

As we described, entity resolution is an important 
capability but also introduces complexity. Persistent entity 
identifiers are necessary for advanced analytics, such as 
network analysis, but changing those identifiers due to 
belief revision has downstream ramifications.  Whereas in 
other applications, referential integrity may not be critical 
(witness Web links that can become out-of-date), in 
intelligence applications keeping track of entity references 
is critical. In fact, in ENTEL, splits/merges are most likely 
to occur when deception is being practiced.  These are the 
most interesting and challenging cases and it is precisely 
on these cases where the system must perform well. 
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