
Automatically Mapping Natural Language Requirements to Domain-Specific
Process Models

Uthayasanker Thayasivam
Department of Computer Science

University of Georgia
Athens,Georgia 30605, USA

Kunal Verma, Alex Kass and Reymonrod Vasquez
Accenture Technology Labs

Accenture
San Jose, California 95113, USA

Abstract

For large scale enterprise implementations, a key problem,
that has not been tackled much, is the ability to automati-
cally map users’ requirements to reference process models.
We present a tool called Process Model Requirements Gap
Analyzer (ProcGap), which uses a combination of natural lan-
guage processing, information retrieval and semantic reason-
ing to automatically match and map textual requirements to
industry-specific process models. We present the results of
mapping requirements from an industry project to an existing
process model. We compare our approach to two previously
implemented approaches and show that our approach outper-
forms them. In a case study, we also found that a user group
with ProcGap had better performance than a user group that
performed the same task manually.

Introduction

The requirements gathering exercise for large enterprise
software implementations, especially those based on pack-
aged software such as SAP, is often based on gap analysis
between the users’ requirements and the out-of-the-box ca-
pabilities of the package. Previous research (for e.g. (Daneva
2004) and (Pnina et al. 2001)) has found that basing imple-
mentations on standard offerings reduces costs and risks as
it enables leveraging past experience and reusing existing
artifacts such as code and test-scripts. Our experience ana-
lyzing the requirements process in the software industry has
shown that gap analysis is typically a manual task that is of-
ten time-taking and error prone because process models typ-
ically have thousands of capabilities and most projects typ-
ically have hundreds of requirements. As a result, projects
often fail to build upon experiences from previous projects
or reuse artifacts that would have saved them time and effort.

To enable reuse of knowledge and artifacts, a recent
trend in the enterprise software industry has been the emer-
gence of reference process or capability models. Exam-
ples of such models include IBM’s Web Industry Content
Packs(IBM 2011), ARIS Reference models for various in-
dustries and domains(ARIS 2011) and Accenture’s Busi-
ness Process Repository (ABPR 2011). These models rep-
resent the reference capabilities and processes for a domain.
A sample process model snippet is shown in the left pane

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of Figure 1. Large scale implementors such as Accenture,
are placing a large emphasis on leveraging these models
in project execution. Under this approach, a central activ-
ity is to determine the mapping between the requirements
requested by stakeholders and the capabilities defined in the
reference model. Doing so supports a number of key analy-
sis objectives: 1)highlighting common capabilities from the
reference model not specified in requirements and flagging
them as potentially missing requirements, 2) determining
which portions of the reference model correspond to require-
ments, 3) identifying requirements that do not map to ele-
ments of the reference process model and classifying them
as potentially risky requirements and 4) making any asset as-
sociated with that element available to support other analysis
and design activities.

In spite of the clear benefits of mapping the requirements
to reference models, there is no automated tooling support
for creating this mapping. In this paper, we will present
a tool called Process Model Requirements Gap Analyzer
(ProcGap), which uses a combination of natural language
processing (NLP), information retrieval (IR) techniques and
semantic reasoning to automatically match and map tex-
tual requirements to process models. Automatically map-
ping natural language requirements to process models is a
challenging research problem because of the following fac-
tors:

Many similar capabilities: Many of the capabilities in a
process model are about similar objects. For example, the
object ”invoice” appears in 95/3116 capabilities in one of
the process models and it is often the relationship of the ob-
ject to other parts of sentence such as verb and the preposi-
tional phrase, which make the phrase unique (create an in-
voice vs. delete an invoice). Unlike traditional IR techniques,
the high-frequency words objects cannot be ignored or de-
emphasized either, since they are important for the match-
ing.

Use of domain specific terms: Requirements-writers of-
ten use domain-specific terms such as debit memo to refer to
something that may be referred to by a term like invoice in
the process model.

Implicit details: When a user talks about entering a dis-
count code, he/she may be implying the capability of creat-
ing a purchase order without actually mentioning it.

Lack of standardization of requirement syntaxes Users

Proceedings of the Twenty-Third Innovative Applications of Artificial Intelligence Conference

1695

may use different syntaxes to express the same intent. For
example, the requirements, System shall allow the user to
create a purchase order and Purchase order shall be created
by the user, should both be mapped to the capability create
purchase order in the process model.

There has been some previous work on using NLP and IR
techniques for mapping requirements to other artifacts. Most
of the approaches, such as (Jirapanthong and Zisman 2009)
and (Zachos and Neil A. M. 2008), have used a set of rules
over the output of syntactic/shallow parsing to extract rele-
vant constituents from the requirements. (Hayes, Dekhtyar,
and Sundaram 2006) used IR techniques to map low level
requirements to high-level requirements. There is a also vast
body of work in natural language processing for judging
similarity between two sentences. (Mihalcea, Corley, and
Strapparava 2006) proposes using both corpus-based simi-
larity and lexical similarity using WordNet between words
for matching. (Li et al. 2006) propose using WordNet and
order of the words in the sentences for calculating sentence
similarity. These approaches are focused on general-purpose
similarity between sentences. There are three key differ-
ences between our approach and previous approaches: 1)we
use a combination of NLP and IR techniques so that we can
benefit from both types of approaches. ProcGap can handle
both well written, easily parsed requirements or poorly writ-
ten and complex requirements, that cannot be parsed easily,
2) a differentiator in our NLP approach is that we have devel-
oped a rule based approach that leverages dependency pars-
ing (de Marneffe, MacCartney, and Manning 2006). This al-
lows handling some linguistic complexity that previous ap-
proaches based on syntactic/shallow parsing could not han-
dle and 3) another differentiator from previous work is that
in addition to WordNet, we also use a semi-automatically
generated semantic graph representing domain knowledge
to assist with the matching.

We have evaluated our approach on requirements from
a industry project, using a process model created by an-
other group in our organization. We compared the match-
ing approach used by ProcGap to a number of previous ap-
proaches; ProcGap outperforms all of them. We also con-
ducted a user evaluation where users were asked to map re-
quirements with or without ProcGap. Our results show that
the users who used ProcGap outperformed the users who did
not.

Overview of ProcGap Application
A screen-shot of ProcGap after the user has used the auto-
matic mapping feature is shown in Figure 1. The pane on the
left depicts some of capabilities of the ERP process model
for the chemical industry. The pane on the right shows some
of the user requirements. A leaf capability, with at least one
requirement mapped to it, has a green indicator box in front
of it, otherwise it has a red indicator box. For non-leaf capa-
bilities, the color of the indicator box depends on the number
of children that are mapped. A requirement that is mapped
to at least one capability has a green ”‘R” in front of it. Ar-
rows are used to depict mappings. ProcGap also allows users
to manually edit or remove the mappings and view reusable
assets associated with a capability.

Matching

We have designed a matching approach to deal with the chal-
lenging problem of mapping requirements to the capabilities
in a process model. The matching algorithm used by Proc-
Gap uses two distinct measures - 1) similarity between ex-
tracted Verb, Object and Prepositional-object (VOP) triples
and 2) cosine similarity. A number of extracted VOP triples
are shown in Table 1. We ignore the noun phrase because ca-
pabilities (for e.g., create invoice for sales order) typically
do not have a noun phrase. To deal with the issue of non-
standard syntaxes, we leverage a set of rules that operate on
the output of a dependency parser (de Marneffe, MacCart-
ney, and Manning 2006) to extract the VOP triples. We also
leverage knowledge from WordNet and a domain-specific
semantic graph based on the process model (discussed in
next section) to find related concepts. This allows the Proc-
Gap matching algorithm to deal with issues mentioned ear-
lier such as implicit details in the requirements. For dealing
with poorly written or long sentences that are hard to parse,
we leverage cosine similarity. A high-level overview of our
approach is shown in Figure 2.

Extracting VOP triples

We leveraged the Stanford Parser to extract VOP triples
because it uses dependency parsing that is less suscepti-
ble to syntax of a sentence. For example, the generated
dependency lists for capabilities System creates an invoice
and Invoice shall be created, contain the relationship be-
tween create and invoice, using dobj and nsubjpass relation-
ships respectively. For more details about dependency pars-
ing, please refer to (de Marneffe, MacCartney, and Manning
2006). ProcGap uses a simple set of rules to extract the VOP
triples from the dependency lists.

VOP Matching Algorithm

This section defines the algorithm for matching VOP
triples of requirements and capabilities. The similarity score
(V OP (R,C)) between a requirement(R) and a capabil-
ity(C) is defined as:

V OP (R,C) =
max

(< VR, OR, PR >∈ R,

< VC , OC , PC >∈ C)

{
SIM(VR, VC)
×SIM(OR, OC)
×SIMP (PR, PC)

}

(1)
Where, < VR, OR, PR > is a VOP triple extracted from

Requirement R and < VC , OC , PC > is a VOP triple ex-
tracted from Capability C.

SIM(TR, TC) is the similarity score between any two
terms TR and TC is calculated as:

SIM(TR, TC) = max

{
SIMstr(TR, TC),
SIMsem(TR, TC),
SIMLin(TR, TC)

}
(2)

SIMstr(TR, TC) is the string similarity score between
any two terms TR and TC and is based on exact string com-
parison between the stemmed (Martin F. 1980) version of
the terms.

1696

Figure 1: Screen shot of ProcGap User Interface.

SIMsem(TR, TC) is the semantic similarity score be-
tween any two terms TR and TC and is based on semantic
relationship between the words. It is derived using the ex-
tracted semantic graph discussed in the next section and is
defined as:

SIMsem(TR, TC) =
1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if sameAs(TR, TC)

α1 if subClassOf(TR, TC)

β1 if partOf(TR, TC)

α2 if subClassOf(TC , TR)

β2 if partOf(TC , TR)

0 otherwise
(3)

Where, sameAs(TR, TC) is a function that returns true
if two elements in the semantic graph are equivalent.
subClassOf(TR, TC) is a function that returns true if TR

is a sub-class of TC in the semantic graph. partOf(TR, TC)
is a function that returns true if TR is a part-of TC in the
semantic graph.

We represent the semantic graph using Web Ontology
Language (OWL)(W3C 2004) and all three functions are
implemented using the Jena reasoning engine(Jena 2009).
While sameAs and subClassOf are natively supported by
Jena and OWL, we augmented the Jena reasoner with some
simple rules to implement the partOf function. Some ex-
amples of calculating semantic similarity score are shown in
rows 2 and 3 of Table 1.

SIMLin(TR, TC) is the information theoretic similarity
between two terms based on the approach proposed in (Lin
1998). It calculates the similarity between two terms based

1We empirically came up the following values for the constants
α1 = 0.95, β1 = 0.85, α2 = 0.85, β2 = 0.75. They are designed
to give penalize requirements that are more general than capabil-
ities and reward requirements that are more specific that capabili-
ties.

on their relative positions in a taxonomy created from Word-
Net.

SIMLin(TR, TC) =
2.IC(lcs(TR, TC))

IC(TR) + IC(TC)
(4)

Where the information content of a term t, IC(t) is de-
fined as −ln

(
freq(t)
freq(r)

)
. Where freq(t) and freq(r) are, re-

spectively, the frequencies of the term t and the root r of
the taxonomy. The lowest common subsumer (lcs) of two
terms TR and TC , that is the lowest node in the taxonomy
that subsumes both the terms.

The similarity between two prepositional objects,
SIMP (PR, PC) is defined as:

2SIMP (PR, PC) =

⎧⎨
⎩
1 if PR = null

γ if PC = null

SIM(PR, PC) otherwise
(5)

The prepositional object similarity is designed based on the
following hypothesis - if a text has a preposition and the
other does not then the prior one is more specific than the
second one. For e.g., create contract for e-commerce is con-
sidered to be more specific than create contract.

Weighted Cosine Similarity

Cosine similarity models a sentence as a bag of words. It
does not depend on the structure of the sentence and is
particularly useful for poorly formed or complex sentences
where it is hard to extract the VOP triples. We have designed
our approach to benefit from extracted VOP triples and terms
in the semantic graph. The cosine similarity of two vectors
is defined as the dot product between them. The weighted

2We empirically came up with γ = 0.8. The aim is to penal-
ize differences between verbs or nouns more than the prepositional
objects.

1697

���������	

�������	�������

��������������

������������������

�����������

���������
�������

��� ���
�������

������
�������

���������
!���������������

"�#$�������

��� ��

����!��

��������
������

Figure 2: Matching Process

cosine similarity between a requirement R and capability C
is defined as:

cos (R,C) = �R. �C (6)

Where �R and �C are term vectors representing the re-
quirement R and the capability C respectively. Term vec-
tor �T = {f1t1, f2t2,, fntn}; where, fi is the weighted
frequency of term ti in the term vector �T and is defined as:

fi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if ti ∈ {StopWords}
f̃i + 1 if ti ∈ {< V,O, P >}
f̃i + 1 if ti ∈ SemanticGraph

f̃i otherwise

(7)

Here f̃i is the frequency of word Wi in sentence S. Some
example word vectors and match scores calculated using
weighted cosine similarity are shown in rows 4, 5 and 6 of
Table 1.

Calculating the final match score

Finally, the overall similarity score M(R,C) between a re-
quirement and a capability is calculated by taking the maxi-
mum score from VOP matching (Equation 1) and weighted
cosine similarity (Equation 7).

M(R,C) = max{cos(R,C), V OP (R,C)} (8)

The match scores for a number of requirements and capa-
bilities are shown in Table 1. We experimentally determined
the threshold of similarity score to be 0.625.

Semi-Automatically Generating

A Semantic Graph

Based on our empirical evaluation, we noticed that Word-
Net, which is a general purpose thesaurus, did not have
enough relationships about the process model that we were
using. For example, it is not possible to use WordNet to de-
rive that debit memo is a special type of invoice or whether
transportation mode is a typical attribute of a delivery docu-
ment. However, since users often refer to different common

attributes of objects such as invoice and purchase order, our
approach was to model the relationships between commonly
used terms in the domain of the process model.

Since the same process model is used over a number of
projects, creating a domain-specific semantic graph seemed
a reasonable approach to capture such relationships. This
section will describe approach used by ProcGap to create the
semantic model. It is loosely based on existing approaches
for automatic ontology extraction such as (Dahab, Hassan,
and Rafea 2008) and (Alani et al. 2003). To start with,
the top twenty frequently occurring nouns (for e.g., order,
contract) and verbs (for e.g., maintain, create) in a process
model are added as nodes of the graph. Then, the most fre-
quently occurring phrases are extracted using a high pass fil-
ter with a lower cutoff (5) and added to the graph. Finally, re-
lationships are added manually with some suggestions from
the tool. ProcGap either uses simple heuristics (e.g. sales
order is a subclass of order) or information from external
sources such as Wikipedia to suggest the relationships (e.g.
Debit Memo is a synonym of Invoice) between the nodes. A
snapshot of a semantic graph is shown in Figure 3.

Evaluation

In this section, we will present an evaluation based on a
large industry project from the chemical industry. The eval-
uation was performed on a requirements document from
a project team who wanted to map their requirements to
their industry-specific process model. The scope of the
project included implementing different aspects of their
multi-national supply chain process such as accepting cus-
tomer orders, fulfilling the orders, invoicing for the orders
and shipping the orders. We used ProcGap to automatically
map their requirements to the standardized ”ERP Process
Model for the Chemical Industry” created by a different
group in our organization. That particular process model has
3116 capabilities. The project team gave us a document with
189 requirements. We used the requirements provided by the
team as-is, therefore some are well-formed, while others are
not.

To evaluate our approach, we performed two kinds of ex-
periments. For the first experiment, we compared our match-
ing approach to a number of other approaches. For the sec-
ond experiment, we conducted a case study with 6 potential
users of ProcGap.

Creating the Gold Standard

To help us evaluate the automatic mapping, a team of three
project members created a Gold Standard by manually map-
ping the requirements. For a mapping to be accepted in the
Gold Standard, agreement of at least two of the three mem-
bers was needed. The gold standard contains 334 mappings
between the requirements and the capabilities. Out of the
189 requirements, 42 requirements were not mapped to any
capability, because they did not have any corresponding ca-
pabilities in the process model. Some of the requirements
map to more than one capability.

1698

Capability (C) Mapped Requirement (R) Score Details

1. Create sales order Sales order shall be created by
a user.

1.0000 V: SIMstr(created, create)=1 ;
O: SIMstr(sales order, sales order)=1

2. Create invoice The system shall allow the user
to create a debit memo.

0.8500 V: SIMstr(create, create)=1 ; O: SIMsem(debit memo, in-
voice) =0.85 ∵ hasSubClass(invoice, debit memo)= T

3. Create delivery
document

The system shall allow the user
to select transportation mode.

0.7225 V: SIMsem (select, create) = 0.85 ∵ partOf(select, create) = T
; O: SIMsem(transportation mode, delivery document) = 0.85
∵ partOf(transportation mode, delivery document) = T

4. Create Purchase
Order with Refer-
ence to a Contract

The system shall allow the user
to create contracts and use them
as reference for order creation

0.8366 �C {purchas=2, order=2, refer=2, creat=2, contract=2} ;
�R {creation=1, order=2, refer=1, creat=2, contract=2}

5. the system allow
the user to create
contract

the system shall allow the user
to cancel the contract

0.0000

0.0000

V: SIM(create, cancel) = 0 ; O: SIMstr (contract, contract) =
1
�C {creat=2, contract=2} ; �R {cancel=2, contract=2}

6. The system shall al-
low the user to cre-

the system shall allow the user
to create Purchase Order for

0.5000 �C {purchas=2, order=2, creat=2, erp=2} ;
�R {srm=2, purchas=2, order=2, execut=2}

ate Purchase Order
for ERP

SRM 0.0000 V: SIMstr (create, create) = 1 ; O:SIMstr (Purchase Order,
Purchase Order) = 1 ; P: SIM (ERP, SRM) = 0

Table 1: This table depicts a set of mappings, associated mapping scores and their calculation details.

���
%����� ��&���

������ ��������

������
�'��� �������

���'�������$��%����� ���

���� (�)���� ��������

������
��������

���)������������

������
����

���*'�����
��)����

����$��

�$�������

����������

�����

���+

�����	

�����

��������

���)��������

�����' �$�������'����%�

�����
����

���)��	�

��$����

���������������
���

,���

Figure 3: Snapshot of semi-automatically created semantic graph

User Group
with ProcGap

Participant 1 Participant 2 Participant 3 Average
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

0.87 0.68 0.76 0.77 0.72 0.74 0.78 0.73 0.75 0.81 0.71 0.75
User Group
with manual
approach

Participant 4 Participant 5 Participant 6 Average
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

0.29 0.04 0.08 0.37 0.08 0.13 0.37 0.04 0.08 0.34 0.06 0.09

Table 2: Case Study: ProcGap Effectiveness

Experiment I - Comparison with other techniques

Table 3 shows precision, recall and f-measure(F1) scores
for different matching strategies. This clearly shows that
the fifth approach (Weighted Cosine + VOP + Semantic
Graphs), which is used by ProcGap for matching require-
ments to capabilities yields a better F1 score than any other
strategy. The second approach, based on our implementation
of TF-IDF (Term Frequency Inverse Document Frequency)
based cosine similarity gives very low scores in both pre-
cision (0.16) and recall (0.03) for two reasons -1) It does
not use domain-specific information and 2) Using IDF de-
creases the weight of frequently used terms such as invoice.
The second approach based on our implementation of the
sentence similarity approach proposed in (Li et al. 2006) has
a higher recall (0.33) because it uses WordNet, however, it
suffers from poor precision (0.11). This is because a general

purpose lexical database like WordNet is not enough to dis-
ambiguate between domain specific entities (objects), such
as the ones used in the requirements and the process model.
The third approach, weighted cosine with semantic graphs
has high precision (0.87) and slightly lower recall (0.27)
than the Sentence Similarity based approach. This shows the
value of the domain-specific semantic model. This approach
is analogous to the approach proposed in (Hayes, Dekhtyar,
and Sundaram 2006). In the fourth approach (Weighted Co-
sine + VOP), the introduction of VOP improves the recall
(0.37) significantly while keeping a higher precision (0.74).
VOP gives importance to the structure of the sentence un-
like first three approaches , hence it helps to find more cor-
rect mappings. Finally, the fifth approach (Weighted Cosine
+ VOP + Semantic Graphs) combines the benefits of using
a Semantic Graph along with rule based parsing and co-

1699

Approach Precision Recall F1

1 TF-IDF 0.16 0.03 0.05
2 Sentence Similarity

(Li et al. 2006)
0.11 0.33 0.17

3 Weighted Cosine + Seman-
tic Graph (Hayes, Dekht-
yar, and Sundaram)

0.87 0.27 0.41

4 Weighted Cosine + VOP 0.74 0.37 0.49
5 Weighted Cosine + VOP +

Semantic Graph (ProcGap)
0.73 0.62 0.67

Table 3: ProcGap matching vs. other approaches

sine similarity and maintains a high precision (0.73) with
the highest recall (0.62).

Experiment II - Case Study

The second experiment was a case study to verify if there
is statistical evidence that demonstrates that users find more
mapping (higher recall) that are more accurate (higher preci-
sion) with the help of ProcGap than with a manual approach.
We used 6 Accenture employees who had 2-10 years of ex-
perience in the IT industry with varying amount of expertise
about the chemical industry. Three of them were randomly
chosen to manually perform the task of mapping the require-
ments document to the process model. They were given the
requirements document and the process model in two tabs
of a Microsoft Excel sheet and were free to use keyword
based search provided by Excel. The other three were asked
to perform the same task with the help of ProcGap, i.e., their
starting point was a set of mappings generated by ProcGap
and they used the interface provided by ProcGap (shown in
Figure 1).

Data collected from Case Study Table 2 shows the pre-
cision, recall and F1 scores for all 6 participants from Ex-
periment II. The average recall by the group that uses Proc-
Gap is 0.71 and the average recall by the group that created
the mappings manually is 0.06. This shows that users were
able to find significantly more mappings with the help of
ProcGap. This is because of two reasons - 1) users are over-
whelmed by the size of the requirements document and ca-
pability model and 2) they are not able to get beyond simple
keyword search and only get the most obvious matches. The
average precision by the group that uses ProcGap is 0.81
and the average precision by the group that created the map-
pings manually is 0.34. This can be explained by the fact
that the users go for the most obvious match and do not apply
any thresholds like ProcGap. The Wilcoxon-mann Whiteney
test showed that the group using ProcGap outperformed the
manual group, both in terms of precision and recall with the
level of significance at 0.05.

Conclusions and Future Work

We have presented a tool called ProcGap that helps users
map natural language requirements to process models.
We use a combination of IR and rule based techniques
over dependency parsing that allow ProcGap to automat-
ically match both well-formed or poorly formed require-

ments and capabilities. Our approach also leverages a
semi-automatically generated semantic graph that is more
suited for the domain-specific process models than a gen-
eral purpose lexicon such as WordNet. We have evaluated
our approach based on data from an industry project and
demonstrated that ProcGap outperformed some previous ap-
proaches and also increased productivity of users. We have
presented a detailed evaluation of a single project, since it
was not possible to calculate the recall without creating a
gold standard. ProcGap has been used at 6 other projects
and the precision was reported to be over 0.7 for all of them.
Our future work involves focusing on richer process models
to handle dependencies and conflicts. In addition to further
studying the usefulness of ProcGap, we will also be explor-
ing using this mapping technology for other tasks such as
mapping patient care notes to models such as SNOMED.

References
Accenture. 2011. Accenture business process reposi-
tory. https://microsite.accenture.com/BPM/Documents/BPM-L%
20Brochure-100410.pdf.
Alani, H.; Kim, S.; Millard, D. E.; Weal, M. J.; Hall, W.; Lewis,
P. H.; and Shadbolt, N. R. 2003. Automatic ontology-based knowl-
edge extraction from web documents. IEEE Intelligent Systems
18(1):14–21.
ARIS. 2011. Aris reference models. http://www.ids-scheer.com/
us/en/ARIS/ARIS“˙Reference“˙Models/82854.html.
Dahab, M. Y.; Hassan, H. A.; and Rafea, A. 2008. Textontoex:
Automatic ontology construction from natural english text. Expert
Syst. Appl. 1474–1480.
Daneva, M. 2004. Erp requirements engineering practice: Lessons
learned. IEEE Softw. 21(2):26–33.
de Marneffe, M.; MacCartney, B.; and Manning, C. D. 2006. Gen-
erating typed dependency parses from phrase structure parses. In
LREC.
Hayes, J. H.; Dekhtyar, A.; and Sundaram, S. K. 2006. Advancing
candidate link generation for requirements tracing: The study of
methods. IEEE Trans. Softw. Eng. 32(1).
IBM. 2011. Ibm websphere industry content packs. http:
//www-142.ibm.com/software/products/gb/en/inducontpack/.
Jena. 2009. Jena api. http://jena.sourceforge.net/ontology/.
Jirapanthong, W., and Zisman, A. 2009. Xtraque: traceability for
product line systems. Software and Systems Modeling 8:117–144.
Li, Y.; McLean, D.; Bandar, Z. A.; O’Shea, J. D.; and Crockett,
K. 2006. Sentence similarity based on semantic nets and corpus
statistics. IEEE Trans. on Knowl. and Data Eng. 18(8):1138–1150.
Lin, D. 1998. An information-theoretic definition of similarity. In
ICML ’98, 296–304. Morgan Kaufmann Publishers Inc.
Martin F., P. 1980. An Algorithm for Suffix Stripping. Program
14(3):130–137.
Mihalcea, R.; Corley, C.; and Strapparava, C. 2006. Corpus-
based and knowledge-based measures of text semantic similarity.
In AAAI, 775–780.
Pnina, S.; Boaz, G.; Dov, D.; and Yair, W. 2001. Modelling off-the-
shelf information systems requirements: An ontological approach.
Requir. Eng. 6(3):183–199.
W3C. 2004. Owl web ontology language. http://www.w3.org/TR/
owl-features/.
Zachos, K., and Neil A. M., M. 2008. Inventing requirements from
software: An empirical investigation with web services. In RE 08,
145–154.

1700

