
Accelerating the Discovery of Data Quality Rules: A Case Study

Peter Z. Yeh, Colin A. Puri, Mark Wagman, and Ajay K. Easo
Accenture Technology Labs

San Jose, CA 95113
{peter.z.yeh,colin.puri,mark.wagman,ajay.k.easo}@accenture.com

Abstract

Poor quality data is a growing and costly problem that af-
fects many enterprises across all aspects of their business
ranging from operational efficiency to revenue protection. In
this paper, we present an application – Data Quality Rules
Accelerator (DQRA) – that accelerates Data Quality (DQ)
efforts (e.g. data profiling and cleansing) by automatically
discovering DQ rules for detecting inconsistencies in data.
We then present two evaluations. The first evaluation com-
pares DQRA to existing solutions; and shows that DQRA ei-
ther outperformed or achieved performance comparable with
these solutions on metrics such as precision, recall, and run-
time. The second evaluation is a case study where DQRA
was piloted at a large utilities company to improve data qual-
ity as part of a legacy migration effort. DQRA was able to
discover rules that detected data inconsistencies directly im-
pacting revenue and operational efficiency. Moreover, DQRA
was able to significantly reduce the amount of effort required
to develop these rules compared to the state of the practice.
Finally, we describe ongoing efforts to deploy DQRA.

Introduction

Many organizations suffer from poor quality data – a prob-
lem that is getting worse because data is growing at astonish-
ing rates and few organizations have an effective data gov-
ernance process. A 2002 study estimated that data quality
problems cost U.S. businesses more than $600 billion annu-
ally (Eckerson 2002). These problems impact all aspects of
an organization from operational efficiency to revenue pro-
tection.

Poor quality data can occur along several dimensions such
as conformity, duplication, consistency, etc. However, exist-
ing commercial solutions (Informatica ; Trillium) address
only a subset of these dimensions, and no cost-effective
commercial solution exists for addressing consistency – i.e.
ensuring values across interdependent attributes are correct.
The state of the practice still involves working closely with
Subject Matter Experts (SMEs) – who know the data and do-
main – to manually identify relevant rules that can then be
applied by commercial solutions to detect data inconsisten-
cies like those in Table 1. For example, the guideline used by
one division at Accenture – a global technology consulting

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and outsourcing company – for estimating the effort required
to identify relevant rules for a data quality effort is two hours
per attribute per SME. Hence, many organizations overlook
consistency from efforts such as data profiling and cleans-
ing. This oversight can lead to numerous problems such
as inaccurate reporting of key metrics (e.g. who received
grants, what types of grants, etc.) used to inform critical
decisions or derive business insights.

Recently Conditional Functional Dependencies (CFDs)
were introduced for detecting inconsistencies in data (Bo-
hannon et al. 2007), and were shown to be more effective
than Functional Dependencies (FDs) (Bohannon et al. 2007)
and association rules (Chiang and Miller 2008). We can use
CFDs to formulate the following data quality rules which
can detect the inconsistencies in Table 1.

(Rcpt City → Rcpt District, (Lansing ‖ 8))
(Rcpt Category, Agency → Program,

(For Profit, HUD ‖ Section 8 Housing))
Intuitively, a CFD is an if-then rule that captures how the
attribute values on the if-side of the rule constrain the at-
tribute values on the then-side. For example, the first CFD
above says if the recipient’s city (i.e. Rcpt City) is Lansing
then the recipient’s congressional district (i.e. Rcpt District)
must be constrained to 8. Formally, a CFD is a rule of the
form (X → Y,Tp) where X and Y are attributes from a rela-
tion of interest (e.g. Table 1), X → Y is a FD, and Tp is a
pattern tuple. This tuple consists of values from attributes in
X and Y along with a wildcard (i.e. ’_’) that can match any
arbitrary value.

Previous research has proposed solutions for automat-
ically discovering data quality rules (in particular CFDs)
from data. These approaches, however, have various limi-
tations. Approaches such as (Golab et al. 2008) require FDs
as inputs which is not feasible in practice, as the FDs are not
always available. Approaches such as (Chiang and Miller
2008; Fan et al. 2009) do not have this limitation, but they
1) have difficulty scaling to relations with a large number of
attributes (it is not uncommon for enterprises to have rela-
tions with 100 attributes) and 2) are not robust to dirty data
(these approaches will overlook many CFDs, and clean data
sets are often not available for discovering CFDs in prac-
tice). In our previous research, we proposed a solution that
addresses many of these limitations (Yeh and Puri 2010), but
efficiency still remains an issue.

Proceedings of the Twenty-Third Innovative Applications of Artificial Intelligence Conference

1707

Rcpt Category Rcpt City Rcpt District Agency Agency Code Program CFDA No.
1 Government Lansing 6 ED 9131:DOED Pell 84.063
2 Government Lansing 8 FHA 6925:DOT Highway Planning 20.205
3 Government Lansing 8 FHA 6925:DOT Highway Planning 20.205
4 For Profit Lansing 8 HUD 8630:HUD Public Housing 14.885
5 Higher ED Ann Arbor 15 ED 9131:DOED Pell 84.063
6 Higher ED Ann Arbor 15 ED 9131:DOED Work Study 84.033
7 For Profit Detroit 13 HUD 8630:HUD Section 8 Housing 14.317
8 For Profit Detroit 13 HUD 8630:HUD Section 8 Housing 14.317

Table 1: A sample of records and attributes for U.S. federal grants given to the state of Michigan as part of the economic
recovery program. In row 1, the Rcpt City attribute (i.e. recipient’s city) has the value of Lansing, but the Rcpt District attribute
(i.e. recipient’s congressional district) has the value of 6, which is incorrect. The correct value is 8. Similarly, in row 4 the
Rcpt Category and Agency attributes have values of For Profit and HUD respectively, but the Program attribute has the value of
Public Housing, which is also incorrect. The correct value is Section 8 Housing because the recipient is a “for profit”.

In this paper, we present an application – Data Quality
Rules Accelerator (DQRA) – to accelerate data quality ef-
forts (e.g. data profiling and cleansing) by automatically
discovering data quality rules (in particular CFDs) for de-
tecting data inconsistencies. We give an overview of the de-
livery process our application supports and its main features,
followed by a description of the AI algorithm for discov-
ering the rules, which improves upon the efficiency of our
previous solution. We then present two evaluations. The
first evaluation compares DQRA to existing solutions; and
shows that DQRA either outperformed or achieved perfor-
mance comparable with these solutions on metrics such as
precision, recall, and runtime. The second evaluation is a
case study where DQRA was piloted at a large utilities com-
pany to improve data quality as part of a legacy migration
effort. DQRA was able to discover rules that detected data
inconsistencies directly impacting revenue and operational
efficiency. Moreover, DQRA was able to significantly re-
duce the amount of effort required to develop these rules
compared to the state of the practice. We conclude by de-
scribing ongoing efforts to deploy DQRA.

Application Overview

Accenture performs a wide range of large-scale enterprise
projects for clients from legacy migration to business intel-
ligence. An important factor in the success of these projects
is ensuring good quality data through efforts such as data
profiling and cleansing. To perform these efforts, Accen-
ture Client Teams (ACTs) follow a six step process (see Fig-
ure 1). However, the Investigate through Define steps of this
process are expensive because ACTs currently spend a sig-
nificant amount of time manually identifying domain (and
client) relevant rules to profile and cleanse the data.

To accelerate these steps, Accenture has developed an ap-
plication – Data Quality Rules Accelerator (DQRA) – that
can automatically discover rules, which ACTs can use to
detect and correct data inconsistencies. ACTs interact with
DQRA through a web-based interface, and the typical se-
quence of interactions is:

1. The user selects a data file – in CSV format – to discover
data quality rules from (in particular CFDs). The user also

Figure 1: High-level schematic of Accenture’s DQ process.

has the option of connecting directly to a database through
an ODBC connection to select a relation for discovery.

2. The user sets parameters such as the maximum number of
rules, the minimum support for a rule, etc. These parame-
ters along with the selected data are then sent to a backend
server which performs the discovery. Discovered rules are
sent back to the user and displayed in a rules browser (see
Figure 2).

3. The user examines the discovered rules to accept those
that should be deployed and to reject those that are extra-
neous. The user can also edit these rules or add additional
ones through a rules editor.

4. The user deploys accepted rules by exporting them –
through DQRA’s automated export feature – to vendor
solutions for data profiling and cleansing such as Infor-
matica Data Quality.

Algorithm Overview

The Data Quality Rules Accelerator (DQRA) discovers
Conditional Functional Dependencies (CFDs) from a rela-

1708

Figure 2: Browser displaying discovered DQ rules.

tion of interest through the following steps. DQRA first gen-
erates an initial set of candidate CFDs. DQRA then revises
each CFD to improve its precision. Finally, DQRA filters
weak (and subsumed) CFDs, and generalizes the remaining
ones to increase their applicability.

Generate Candidate CFD

Given a relation R,1 DQRA generates candidate CFDs – i.e.
rules of the form (X → Y,Tp) where X and Y are attributes
from R, and Tp is a pattern tuple which consists of values
from these attributes.

DQRA first generates all attribute pair combinations.
However, the number of attribute pairs (and hence candidate
CFDs) can be extremely large, so DQRA prunes pairs that
are unlikely to produce useful CFDs based on the heuristic
that useful CFDs are more likely to be generated from at-
tributes that are strongly related (e.g. Agency and Agency
Code). A good measure of this strength is the mutual de-
pendence between two attributes A and B, so DQRA defines
Strength(A,B) as the mutual information shared between A
and B:

∑
a∈U(A)

∑
b∈U(B)

P(a,b)log
P(a,b)

P(a)P(b)

where U(A) and U(B) are the unique values from A and B
respectively; and P is the relative frequency of a value (or
value pair) from an attribute (or attribute pair).

DQRA prunes pairs with low strength, and defaults the
strength threshold HS to 1.0. For example, DQRA will keep
the attribute pair (Agency, Agency Code) from Table 1 be-
cause its strength (i.e. 1.56) is greater than 1.0, but will
prune (Agency, Rcpt City) because its strength (i.e. 0.81)
is below the threshold.

DQRA then generates candidate CFDs from the remain-
ing pairs. For each pair, DQRA turns the first attribute into

1For a large relation (i.e. > 1MM records), DQRA will split it
into multiple blocks for scalability purposes and perform discovery
on each block. The resulting CFDs are then merged. Due to page
limit, we do not cover this aspect of the algorithm in this paper.

the antecedent (i.e. X) of a CFD and turns the second at-
tribute into the consequent (i.e. Y)2 – and vice versa. DQRA
then instantiates the pattern tuple with unique value pairs
from the attribute pair whose relative frequency exceeds the
minimum support threshold (Agrawal and Srikant 1994),
which is specified by the user. For example, given a min-
imum support of 20% and the attribute pair (Agency, Agency
Code), DQRA will generate CFDs such as:

(Agency Code → Agency, (9131:DOED ‖ ED))
(Agency → Agency Code, (HUD ‖ 8630:HUD))

Revise CFD

The initial candidate CFDs may be too promiscuous, and
hence may detect many inconsistencies that are false pos-
itives. To reduce false positives (and hence improve pre-
cision), DQRA must determine whether a CFD should be
revised.

For each CFD, DQRA determines the number of records
that are inconsistent with the CFD. A record is inconsis-
tent with a CFD if all values in Tp, that correspond to the
antecedent of the CFD, match the respective values in the
record; but values that correspond to the consequent do not.

DQRA uses this information to check whether the incon-
sistencies are real errors to expect from the data or are the
result of the CFD being too promiscuous. CFinder performs
this check using the expected inconsistency threshold HI –
i.e. RI

RI+RS
≤ HI where RI and RS are the number of inconsis-

tent and supporting records respectively. This threshold is
specified by the user, and reflects his/her expectation of the
level of inconsistency in the data.

If the observed inconsistency (i.e. RI
RI+RS

) for a CFD ex-
ceeds HI , then DQRA revises the CFD by constraining its
antecedent with additional conditions. However, the differ-
ence between the observed inconsistency and the expected
inconsistency (i.e. HI) may be due to a “sampling” effect
with the records examined, which can cause the CFD to be
over-constrained. Hence, DQRA needs to determine the sig-
nificance of this difference. DQRA uses the χ2 test because
it is analyzing counts over mutually exclusive categories (i.e.
inconsistent and supporting records), and it instantiates this
test as:

(RI −HI(RS +RI))
2

HI(RS +RI)
+

(RS − (1−HI)(RS +RI))
2

(1−HI)(RS +RI)

DQRA will revise a CFD if the difference is significant –
i.e. the resulting χ2 value exceeds the critical χ2 value at the
specified confidence level, which DQRA defaults to 99%.

DQRA selects K new attributes to revise the CFD with,
using our previous heuristic (i.e. useful CFDs are likely to
be generated from strongly related attributes). For each new
attribute, DQRA treats it and the existing attributes of the

2Generating candidate CFDs with only one attribute in the con-
sequent (i.e. minimal CFDs) does not limit the generality of our
approach because CFDs with multiple attributes in the consequent
can be decomposed into minimal CFDs, which can be considered
individually (Bohannon et al. 2007).

1709

CFD as a fully connected graph G (with attributes as nodes),
and computes the average strength across all edges using:

∑(A,B)∈E(G) Strength(A,B)
|E(G)|

where E(G) are all edges in G and Strength(A,B) measures
how strongly attribute A is related to B (see previous subsec-
tion). DQRA selects the top K attributes where the average
strength exceeds the strength threshold HS.

For each selected attribute A, DQRA finds all unique val-
ues vi of A such that the relative frequency of the tuple –
resulting from adding vi to Tp of the original CFD – exceeds
the minimum support threshold. For each vi, DQRA then
generates a new CFD by adding A and vi to X and Tp of the
original CFD respectively. DQRA records each new CFD
to prevent it from being generated again, and discards the
original CFD.

For example, let’s assume DQRA must revise the follow-
ing CFD by selecting the top attribute from Table 1.

(Agency → CFDA No., (ED ‖ 84.063))

DQRA will select Program because it has the highest score
(i.e. 1.79) and this score exceeds the default strength thresh-
old HS. Assuming a minimum support of 20%, DQRA will
generate the following new CFD from the original.

(Agency, Program → CFDA No., (ED, Pell ‖ 84.063))

For each new CFD, DQRA determines whether the CFD
needs to be revised further by applying the expected incon-
sistency threshold HI from above. If so, then DQRA will
repeat the above steps until the CFD does not violate HI or
the maximum number of revisions is reached, in which case
the CFD is discarded.

To ensure progress on each subsequent revision, DQRA
measures whether there is a significant difference w.r.t the
number of supporting and inconsistent records between the
original and new CFD. DQRA uses the χ2 test for the same
reason as before, and instantiates this test as:

(RS − pS(RS +RI))
2

pS(RS +RI)
+

(RI − pI(RS +RI))
2

pI(RS +RI)
+

(R′
S − pS(R′

S +R′
I))

2

pS(R′
S +R′

I)
+

(R′
I − pI(R′

S +R′
I))

2

pI(R′
S +R′

I)

where RS and R′
S are the number of supporting records for

the original and new CFD resp.; RI and R′
I are the number of

inconsistent records for the original and new CFD resp.; and
pS (i.e. RS+R′

S
RS+R′

S+RI+R′
I
) and pI (i.e. RI+R′

I
RS+R′

S+RI+R′
I
) are category

percentages for computing the expected number of support-
ing and inconsistent records resp.

If there is not a significant difference – i.e. the resulting
χ2 value does not exceed the critical χ2 value at the 99%
confidence level – then DQRA stops revising the new CFD
and discards it.

Filter and Generalize CFD

DQRA uses the measure of conviction (Brin et al. 1997) to
filter weak CFDs – i.e. CFDs that do not meet (or exceed)

the threshold specified by the user for this measure. Convic-
tion measures how much the antecedent and consequent of
a CFD deviate from independence while considering direc-
tionality. This measure has been shown to be effective for
filtering weak CFDs, and we refer the reader to (Chiang and
Miller 2008) for additional details.

In addition to conviction, DQRA applies an additional fil-
ter to remove subsumed CFDs. A CFD – i.e. F1 : (X1 →
Y1,Tp1) – subsumes another CFD – i.e. F2 : (X2 →Y2,Tp2) –
if Y1 equals Y2, X1 ⊂ X2, and Tp1 ⊂ Tp2. If these conditions
are met, then DQRA removes the subsumed CFD (i.e. F2)
because it has less applicability.

DQRA then generalizes the remaining CFDs to further
increase their applicability. A CFD F1 can be generalized if
there exists another CFD F2 such that
• F1 and F2 have the same antecedents and consequents –

i.e. X1 equals X2 and Y1 equals Y2

• The pattern tuples of F1 and F2 differ by a single value
If these conditions are met, then DQRA generalizes F1

and F2 into a single CFD by replacing the differing value
in their pattern tuples with a wildcard (i.e. ’_’) which can
match any arbitrary value. For example, given the CFDs:

(Rcpt Category, Agency → Program,
(Government, ED ‖ Pell))

(Rcpt Category, Agency → Program,
(Higher ED, ED ‖ Pell))

DQRA can generalize them into:
(Rcpt Category, Agency → Program, (_, ED ‖ Pell))

DQRA repeats this final step until there are no more CFDs
that can be generalized.

Evaluation: Comparative Study
We present a comparative study to evaluate the performance
of DQRA against existing solutions for discovering CFDs.

Data Sets

We used three real-world data sets for our evaluation. The
first data set – we call Recovery MI – contains U.S. federal
grants given to the state of Michigan as part of the economic
recovery program. Each record has information about the
recipient, the grant type, the granting agency, etc. This data
set has 41 attributes and 2,916 records.

The second data set – we call Manifest – contains manifest
information from a large U.S. shipping and logistics organi-
zation. Each record has information about the item being
shipped, the sender, the recipient, etc. This data set has 102
attributes and 21,182 records.

The last data set – we call Ops – contains operational in-
formation from the same shipping and logistics organiza-
tion. Each record has information about which facility pro-
cessed an item for shipping, when an item was processed,
etc. This data set has 12 attributes and 51,067 records.

Experiment Setup and Results

We evaluated the performance of DQRA using the metrics
of precision, recall, and runtime. We measured the preci-
sion and recall of inconsistencies detected using the CFDs

1710

DQRA CFinder CFD-TANE

Prec. (%) Recall (%) Time (s) Prec. (%) Recall (%) Time (s) Prec. (%) Recall (%) Time (s)
Recovery MI

0.1 0.7595+ 0.6347∗+ 166.2∗+ 0.7712 0.5060 2428.1 0.2840 0.3494 17273.5
0.2 0.8103+ 0.5791∗+ 104.2∗+ 0.8062 0.5047 2186.3 0.5771 0.2227 17098.0
0.3 0.8338∗+ 0.5709∗+ 69.3∗+ 0.7878 0.5599 1966.8 0.6866 0.1497 17291.7
0.4 0.8739∗+ 0.5297∗+ 49.0∗+ 0.8447 0.5089 1374.0 0.6423 0.0625 17411.1
0.5 0.8889∗+ 0.4499∗+ 42.5∗+ 0.8691 0.4007 781.3 0.8469 0.0145 17240.1
Manifest

0.1 0.9048∗ 0.6454 246.9∗ 0.8406 0.6548 4791.4 N/A N/A N/A
0.2 0.9798∗ 0.6618 252.0∗ 0.8536 0.6587 6170.3 N/A N/A N/A
0.3 0.9830∗ 0.6147 298.9∗ 0.8778 0.6612x 6105.8 N/A N/A N/A
0.4 0.8907 0.6352 402.8∗ 0.9077 0.6861x 7106.4 N/A N/A N/A
0.5 0.8878 0.6448∗ 415.9∗ 0.9209x 0.6323 8312.5 N/A N/A N/A
Ops

0.1 0.9429+ 0.4158+ 201.4∗+ 0.9202 0.4019 4226.0 0.0764 0.1771 5581.2
0.2 0.7737∗+ 0.4007∗+ 159.3∗+ 0.7378 0.3585 3727.0 0.0833 0.0662 5424.6
0.3 0.7403∗+ 0.3756∗+ 131.1∗+ 0.7014 0.3586 3386.7 0.0773 0.0482 5379.5
0.4 0.5653+ 0.3654+ 105.0∗+ 0.7322x 0.3676 3457.5 0.2230 0.0812 5685.8
0.5 0.4897+ 0.2748+ 91.8∗+ 0.7928x 0.3747x 3021.8 0.2698 0.0769 5234.3

Table 2: The average precision (Prec.), recall, and runtime from 10-fold cross-validations performed for all evaluated ap-
proaches and data sets at inconsistency rates from 10% to 50%. ∗ and + indicate cases where DQRA performed significantly
better than CFinder and CFD-TANE respectively. x indicates cases where CFinder performed significantly better than DQRA.
In all cases, p < 0.05 for the 2-tail pairwise t-test and df = 9.

discovered by DQRA for all three data sets. We defined
precision as the number of true inconsistencies detected by
DQRA over all inconsistencies that it detected; and recall as
the number of true inconsistencies detected by DQRA over
all true inconsistencies.

However, the “ground truth" did not exist for these data
sets, and constructing a gold standard was too expensive and
did not allow us to assess the robustness of DQRA as incon-
sistencies increased. Hence, we randomly introduced incon-
sistencies into each data set at rates of 10%, 20%, 30%, 40%,
and 50% – e.g. if the inconsistency rate is 30%, then there is
a 30% chance that a value in a data set will be randomly re-
placed with a different value from the same attribute in that
set. We then performed a 10-fold cross-validation for each
data set at each inconsistency rate using a dual-core 2.4 gi-
gahertz AMD Opteron processor with 4GB of memory on a
Linux Ubuntu operating system. Finally, we measured the
runtime (in seconds) of DQRA for each run.

We also evaluated the performance of two existing so-
lutions using the above methodology. The first solution –
we’ll call CFD-TANE – is an established approach for dis-
covering CFDs (Chiang and Miller 2008). CFD-TANE is a
TANE-based (Huhtala and others 1998) approach that per-
forms a breadth-first search of an attribute lattice for CFDs
– i.e. CFDs with N+1 attributes are derived from sets of N
attributes. CFD-TANE also produces approximate CFDs to
handle inconsistencies encountered during discovery.

The second solution – i.e. CFinder (Yeh and Puri 2010)
– differs from our approach in one important way. CFinder
generates overly specific candidate CFDs (i.e. CFDs with
multiple conditions in the antecedent), and then generalizes

them as needed by removing extraneous conditions. DQRA
generates overly general candidate CFDs (i.e. CFDs with
only one condition in the antecedent), and then specializes
them as needed by adding additional conditions.

We set parameters common to all three approaches as fol-
lows. We set the minimum support to 0.02, 0.03, and 0.05
for the Manifest, Ops, and Recovery MI data sets respec-
tively. We set the minimum conviction to 5.0.

We set parameters specific to CFD-TANE and CFinder to
values given in (Yeh and Puri 2010), which achieved the best
performance for these two approaches.

We set parameters specific to DQRA as follows. The
strength threshold HS was set to 0.5, and the expected in-
consistency threshold HI was set to the inconsistency rate
(e.g. we set HI to 0.2 if the inconsistency rate is 20%). We
had DQRA select the top 8 attributes when a CFD needs to
be revised.

Table 2 shows the results for this evaluation. DQRA per-
formed significantly better than CFD-TANE on precision,
recall, and runtime across all data sets and inconsistency
rates. DQRA had better precision and recall because it
can robustly handle inconsistencies during discovery, which
CFD-TANE could not. CFD-TANE either overlooked many
useful CFDs or discovered ones that were too promiscuous.

DQRA had better runtime because it 1) effectively pruned
the initial space of candidate CFDs, and 2) discarded un-
promising CFDs early (and hence further bounded the dis-
covery space) by ensuring progress is made every time a
CFD is revised (see Revise CFD section). In contrast, the
bread-first search strategy used by CFD-TANE was not suf-
ficient when the discovery space was large. For example, we

1711

could not report runtime results for CFD-TANE on the Man-
ifest data set because it could not handle the large number of
attributes (i.e. 102 attributes).

DQRA performed significantly better than CFinder on
runtime across all data sets and inconsistency rates. DQRA
performed well because it generates overly general candi-
date CFDs, which are fewer than the number of overly
specific candidate CFDs generated by CFinder. Moreover,
DQRA discarded unpromising CFDs early, which further
reduced runtime. Interestingly, we observed that discard-
ing unpromising CFDs early occasionally prevented DQRA
from discovering useful CFDs, which resulted in lower pre-
cision and recall for a few isolated cases (e.g. the 40% and
50% inconsistency rates for the Ops data set).

Besides these isolated cases, the precision and recall of
DQRA were comparable to CFinder. In several cases,
DQRA even had significantly better precision and recall.

These results show that DQRA in general either outper-
formed or achieved performance comparable with existing
solutions on the metrics of precision, recall, and runtime.

Evaluation: Case Study
We present a case study where Data Quality Rules Acceler-
ator (DQRA) was piloted at a large U.S. utilities company to
improve data quality as part of a legacy migration effort.

Background and Evaluation Goals

Working with Accenture, a Large Utilities Company (LUC)
embarked on a large scale migration of their legacy customer
information system to a new platform consisting of Oracle
CC&B and SAP Business Objects. Two years into the ef-
fort, LUC began migrating 30 years of data – previously
managed by a third party contractor – into the new platform.
Issues with the quality of the data surfaced immediately, and
could be linked directly to operational inefficiency and rev-
enue loss.

Both LUC and Accenture determined that improving the
quality of the data is critical to the overall success of the mi-
gration effort. However, tight project timeline and budget
made it infeasible to apply Accenture’s Data Quality (DQ)
process (see Application Overview section). This would
require augmenting the existing Accenture team with data
quality experts who would work with LUC Subject Matter
Experts (SMEs) to manually identify relevant rules to profile
and cleanse the data.

Given this challenge, the client team and LUC engaged
Accenture Technology Labs for a four week pilot to use
DQRA to accelerate the discovery of DQ rules. This pilot
enabled us to evaluate DQRA on 1) time savings compared
to manual discovery and 2) the efficacy of the discovered
rules in detecting DQ issues impacting key business func-
tions such as billing and inventory management.

Pilot Overview and Result

Week 1: We worked with the Accenture client team and
LUC to define the pilot scope. LUC has 31 Business Units
(BUs) – each operating over a different U.S. geographic re-
gion. These BUs share a common data model, which con-
sists of 36 tables grouped into 13 table families. However,

BU # Records # Attrs. Time (sec) # Rules

U004 314,269 363 9,564.3 188
U050 1,370,810 363 16,953.8 368
U051 514,293 363 13,640.7 216
U060 325,639 363 8,802.5 209
U127 154,969 363 8,372.3 211
U303 320,191 363 8,231.3 218

Table 3: The data size (i.e. no. of records and attributes),
discovery time, and no. of discovered rules for 6 LUC BUs.

Rule Group # Rules (%)

Bill & Read Cycle/Route 406 (28.8%)
Meter Dial & Size 130 (9.2%)
Account & Service Type 119 (8.4%)
Meter Disposition 98 (6.9%)
Service Point Location 97 (6.9%)
Rate & Revenue Code 90 (6.4%)
Service Contract Billing 80 (5.7%)
Manufacturer Code 75 (5.3%)
Meter Set/Unset Date 60 (4.3%)
Misc. 255 (18.1%)

Table 4: Rule groups and distribution across groups.

each BU is operated independently, and is subject to differ-
ent regulations. Hence, rules discovered for one BU cannot
be applied to another.

Given these considerations, LUC selected 4 table fami-
lies – covering meter, service point, service agreement, and
account type information – to focus on for 6 of their BUs.

Weeks 2-3: We applied DQRA to the selected data sets.
We hosted DQRA on a Linux Ubuntu operating system with
a dual-core 2.4 gigahertz AMD Opteron processor and 4GB
of memory. For each BU, we joined the tables within a fam-
ily to enable discovery of cross table rules, and then applied
DQRA to the resulting join. The support and inconsistency
threshold HI were set to 1% and 5% respectively. We used
default values for all other parameters. Table 3 shows the
data size and discovery time for each BU.

The total discovery time across all 6 BUs was 18.21 hours.
We estimated a total of 726 man hours would be required
to manually identify relevant rules by working with LUC
SMEs. We based this estimate on Accenture’s DQ estima-
tion guidelines of 2 hours per attribute per SME applied to
363 attributes and 6 independent BUs (and hence 6 SMEs).
We then adjusted the resulting estimate by 1

6 because DQRA
discovers rules for one of six target DQ dimensions (i.e. con-
sistency). We assumed equal effort for each dimension due
to the absence of additional estimation guidelines. This dif-
ference represents a 97.5% potential reduction in effort.

We then reviewed the discovered rules with six LUC
SMEs – one from each respective BU – over two 1.5 hour
sessions to determine the utility of these rules. LUC SMEs
determined that a rule is useful if it captures a piece of busi-
ness logic which can detect DQ issues impacting key busi-

1712

Rule Group Rule DQ Issue

Meter Dial MFG_Code, Base_Size → Num_Dials, Detects wrong meter dial number which
& Size (NEP, 0058 ‖ 4) results in over or under billing
Bill & Read Bill_Cycle → Read_Route, Detects bill cycle & read route code mismatch
Cycle/Route (108 ‖ 11) which results in estimated meter reads
Meter Inventory_Loc → Disposition, Detects wrong meter disposition which
Disposition (INVN ‖ AVAIL) results in inaccurate inventory

Table 5: Examples of representative rules from select rule groups and the DQ issues they detect.

BU # Valid # Invalid # N/A

U004 33,852 47 2,085
U050 312,836 273 15,566
U051 100,669 12 16,905
U060 138,571 159 317
U127 56,586 329 673
U303 41,015 272 38,785

Table 6: No. of valid vs. invalid meter dial numbers. N/A
denotes records not validated b/c no rules were discovered.

ness functions such as billing and inventory management.
However, the SMEs could not review every rule due to lim-
ited availability and the large number of rules. Hence, we
grouped together related rules (see Table 4), and selected
representative examples from each group (and BU) for re-
view (see Table 5).

The SMEs determined the Meter Dial & Size, Bill &
Read Cycle/Route, and Meter Disposition groups were use-
ful because they could detect problems with over and un-
der billing, estimated meter reads (and hence revenue loss),
and inaccurate meter inventory (and hence operational inef-
ficiency) respectively. These three groups account for 44.9%
of all discovered rules.

Week 4: We applied rules from the three groups above –
using a commercial data quality solution – to their respective
data set (and BU) to determine the efficacy of these rules in
detecting DQ issues.3 We then reported (and validated) the
resulting DQ issues with the same group of LUC SMEs. We
present a selection of these issues below.

Table 6 shows the result of applying Meter Dial & Size
rules to meter data to detect incorrectly recorded meter dial
numbers. This number is used in billing the customer asso-
ciated with the meter. If the recorded number is more (or
less) than the actual number, then the customer is over (or
under) billed. The discovered rules validated that the major-
ity of dial numbers were recorded correctly. They also de-
tected 1,092 incorrect instances (and hence 1,092 incorrect
billings). Moreover, LUC has invested significant resources
to eliminate this problem, but it still exists – as shown by
this analysis. LUC has incorporated these rules into the mi-
gration process to validate meter dial numbers.

Table 7 shows the result of applying Bill & Read Cycle/

3Ideally, we would discover rules from a training set and apply
the discovered rules to a hold out set. However, LUC wanted to
perform both discovery and detection on the entire data set.

BU # Actual # Estimated

U004 66,499 26,636
U050 252,039 124
U051 90,094 13
U060 105,733 3,056
U127 40,990 933
U303 76,005 245

Table 7: No. of actual vs. estimated meter reads.

BU # In Service # In Inventory

U004 19,035 16,928
U050 192,661 122,393
U051 72,997 44,589
U060 84,070 54,977
U127 36,812 20,776
U303 36,248 41,945

Table 8: No. of in-service vs. in-inventory meters.

Route rules to service point data to detect estimated meter
reads. If the bill cycle code does not align with the read route
code, then LUC will estimate the meter usage instead of per-
forming an actual read, which results in inaccurate customer
billing. The discovered rules validated that the majority of
readings are actual. They also detected a large number of
estimated reads.

An estimated read is required when a meter cannot be ac-
cessed physically, but these cases are infrequent. The more
common causes are either incorrect recording of bill cycle
and read route codes or issuing a temporary estimated read
(due to severe weather) but failing to realign the codes after-
wards. LUC’s goal is to systematically identify (and investi-
gate) all estimated reads, and the discovered rules were able
to accelerate this goal.

Table 8 shows the result of applying Meter Disposition
rules to meter inventory data to detect inaccurate inventories.
These rules detected a large number of meters were recorded
as being in inventory, which exceeded LUC SMEs’ expecta-
tion. The SMEs investigated this discrepancy, and confirmed
that many meters have incorrect dispositions. For example,
some decommissioned meters were recorded as being in in-
ventory (and available for installation), which can lead to op-
erational inefficiencies when a crew requests a non-existent
meter from inventory to install in the field. These kinds of
problems occurred in all 6 BUs. Hence, the discovered rules

1713

helped LUC SMEs uncover a systemic problem with the ac-
curacy of their meter disposition data (and hence meter in-
ventory), which directly impacts operational efficiency.

Deployment Efforts

We describe three ongoing, parallel efforts to deploy DQRA.
First, over 40% of DQ rules discovered during the case study
are currently being used by LUC as part of their legacy mi-
gration effort. For example, LUC is currently using Meter
Dial & Size rules discovered by DQRA to flag (and prevent)
records with inconsistent meter dial numbers from entering
their new platform. Moreover, the case study demonstrated
to LUC the value of DQRA and the needed for a compre-
hensive DQ assessment despite tight project timelines. LUC
is currently in discussions with the Accenture client team
to expand the scope of the legacy migration effort to apply
DQRA to all table families across all 31 business units.

Our evaluations also demonstrated the value of DQRA
for Accenture and its client teams. DQRA provides a tech-
nology differentiation that can reduce the effort required to
develop domain (and client) specific DQ rules (and hence
accelerate DQ efforts). In an effort to deploy DQRA to
the rest of Accenture, Accenture Technology Labs (ATL) is
transferring it to Accenture’s Product and Offering Develop-
ment (P&OD) group – an organization focused on building
and maintaining Accenture offerings and their associated as-
sets such as software, processes, and delivery capabilities.
Specifically, ATL is transitioning DQRA to an India-based
P&OD team that is developing a new DQ offering through
the integration of various DQ assets such as DQRA, DQ
processes, and offshore delivery capabilities. The resulting
offering will provide an end-to-end service that Accenture
(and its client teams) can provide to clients for DQ assess-
ment, cleansing, and governance. The transition process in-
cludes various activities such as:

• Creation of technical documents and training materials

• Functional training of offshore resources on the DQRA

• Provisioning of hardware and application installation

• Code transfer and walkthrough

• Creation of feature extension roadmap

At time of writing, the ATL and P&OD teams completed the
first three items above, and have started the fourth item.

Finally, we are exploring how DQRA can provide a value-
added capability on top of commercial DQ solutions such as
Informatica and Trillium. These solutions provide a plat-
form for authoring and applying DQ rules, but they do not
provide the rules themselves. Although these solutions can
profile data out of the box, profiling alone cannot detect the
domain (and client) specific inconsistencies uncovered by
DQRA in our evaluations. For example, profiling cannot
determine whether the meter dial number for a particular
record is consistent. It can only reveal that the value for
a meter dial must be a number within a particular range.
Hence, DQRA can complement existing commercial DQ
solutions by automatically discovering domain (and client)
specific DQ rules that can feed into these solutions.

Conclusion

In this paper, we presented an application – Data Quality
Rules Accelerator (DQRA) – that accelerates Data Qual-
ity (DQ) efforts (e.g. data profiling and cleansing) by au-
tomatically discovering DQ rules for detecting inconsisten-
cies in data. We then presented two evaluations of our ap-
plication. The first evaluation compared DQRA to existing
solutions; and showed that DQRA either outperformed or
achieved performance comparable with these solutions on
metrics such as precision, recall, and runtime. The second
evaluation was a case study where DQRA was piloted at a
large utilities company to improve data quality as part of a
legacy migration effort. The DQRA significantly reduced
the effort required to develop DQ rules compared to Ac-
centure’s existing DQ process. The DQRA also discovered
rules that detected DQ issues related to inaccurate customer
billing and meter inventory, which directly impacted revenue
and operational efficiency respectively. We concluded by
describing ongoing efforts to deploy DQRA.

Acknowledgments

We want to thank the reviewers for their helpful comments.
We especially want to thank R. Uthurusamy for his help
and suggestions for improving this paper. We also want to
thank Ryan Brook, Brian Cone, and Geoffrey Plese from the
Accenture client team along with Steven Friedman and the
other LUC SMEs for their assistance during the case study.
Finally, we want to thank Scott Kurth and Sanjay Mathur
from Accenture Technology Labs for their contributions.

References

Agrawal, R., and Srikant, R. 1994. Fast algorithms for min-
ing association rules in large databases. In VLDB.
Bohannon, P.; Fan, W.; Geerts, F.; Jia, X.; and Kementsiet-
sidis, A. 2007. Conditional functional dependencies for data
cleaning. In ICDE.
Brin, S.; Motwani, R.; Ullman, J.; and Tsur, S. 1997. Dy-
namic itemset counting and implication rules for market bas-
ket data. In SIGMOD.
Chiang, F., and Miller, R. 2008. Discovering data quality
rules. In VLDB.
Eckerson, W. 2002. Data quality and the bottom line. Tech-
nical report, TDWI Report Series.
Fan, W.; Geerts, F.; Lakshmanan, L.; and Xiong, M. 2009.
Discovering conditional functional dependencies. In ICDE.
Golab, L.; Karloff, H.; Korn, F.; Srivastava, D.; and Yu, B.
2008. On generating near-optimal tableaux for conditional
functional dependencies. In VLDB.
Huhtala, Y., et al. 1998. Efficient discovery of functional
and approximate dependencies using partitions. In ICDE.
Informatica. www.informatica.com.
Trillium. www.trilliumsoftware.com.
Yeh, P., and Puri, C. 2010. Discovering conditional func-
tional dependencies to detect data inconsistencies. In QDB.

1714

