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Abstract

Game development has become a long process that requires
many professionals working on a project during several
months or years. With this scenario the re-utilization of re-
sources is crucial not only to alleviate the process but also to
bring coherence into the final product. In this paper we focus
on the reuse of NPCs and the problems it brings about. In par-
ticular it is common to have different breeds (or personalities)
of NPCs that are placed on different levels on the game. The
problem arises when their behaviors are fine-tuned to accom-
modate a specific level needs without taking into considera-
tion that this change may alter their performance on previous
already-tested levels. The paper presents the application of
reinforcement learning together with behavior trees to auto-
matically test if modifications to the AIs of a stealth game
have an impact on the user experience. Our experiments re-
veal that this approach provides a way of diagnosing alter-
ations in level gameplay that correspond to the effects ob-
served by human testers.

Introduction
Quality control in modern video games can be a major chal-
lenge. Nowadays it is not only necessary to keep a strict
and continuous control of technical failures or bugs that may
arise during the development process, but also of new prob-
lems derived from unexpected changes in the playability of
the different parts of the game. These changes can bring
about various adverse effects such as preventing players
from being able to complete previously solvable sections, al-
tering the navigability of menus and environments, or modi-
fying the difficulty perceived by the user, in dissonance with
the experience originally conceived by the designers.

Quality assurance (QA) tasks usually involve an immense
testing effort in which developers and players strive to de-
tect and solve these problems. In light of this situation, in
the last few years several research works have emerged with
the aim of proposing strategies to improve the QA process in
video games and reduce its cost. Many of these methods are
aimed primarily at developing agents (usually by using deep
reinforcement learning, DRL) that act as synthetic players
capable of automating checks that may otherwise require nu-
merous hours of manual testing, in an attempt to redirect the
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efforts of human testers towards less mechanical and more
creative tasks.

In this paper we focus on automatic regression tests for
detecting issues when modifications are made to AIs that
are reused in multiple sections of the game. These changes
may be done when fine-tuning the behavior of a NPC in a
level without thinking about the implications of those small
variations on other levels where the NPC was placed before.

Changes as simple as slightly modifying an enemy’s
movement speed could end up unexpectedly impacting how
the player interacts with the game’s levels. These changes
need not be particularly drastic (such as as sudden viola-
tions of the completability of a level), and may boil down
to the player taking more or less time to complete a part of
the game, or exploiting a new way to beat a level that was
not originally contemplated. All of these design alterations
should not go unnoticed, but many of them are not usually
straightforward to detect in typical testing environments.

In this paper we propose the application of different re-
inforcement learning methods to produce testing agents ca-
pable of interacting with a set of levels in a stealth game
while collecting interaction statistics representative of the
perceived gameplay in each level. The agents are afterwards
used to test whether a change in the specification of an en-
emy type common to all levels induces significant changes
in gameplay parameters collected by the agents before ap-
plying the modification.

Related Work
By testing we refer to the activity undertaken to evaluate the
quality of a product and improve it by identifying its de-
fects and problems (Abran 2004). Video games are complex
software systems that must function correctly on different
platforms with a range of configurations. The video game
market is a very competitive one with buyers expecting in-
creasingly more from them, which makes it unacceptable to
release applications that are not robust or suffer from bugs.
The robustness of a video game covers a wide spectrum of
criteria, from the correct functioning of technical aspects
such as performance or functional correctness to attributes
such as the aesthetic soundness of the application. The vali-
dation of these criteria is a costly task in which a substantial
part of the development effort of a project is invested, hence
numerous strategies have been proposed in recent years in
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an attempt to automate these tasks or reduce their associ-
ated workload. One of the simplest alternatives is the use of
game segments recorded manually by human testers, which
are subsequently used to check that the replayed sequences
are still capable of completing the established objective (Os-
trowski and Aroudj 2013). However, when the structure or
the game environment is modified, the tests generated by
these methods are no longer valid, and it is necessary to once
again resort to human testers to re-record new sequences for
the modified scenarios. This continuous obsolescence nat-
urally leads to the proposal of alternatives that are capable
of adapting dynamically to variations in the game environ-
ments, giving rise to the use of AI-based agents for testing.

In (Hernández Bécares, Costero Valero, and Gómez
Martı́n 2017), an AI played following the specification of a
game given by a Petri net, making use of high-level actions,
but required precise modeling of the level logic as well as
manual implementation of the player’s actions, whereas the
techniques described in this paper do not require such an
accurate understanding of the underlying game mechanics
in order to be applied to a set of levels (being RL-based,
our approach merely relies on the design of reward func-
tions specifying how good an action in a given state). DRL
and IL techniques used in (Pfau, Smeddinck, and Malaka
2017; Ariyurek, Betin-Can, and Surer 2021; Bergdahl et al.
2020) show promising results, but most of these efforts are
generally focused on detecting technical errors, or verifying
whether an automated agent succeeds in completing given
testing objectives within certain acceptable margins (typi-
cally, the designer establishes an interval in which a set of
parameters should lie and makes use of artificial players to
play the game repeatedly while recording these parameters’
metrics and checking that they are contained in those inter-
vals), with few references to the detection of subtle game-
play modifications that may undermine game design plans.
Our approach uses this methodology as a reference point, but
expands it with the inclusion of hybrid BT-RL game-playing
agents and statistical tests to evaluate the significance of a
change in gameplay when altering a level, rather than just
checking if the parameters are still within acceptable ranges.

Moreover, these methods are not always trivial to imple-
ment, often requiring a potentially daunting process of trial
and error in the choice of training algorithm, reward allo-
cation policy, model features, or the hyperparameters of the
underlying neural networks. Fortunately, over the last few
years, libraries for popular game engines have been appear-
ing that greatly facilitate this process, with ML-Agents (Ju-
liani et al. 2020) in the Unity 3D engine (Unity Technolo-
gies 2021a) being possibly one of the most well-known
and actively maintained. Additionally, there has been work
integrating reinforcement learning into hand-scripted con-
trol structures such as Behavior Trees (BTs) with the goal
of narrowing learning problems to more controlled situa-
tions (Pereira and Engel 2015), thus reducing the time and
effort needed to train agents. Taking ideas from these works,
our experiments aim to make use of these advantages in the
context of regression testing in game levels.

In (Holmgard et al. 2019) the use of procedural per-
sonas for level playtesting characterized by different util-

ity functions employing a variant of the Monte Carlo Tree
Search (MCTS) is proposed. These enable the modeling of
decision-making processes of players with different goals,
play styles and personal preferences in simple scenarios
such as the levels in the 2D dungeon crawler used for eval-
uation. However, the specification of the utility functions to
be used is left to the designer, and the method’s suitability
for more complex environments requires further confirma-
tion. The idea is nonetheless relevant in this context, since
reward functions can be roughly thought of as utility func-
tions in RL, and these ideas combined with hybrid BTs to
derive complex gameplay styles for the agents.

Lastly, there exist several works focused on facilitating
the task of designing and adjusting the parameters of video
game contents, both in the field of playtesting and in level
balancing and design. (Gonzalez-Duque et al. 2020) pro-
poses a method to obtain levels adjusted to a target difficulty
based on the perception of an AI playing agent of maps gen-
erated by a trial-and-error algorithm. (Shaker, Yannakakis,
and Togelius 2010) describes a procedure for creating cus-
tom levels for platform games using preference learning
based on surveys administered to players after completing
each level, while (Cook et al. 2021) introduces a tool to aid
in the creation and understanding of procedural content gen-
erators with an emphasis on the analysis of their expressive
range. These ideas can be used in parallel with our approach
in order to evaluate how the changes they induce on levels
actually affect gameplay perception.

Preliminaries
The following subsections introduce preliminary topics used
in this work—RL, BTs, and RL-nodes in BTs.

Reinforcement Learning
Reinforcement learning (RL) is a process where an agent
learns by trial and error from experience by interacting with
its environment. In an RL problem, a distinction must be
made between the agent, which interacts with its environ-
ment through actions, and the environment itself, which
provides feedback and “rewards”, or positive/negative re-
inforcement to the agent. RL algorithms usually take the
formulation and formalism of Markov decision processes
(MDPs) as a starting point. If we consider st ∈ S as the
state of the system at a given instant t, and at ∈ Ast the
action that the agent executes at that instant, where Ast is a
possibly infinite set of admissible actions for the agent under
state st, the agent’s goal will be to learn a mapping between
states and actions π : S −→ A = ∪s∈SAs, that maximizes
the expected long-run total reward from each state s:

Gt = E[
∞∑
i=0

γiRi] (1)

where γ ∈ (0, 1) is a discount factor that gives more
weight to rewards earned in the short term than to those col-
lected in a distant horizon, and Ri is the reward the agent
receives at the i-th instant.
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Behavior Trees
A Behavior Tree (BT) is a way of structuring policies or con-
trollers in autonomous agents, such as robots or non playable
characters in a video game (NPCs). In essence, a BT can
be defined as a rooted tree in which the leaves correspond
to execution nodes, associated to a specific task or condi-
tion check of the agent to be controlled, and the intermedi-
ate nodes take on the role of flow control nodes. BTs were
initially conceived in the field of video game programming,
with the first journal paper on BTs appearing in (Florez-
Puga et al. 2009), and since then their use was progres-
sively extended to the field of robotics. These constructs
were originally developed with the motivation of promot-
ing the production of modular, reusable, scalable, and easily
understandable code when designing the behaviors of intel-
ligent agents in the video game industry, thus trying to solve
the problems commonly encountered with other classical
mechanisms previously used, such as finite state machines
(FSMs) or scripts.

RL Nodes in BTs
The above concepts can be combined giving rise to BTs
with nodes supported by RL. The current literature contem-
plates two main types of RL nodes, depending on whether
the learning is performed on a control or execution node.

• A RL-control node can be viewed as an extension of the
usual control node, usually of type fallback (Pereira and
Engel 2015), with the particularity that its children come
to constitute the action space of a RL algorithm. Thus,
given a state s, the node reorders its children according
to the expected rewards of executing each of them (these
estimates being learned during training).

• A RL-execution node contains a RL-learning algorithm
with states, actions and rewards defined by the designer.
The idea here is to employ the hierarchical structure of a
BT to learn relatively small actions that are only executed
under controlled conditions.

In any of the above cases, the main goal of combining BTs
with RL is the implementation of actions and flows that are
complex to program manually, but in specific regions of the
agent’s BT whose limited scope allows to dampen the so-
called “curse of dimensionality” in learning sub-problems.

Methodology
In this paper we focus on the development of a prelimi-
nary automated testing methodology based on previously
presented agents for a specific game environment that will
be covered in detail in the experiment part of the paper.

This methodology starts from a specific level of our game,
which we consider finished from a design and/or develop-
ment point of view. For this level, we wish to monitor certain
gameplay parameters in order to detect any relevant changes
induced by a modification (at the global scope of the game)
on the enemy AI as soon as possible, for instance by tuning
its parameters to meet the requirements of a later level. To
carry out this tracking, we train a set of “automatic players”
using the techniques already described so that they learn to

play that level “like humans”. The training process culmi-
nates in the generation of benchmark statistics on the pa-
rameters of interest after having each agent play at the level
of interest for a large number of times.

Once we have these references, it is possible to automat-
ically perform a new round of gameplay and statistics com-
pilation on the levels already developed to evaluate the pos-
sible impacts of the day’s changes on their playability. With
these statistics, we can verify if our agents are completing
the levels with results equivalent to those recorded on the
previous day. If this is statistically not the case, chances are
that something has occurred, and we can issue a warning so
that a member of the team can investigate the origin of this
“alarm”.

Experiment
In this section, we will focus on applying the methodology
described above to the development of automated tests for a
simple demo game that includes some of the most common
mechanics found in genres such as stealth games, in which
the player navigates through levels patrolled by enemies that
must be avoided while actively trying to attain a certain goal
(often reaching a given point in the level). The rules of the
designed game can be summarized in the following points:

1. The player is represented by a blue circular figure, with
a continuous action space given by At = {(x, z), x, z ∈
[−1, 1]}, which determines the possible movement direc-
tions at each instant. The player has a fixed maximum ve-
locity vp, such that the velocity at each instant is given by
vpt = vp (xt,yt)

||(xt,yt)|| .

2. The player starts each level placed on a yellow platform,
to which they return after being defeated by an enemy.
The victory condition is to reach the green platform lo-
cated at a fixed point in the level. A player is defeated
when their health points (HP) are reduced to 0, these be-
ing lowered by 1 each time the player is hit by an enemy
bullet and starting at 10 HP initially. Some sample levels
can be found in Fig. 1.

3. The enemies are shaped like red cubes and have an associ-
ated “patrol” path (white lines in the figures), which they
cycle through until they detect the player in their range
of vision, after which they proceed to chase and shoot at
their target as long as it is alive or remains within detec-
tion range.

4. Some levels contain yellow walls that block the ene-
mies’ range of vision, but have no effect on the player’s
movement or visibility (effectively creating hiding areas).
Fig. 1c contains an example of this mechanic.
This demo game was developed in the Unity 3D en-

gine, with tests implemented using Unity’s Test Frame-
work (Unity Technologies 2021b), all of them being Play
Mode tests on the different scenes to be verified. The train-
ing of the RL agents used in the tests was carried out us-
ing Unity’s ML-Agents library, while the BTs of the ene-
mies and the hybrid agents for the player were implemented
with the help of the Behavior Bricks plugin for the en-
gine (PadaOne Games 2021).
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(a) Enemy Avoidance level (b) Enemy Timing level (c) Hiding Areas level

Figure 1: Example levels

Figure 2: Artificial reward regions in the Hiding Areas level.

In the following subsections we describe the two training
methodologies employed on the previously introduced demo
game: first a method based on agents trained purely by RL,
and then a variant employing RL-execution nodes on hybrid
BTs in an attempt to simplify the problem and provide a
different family of policies.

Pure RL Agents
We have already defined the action space A of our agent,
but we still need to specify on the basis of what information
these actions should be taken. We consider a total of 10 input
features, distributed as follows:

• Target location (2 features). Components (x, z) of the
distance vector between the player and the target plat-
form, scaled to lay in the [−1, 1] range.

• Relative location of the enemies (4 features per enemy).
Components (x, z) of the distance vector between the
player and each of the enemies in the level as well as
the components (x, z) of the normal unit vector of the
enemy’s front face. The latter data provides information
about the orientation of the enemy at any given time.

In addition to these features, we incorporate a total of 12
spatial sensors (raycasts) that allow us to identify objects
close to the agent in radial directions. Here we consider the
objects “goal”, “enemy” and “wall”.

Reward allocation conditions exhibit a strong heuristic
component aimed at inducing the desired behavior by means
of frequent stimuli, and can be summarized as follows:
• Positive rewards: (+2 units) for reaching the goal and fin-

ishing the level, and (+0.005 units) each time the agent
manages to reduce its minimum distance to the goal.

• Negative rewards: (-2 units) for dying after being hit by an
enemy bullet and finishing the level, (-0.25 units) for be-
ing hit by an enemy bullet, and (-0.1 units) every time the
agent is detected by an enemy (at the instant it enters an
enemy’s vision range). Additionally, we add an existen-
tial negative reward (-0.001 units) for each action taken
by the agent. This penalty is included to encourage agile
flows and spur the agent to finish the episode as soon as
possible to avoid accumulating too much negative reward
(-5 units at the end of step 5000).
In some of the more complex levels, it can also prove

helpful to incorporate artificial reward regions in the level
that provide a modest stimulus (between +0.1 and +0.5
units) after being traversed for the first time, in order to
encourage the agent to steer its trajectory through these re-
gions. An example of this method to train an agent in the
Hiding Areas level can be found in Fig. 2. We set a maxi-
mum training period of 750,000 agent steps per level with
a maximum of 5,000 steps per training episode. Here we
make use of PPO as our training algorithm of choice, using
a neural network of two layers with 256 hidden units and a
constant learning rate of 0.005.

Hybrid BT - RL Agents
In addition to agents trained purely by RL, we consider a
second class of agents given by a hybrid model between
manually programmed behaviors and flows learned by RL
in the context of a BT. The idea here is to define a BT with
a selector that alternates between a base flow (“navigate to
goal” in our case) and learned actions within a RL node that
is triggered upon entering a danger state, i.e. when an en-
emy enters the agent’s range of vision (“evade enemy”). In
this way it is possible to set the general goal, easily imple-
mentable, within a level-agnostic action node and let the RL
algorithm handle the enemies under controlled conditions.
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The RL node in this case considers the same features for
the states st as those described in the previous subsection,
but we modify the reward assignments to enforce the agent’s
expected goal in this context (avoid taking damage from en-
emy gunfire) with a negative reward (-1 unit) each time the
agent is hit by an enemy bullet, while keeping the previous
stimuli of +2 units for completing the level or -2 units for
dying, respectively.

For the training of these agents we set again a limit of
750,000 training steps per level with 5,000 maximum steps
per episode, and the same neural network architecture and
hyperparameters as in the pure reinforcement learning case.
However, unlike in the non hybrid case, the greater detach-
ment of the trained behavior from the structure of the level
often allows to initialize the weights of the policy to be
trained with those obtained in the training of a previous
level, on the assumption that the strategy to avoid enemies
does not vary excessively between scenes. Applying this
type of initialization generally results in more agile learn-
ing at any given level. Another aspect to note here is that
since the RL node is only active under danger conditions, the
actual time required to train a hybrid model is always prac-
tically higher than that needed in a pure RL case, assuming
that the number of training steps remains unchanged for both
models: these agents only truly train during the time when
the RL nodes are active in the behavior tree, which can lead
to situations of strong wastage of training time (for instance
if the agent infrequently enters the enemy’s range of vision).
Although we have not focused on this issue in this article, it
could be addressed in future work by designing, for exam-
ple, training environments that favor the activation of certain
nodes, or by directly training these actions under controlled
situations (where the relevant nodes are always active). A
pending matter, however, is to evaluate these techniques in
more complex games and nested behavior trees in order to
analyze how this affects the time and training difficulties of
each agent.

Testing Process
Once we have agents that are able to interact with a level in a
satisfactory way, it is possible to proceed to the next testing
phase. At this stage we will be interested in extracting a sam-
ple of relevant execution parameters for a given number of
attempts of the agent on the considered level. In our partic-
ular case, we set a number of repetitions N = 100 per agent
and level, in each of which we record statistics regarding the
HP with which the agent finishes each run (in range [0, 10])
and the number of steps needed to complete the level (in
range [0, 5000]). These samples can be stored as references
against which to test future changes in the level.

In the context of this paper, we select 3 levels representa-
tive of the general mechanics of the game, on which we train
different agents using the techniques explained above until
we obtain policies that are able to complete each level in
an acceptable way. The concept of acceptability here adopts
an admittedly subjective meaning: an agent must be able to
complete the level consistently, but at the same time it is de-
sirable that its learned policy does not outperform an average
human in skill.

Having selected reference agents for a level and recorded
a sample of contrast statistics, it is possible to perform a se-
ries of Student’s t-tests (or Welch’s t-tests if we do not as-
sume variance equality) after incorporating any change in
the game in order to check whether any of the statistics con-
sidered varies significantly (for the reference agent) after in-
troducing said change. To do this, it is sufficient to collect a
new execution sample for the agent on the modified level and
perform a parameter-by-parameter t-test to assess whether
the means of the reference and test sets are significantly dif-
ferent from one another after the change (α = 0.05). In
our case, we assume that the variances of the two groups
do not necessarily need to be equal, and therefore we resort
to Welch’s t-tests (Lu and Yuan 2010). While we have lim-
ited ourselves to these tests for this experiment, they may not
be applicable to different scenarios or parameters from more
complicated games and mechanics where normality assump-
tions may not hold. Under these situations, nonparametric,
more broadly applicable tests such as Mann-Whitney may
be better suited to test for changes and nuances in gameplay.
Under this scheme, we will evaluate the following changes
for each level and agent:
• Increase the enemy patrol speed by 40 percent.
• Expand the enemy’s field of vision, with a 35 percent

greater detection distance and 20 additional degrees of pe-
ripheral visibility.

• Increase the enemy’s gun firing rate, making the enemy
capable of firing at twice the original speed (double the
number of bullets per unit of time).
From a level design perspective, it would be expected that

the above changes would amount to a substantial increase in
the difficulty of the environments, especially in those levels
where a good degree of control over the player is necessary
whilst dodging enemies. In particular, we hypothesize that
an increase in the enemy’s firing rate should lead to signif-
icant reductions in the player’s final HP in all levels, while
the other two changes could possibly involve higher comple-
tion times should agents be forced to exercise more caution,
or lower final HP for agents which display more aggressive
navigation patterns.

Results
Below we present the results of applying each type of agent
on the test levels with the described alterations. Table 1 de-
picts the mean statistics for the parameters to be compared in
a benchmark run on the unmodified levels, whereas table 2
captures the results of running a Welch’s t-test to contrast
the difference in means between the reference and the agent
samples after applying each type of change at each level, al-
though we will limit ourselves to including only statistically
significant entries for the sake of conciseness. We declare
that a variation in a level fails a test on a parameter if the
corresponding p-value is less than α = 0.05, highlighting
the associated value in the test results tables accordingly.

We note here that from the perspective of the hybrid agent
the level whose gameplay is most affected by the introduced
changes is “Enemy Avoidance” (Fig. 1a), which is to be ex-
pected, as it is the one that requires the highest degree of
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Level ID Agent Type Av. final HP Av. comp. time
Enemy Avoidance Hybrid-RL 9.57 61.45

Pure RL 9.54 53.73
Enemy Timing Hybrid-RL 9.73 53.63

Pure RL 9.9 32.17
Hiding Areas Hybrid-RL 6.35 216.38

Pure RL 9.8 127.53

Table 1: Reference Run Statistics

Level ID Agent type Change type Tested parameter Welch’s t results
New Mean t df p-value

Enemy Avoidance Hybrid-RL Patrol Speed Completion Time 68.98 -2.56 185.89 0.011
Enemy Avoidance Hybrid-RL Field of vision Final HP 9.13 2.92 174.16 0.003
Enemy Avoidance Hybrid-RL Field of vision Completion Time 67.42 -2.10 190.13 0.036
Enemy Avoidance Hybrid-RL Firing Rate Final HP 9.1 3.06 171.14 0.002

Enemy Timing Pure RL Patrol Speed Completion Time 31.67 2.35 185.45 0.02
Enemy Timing Pure RL Firing Rate Final HP 9.67 3.75 156.49 0.0
Hiding Areas Hybrid-RL Patrol Speed Final HP 8.82 -4.52 170.88 0.0
Hiding Areas Hybrid-RL Patrol Speed Completion Time 166.62 8.92 168.28 0.0
Hiding Areas Pure RL Patrol Speed Final HP 8.71 6.49 115.43 0.0
Hiding Areas Pure RL Patrol Speed Completion Time 132.03 -2.49 119.83 0.013
Hiding Areas Pure RL Field of vision Final HP 9.31 5.27 154.37 0.0
Hiding Areas Pure RL Firing Rate Final HP 9.57 2.84 173.02 0.004

Table 2: Test results after changes - Statistically Significant entries

control when dodging enemies in a fairly limited space. In
particular, tests indicate that expanding the enemy’s field of
vision has a significant effect on both completion time and
final HP at the end of the level (the player ends up with less
health and takes longer to finish). This is not the case for
the purely reinforcement-trained agent, whose higher over-
all skill level leads to the test detecting no significant differ-
ences in any of the statistics evaluated. After manual testing
to evaluate these changes from a third, human perspective
this time, it becomes apparent that all three modifications
result in a noticeable increase in difficulty when traversing
the enemy regions of the level, meaning that the tests using
the hybrid model succeed in warning about these changes.

In the case of the “Enemy Timing” level (Fig. 1b), we ob-
served a somewhat opposite effect: while the mixed agent
does not detect significant changes with any of the modifi-
cations, the pure RL agent perceives a slight reduction in the
time required to complete the level by increasing the ene-
mies’ patrol speed (probably due to the fact that this allows
to advance the instant in which the enemies have moved
enough to be able to cross the central corridor without being
spotted), and an increase in the damage received by increas-
ing the enemies’ firing rate (< 0.5 difference). The human
tests in this case lead to the conclusion that the changes in-
troduced do not notably affect the playability of the level, in
accordance with the hybrid model’s test results.

Lastly, in the “Hiding Areas” level (Fig. 1c), both agents
perceive a significant change in the two evaluated parame-

ters when increasing the patrol speed, but in different ways.
The hybrid agent perceives a marked reduction in difficulty
(finishing with over 2 HP more than without the change, and
in slightly over half the time), while the pure reinforcement
agent’s average final HP decreases, with a slight yet signifi-
cant increase in the time needed to complete the level. If we
observe the strategies employed by each agent in this envi-
ronment, we realize that the hybrid agent applies a policy in
which it waits for the enemy to modify its position to a safe
configuration before advancing, something that is acceler-
ated by increasing the patrolling speed, allowing for more
frequent and safer advances. The pure RL agent, on the other
hand, follows a much more aggressive policy in which it at-
tempts to complete the level as fast as possible relying solely
on its dodging skills, leading to an increase in perceived dif-
ficulty. From the human point of view, the difficulty of the
level is notably reduced and navigation is clearly simplified
when following a strategic plan that exploits the hiding ar-
eas, as opposed to the effect that was initially expected to be
induced (harder level overall).

Additionally, in order to evaluate how often these tests
would alert about potentially non-existent changes, we con-
sider their repeated application on environments that remain
unchanged with respect to the initial reference and compute
the proportion of cases in which such tests generate a posi-
tive result (false positives). For each level and type of agent,
we repeat the corresponding test 100 times and record the
proportion of cases in which the test reports a (mistaken)
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Level ID Agent Type False positive rate (final HP) False positive rate (comp. time)
Enemy Avoidance Hybrid-RL 5% 4%

Pure RL 13% 4%
Enemy Timing Hybrid-RL 0% 0%

Pure RL 9% 1%
Hiding Areas Hybrid-RL 1% 2%

Pure RL 1% 1%

Table 3: False positive rates per configuration and parameter

modification of the parameters of interest. The results can
be found in table 3. We observe that the hybrid model gener-
ally yields lower fail rates in almost all cases in comparison
with the pure reinforcement model, which may be the re-
sult of the lower degree of freedom that hybrid agents have
in their decision making, given that part of their behavior is
comprised of hand-programmed flows. However, while this
is certainly noteworthy, it should be emphasized that false
positives in this context are rather mild in severity, insofar
as, in the worst case, they would simply force an unneces-
sary revision of the level.

Conclusions
This paper focused on the problem of creating testing agents
to detect significant changes in two different aspects of
gameplay on a demo with stealth genre mechanics. We pro-
posed two accessible alternatives to obtain agents capable
of playing different levels of the game, the first one through
pure RL, and the second through hybrid models that com-
bine RL action nodes within hand-coded control structures
in the form of BTs. After obtaining satisfactory agents for
each level and training method, a first simulation step was
carried out in which the agents played their respective levels
repeatedly, recording relevant statistics regarding their per-
ception of the execution, namely HP remaining at the end of
the level and time taken to complete it. Subsequently, after
introducing various changes in the behavior of the enemies,
we again performed simulations with the agents on all levels
to re-collect performance metrics in the modified environ-
ments. Lastly, the reference samples were compared with
those of the post-change simulations by applying a means-
contrast test on each of the parameters of interest to detect
statistically significant changes in level gameplay.

Our results show that the automated tests performed us-
ing this methodology can assist in locating and explaining
changes of interest in the base of evaluated levels. If the tests
after modification fail for any of the agents, the designer can
analyze the results to check whether they conform to the pre-
dicted effect, if this was intended, or proceed to manually
investigate the level where the test failed to search for the
origin of the variation in the statistics. This makes it possi-
ble to narrow down the search for unexpected effects to those
levels reported by the tests, or to evaluate whether a design
change has the desired impact on the monitored parameters.

The conducted experiments seem to suggest that hybrid-
type agents, despite their apparently lower general skill at

level completion, are more sensitive to changes in level per-
ception that match those perceived by human testers than
their purely RL-trained counterparts. On the other hand, al-
though the use of hybrid agents involves certain drawbacks,
such as a certain inefficiency during training due to the lack
of continuous activation of the RL nodes, it also offers sev-
eral other advantages that we believe could prove convenient
in the testing and design process. Possibly the clearest ben-
efit is that the use of hybrid agents comes hand in hand with
a greater degree of control over the applied policy, allow-
ing to replace and/or support parts of it with manually pro-
grammed behaviors, or even to retrain critical flow blocks
without having to sacrifice the totality of the learned behav-
ior (as would occur in the case of pure reinforcement). On
the other hand, the modular structure of behavior trees en-
ables the use of policies with a great variety and depth of
customization, constructing flows that follow a certain re-
ward or utility function locally and not only globally, as is
the case when specifying such functions in agents trained
with a single RL policy.

In the future, we would like to validate our approach by
applying this methodology on a wider spectrum of environ-
ments as well as on modifications varying in nature and ex-
tent, in order to demonstrate that it is able to detect changes
of distinct types in level gameplay. Additionally, since this
study has not made any attempts to achieve agents that ex-
hibit human behavior, it remains as future work to incor-
porate mechanisms that allow replicating either flows/traces
recorded by designers or testers (through imitation learning),
or that emulate designer-devised player archetypes (through
reward functions adjusted to different play styles, for exam-
ple, along the lines of the work of (Holmgard et al. 2019)).
Now, while current agents do not attempt to emulate human
behaviors, we consider that a positive on a change test still
has value in that it is indicative of a perceptual alteration of
at least one policy that, while it may or may not be represen-
tative of how a human approaches the problem at hand, does,
in any case, denote a structural change in the level. Lastly,
we consider as future work to include training based on pro-
cedural level generation (e.g., adapting ideas from works
such as (Justesen et al. 2018)) for the sake of improving the
degree of generalization of the produced agents, which is a
topic that has not been dealt with in this first approximation.
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