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Abstract

We study the problem of simultaneously recognizing com-
plex individual and group activities from spatiotemporal data
in games. Recognizing complex player activities is particu-
larly important to understand game dynamics and user behav-
ior having a wide range of applications in game development.
To do so, we propose a novel framework by developing a hi-
erarchical dual attention RNN-based method that leverages
feature and temporal attention mechanisms in a hierarchical
setting for effective discovery of activities using interactions
among individuals. We argue that certain activities have de-
pendency on certain features as well as on temporal aspects of
the data which can be leveraged by our dual-attention model
for recognition. To the best of our knowledge, this work is
the first to address activity recognition using spatiotemporal
data in games. In addition, we propose using game data as a
rich source of obtaining complex group interactions. In this
paper, we present two contributions: (1) two annotated game
datasets that consist of individual and group activities, (2)
our proposed framework improves the state-of-the-art recog-
nition algorithms for spatiotemporal data by experiments on
these datasets.

1 Introduction
Research in games has particularly focused on understand-
ing player strategy and activities in the recent years due to
the advancement in game development and game data sci-
ence. Various methods, including machine learning and sta-
tistical analysis, have been proposed for game outcome pre-
diction [Semenov et al. 2016; Ong, Deolalikar, and Peng
2015], understanding individual and team mechanics [We-
ber and Mateas 2009; Cavadenti et al. 2016; Yang, Harrison,
and Roberts 2014; Mahlmann, Schubert, and Drachen 2016]
as well as clustering players based on roles and playing
patterns [Nascimento Junior et al. 2017; Neidhardt, Huang,
and Contractor 2015; Drachen et al. 2014]. However, few
works have focused on complex activities and decision mak-
ings [Weber and Mateas 2009; Ahmad et al. 2019]. Never-
theless, such proposed methods tend to be game specific or
do not scale to large datasets. In this paper, we focus on this
under-explored area. Understanding complex activities fa-
cilitates identifying behaviors, tactics and strategies allow-

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Individual and Group activities of multiple actors
and spatiotemporal representation of the corresponding ac-
tivity data.

ing game developers and designers adjust games to target
audience as well as find imbalance in game mechanics.

Activity recognition is an active area of research in com-
puter vision with over decades of research and applications
in security, health, entertainments and sports, among oth-
ers. Depending on the type of interactions in data, activ-
ities can be divided into two groups. The first is the ac-
tivity performed by an individual person (e.g., tightening
a screw, pouring oil) independent of the context. The sec-
ond is the group activity, which consists of collective ac-
tivities of multiple humans towards achieving a high-level
goal (e.g., assembling a device, cooking a recipe) [Wang, Ni,
and Yang 2017; Li and Choo Chuah 2017; Hussein, Gavves,
and Smeulders 2019]. While the majority of existing works
have focused on understanding individual activities, more
recently group activity recognition has gained more atten-
tion due to its importance and utility for applications in se-
curity, surveillance and entertainments [Ibrahim et al. 2016;
Qi et al. 2018; Azar et al. 2019; Gavrilyuk et al. 2020].

We aim to tackle the problem of activity recognition from
game data in both individual and group settings simultane-
ously. An example scenario is illustrated in Figure 1a where
a 2D map of a multiplayer game is shown along with player
activities for a certain time period. An individual activity is
performed by a single player (black rectangle on the map),
and a group activity is performed by multiple players (white
rectangle). The black rectangle corresponds to “Farm” activ-
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ity which consists of movement, damage and killing actions
by a single player, whereas, the white rectangle corresponds
to “Group Fight” which includes actions of multiple players.
One major problem of activity recognition from the game
video is that the video frame is different for every player
and each player can only see a certain region surrounding
the current position on the map. Therefore, the entire map
for all activities is not present. Instead of the video, we can
use log data for recognizing activities, which contains low-
level actions of the players (Figure 1b). The log data is spa-
tiotemporal as it contains spatial information of the players
for every time-step. Each activity on the map corresponds to
certain entries in the log data. For example, the individual
and group activity on the map in Figure 1a correspond to
“Farm” and “Group Fight”, shown by the yellow and blue
highlighted entries, respectively.

In this paper, we discuss two contributions. First, we gath-
ered and annotated two datasets for individual and group ac-
tivities, which we will make available upon request. Second,
we propose a novel hierarchical attention-based Recurrent
Neural Network (RNN) method for group activity recogni-
tion from spatiotemporal game data, using both feature and
temporal attentions. For annotating the datasets, we use the
work of [Ahmad et al. 2019], which proposed a framework
for labeling spatiotemporal game data, applying it to two
electronic games: BoomTown and DotA 2. The authors have
demonstrated complex individual and group activity labels
for the games that can be used to understand player strate-
gies and decision making. We consider the same labels pro-
posed in [Ahmad et al. 2019] for the two activity datasets we
use in this paper.

The organization of the paper is as follows. In Section 2,
we provide a brief overview of game analytics and ac-
tivity recognition literature. In Section 3, we demonstrate
our proposed models for the group activity recognition. In
Section 4, we evaluate the proposed models on two game
datasets. Finally, Section 5 concludes the paper.

2 Related Work
The main focus of this work is to recognize individual and
group activities using spatiotemporal data in games. Our
work is related to game analytics for complex activity recog-
nition. In this section, we give a brief overview of the game
analytics and activity recognition tasks.

Game Analytics. Research in games explored various as-
pects including player strategies, outcome prediction, be-
havior classification. Plan and goal recognition [Sukthankar
et al. 2014] was used to understand player strategies by
utilizing simple case-based reasoning to complex plan li-
braries. Sukthankar et al. [2014] and Min et al. [2016;
2014] explored plan and goal recognition in single player
games which focus on recognizing whether the player has
attained some fixed goals to complete the game. In addi-
tion, several works use machine learning models to pre-
dict game outcome [Semenov et al. 2016; Ong, Deolalikar,
and Peng 2015; Summerville, Cook, and Steenhuisen 2016]
and performance [Miller and Crowcroft 2010; Sapienza

et al. 2018; Mahlmann, Schubert, and Drachen 2016]. Other
works [Nascimento Junior et al. 2017; Drachen et al. 2012]
explored clustering based on the roles and behaviors of the
players using clustering algorithms on performance met-
rics, actions, playing patterns and different attributes. On the
other hand, few works [Weber and Mateas 2009; Yang, Har-
rison, and Roberts 2014] focused on investigating strategic
gameplay in individual and group settings. These works are
different from the activity recognition task we present here
as they lack complex interaction among multiple players.
Ahmad et al. [2019] proposed a methodology to visualize
complex activities and decision makings in games. In this
paper, we use deep models to recognize the complex activi-
ties from gamedata.

There has been a great degree of research in games us-
ing Reinforcement Learning (RL), multi-agent systems and
graphical models. The multi-agent related works [Singh
et al. 2017; Demiris 2007] including RL are interesting for
simulation and activity detection, however, it is difficult and
takes expertise to mathematically formulate the activities
and interactions of the complex games we are currently in-
vestigating. While the strategic activities can be achieved by
RL (as in AlphaStar [Vinyals et al. 2019]), they are hard
to formulate mathematically to enable an algorithm to infer
or detect these patterns from data and thus infer strategies,
which is our goal. Our proposed models take game replay
data that are easy to provide without much expertise. Zha
et al. [2013] and Lorthioir et al. [2020] proposed graphi-
cal model based activity recognition where the use-cases are
much simpler than the strategic activities in modern games.
The combat models proposed by Uriarte et al. [2015] for
two-player RTS games are harder to generalize in multi-
player settings with complex interactions. Moreover, these
works are still in research-stage and cannot be applied to
complex multiplayer games for analysis. Our proposed mod-
els can be applied to sequential data for any type of game
setting given that the activity labels are available. The un-
supervised method for activity detection proposed by Freed-
man et al. [2015] is one direction of our future work which
can alleviate the burden of labeling.

Activity Recognition. There are several works related to
Activity Recognition in Computer Vision. As the input
source is image or video, a general approach for activity
recognition is to use CNN for extracting features from im-
age or video, and then leverage a recurrent architecture to
model the actor dynamics. Wang et al. [2017] used LSTM
based networks on top of CNN in a similar manner. Li et
al. [2018] proposed Attention based LSTM to focus on par-
ticular image locations while Wang and Gupta [2018] used
space-time region graphs in long range videos. Girdhar et
al. [2019] adapted transformer-style architecture to aggre-
gate features of the actions. These works focused on the in-
dividual activity recognition.

Additionally, researchers used sensor data to perform ac-
tivity recognition using data from wearable devices or smart
environment settings. One of the most used methods for
these types of temporal data is pattern mining to find the
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frequent action sequences in the data and then determine
the activity from the pattern [Liu et al. 2016]. Besides, deep
neural networks were used for human activity recognition
from sensor data [Cheng et al. 2018; Rokni, Nourollahi, and
Ghasemzadeh 2018]. All of these works used temporal data
that are from sensors of an individual user. In our work, we
use spatial-temporal data for activity recognition in individ-
ual and group settings.

Group Activity Recognition. In recent times, group ac-
tivity recognition has gained much attention from the re-
searchers in Computer Vision. Deep learning has been heav-
ily used for understanding group dynamics where CNNs are
used to extract spatial features from video frames. On top
of CNN, recurrent architectures are used to understand the
sequential actions of the actors. Ibrahim et al. [2016] pro-
posed a hierarchical LSTM model on top of CNN to de-
termine group activities. Other works explored deep neural
network based hierarchical graphical models [Deng et al.
2015], graph convolutional neural network to find actor rela-
tionship [Wu et al. 2019] and pose network [Gavrilyuk et al.
2020; Vahora and Chauhan 2019]. Qi et al. [2018] demon-
strated a spatiotemporal attention based neural network with
semantic graphs to determine group activities.

In our work, we use LSTM based RNN to solve the prob-
lem of activity recognition from spatiotemporal data. We
also demonstrate variants of the basic LSTM model with
attention mechanism and hierarchical architecture to under-
stand group dynamics.

3 Proposed Approach
In this section, we develop a hierarchical attention-based
mechanisms based on RNN for the group activity recogni-
tion problem from spatiotemporal data. Our goal is to rec-
ognize the complex activities performed by the actors indi-
vidually and as a group. We use spatiotemporal data as input
which is a sequence of low-level actions including features
of the particular action (see Figure 1b). The output is the
probability distribution of a fixed set of activities performed
by the players at each time-step of the input sequence.

Formally, at time-step t, we denote the input by xt ∈ IRd,
with d being the number of features. The input to our RNN-
based model, shown in Figure 2a, is a sequence of inputs
xt, and the length of the sequence T is a hyper-parameter.
Hence, the input to the model is of shape T × d for a single
actor. The output of the model is of shape T × |C|, where
C is the set of activity label classes. yt ∈ IR|C| is the out-
put probability distribution over the activity label set at time-
step t. Note that C is different for individual and group activ-
ity labels. For group activity recognition we also propose a
hierarchical model as shown in Figure 2b. This model takes
multiple actor data simultaneously, and detects the group dy-
namics thorugh the hierarchical structure.

A naive approach to address the problem would be to use
a Long-Short Term Memory (LSTM) model to extract fea-
tures and produce outputs,

ht = LSTM(xt), yt = softmax(Wfcht + bfc),

where ht ∈ IRhN denotes the hidden state of the LSTM and
Wfc, bfc denote the weights and biases of a fully connected
network. However, such a naive approach ignores interac-
tions between individuals as well as importance of different
features and individual actions at different times for group
activity recognition. Next, we propose a sequence of steps
to build a framework that overcomes these issues.

3.1 Feature Attention LSTM
We have observed that often certain features are more infor-
mative for predicting the individual and group activities. For
example, “Exploring” (which refers to roaming around the
map without taking any action) depends mostly on move-
ments of the players, whereas, “Explosive Inner” (which
refers to placing an explosive inside rocks by creating a tun-
nel) depends on the use and type of explosives. Therefore, to
improve the performance, we use a feature attention module
to a basic deep LSTM model. The feature attention module
gives attention to particular features of each step of the input
sequence. Replacing the blue highlighted rectangle with a
deep LSTM in Figure 2a gives the Feature Attention LSTM.
The feature attention module is essentially a fully-connected
neural network that takes the sequence data as input and out-
puts a vector of weights of the features for each time-step of
the input sequence. For each step of the sequence, the feature
weights sum to 1. This weight is multiplied with the actual
input and this multiplied input is given to the deep LSTM.
As a result, the LSTM gets the weighted sequence of input
from the attention module. At time-step t, the model opera-
tions can be formulated as follows.

wf
t = feature attention(xt),where

∑d
i=1 w

f
ti = 1,

x̃t = wf
t � xt.

Here, the feature attention is a fully connected neural net-
work that outputs weights for the features of the input data,
wt ∈ IRd is the output weight. This weighted x̃t is used as
the input to the deep LSTM.

3.2 Temporal Attention LSTM
We also observe that certain actions at certain time-instants
are more informative for recognizing activities. For exam-
ple, “Explosive Inner” happens when a player creates a tun-
nel inside rocks and places an explosive. Therefore, destroy-
ing rocks for the tunnel as well as the use of explosives are
more informative than other actions. Hence, similar to the
feature attention LSTM model, we can also give different
weights to the temporal step of the hidden representations
of the input sequence. In other words, we add a temporal
attention module to the basic deep LSTM model that gives
attention to the steps of the sequence of input. We use ideas
from machine translation model by Bahdanau et al. [2014].
The LSTM model here is encoder and decoder based. The
encoder gets the input from data and generates hidden rep-
resentations. The attention module gets the input from the
hidden representations and generates a weight vector. The
decoder of the LSTM model takes the weighted attention
vector and the hidden representations as input. At time-step
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(a) Feature and Temporal Attention LSTM Model
(b) Hierarchical LSTM

Figure 2: Overview of the proposed Attention based LSTM models. (a) This diagram shows the Feature and Temporal Attention
LSTM model, where the Feature and Temporal Attention modules are fully connected layers. Removing the Attention modules
from the diagram converts it into basic Deep LSTM model. Removing the Temporal Attention module gives the Feature Atten-
tion LSTM model. In both cases, the encoder-decoder LSTM can also be replaced by a single Deep LSTM. (b) This diagram
shows the basics of Hierarchical LSTM models. The first stage LSTMs detects the person level dynamics and the second stange
LSTM detects the group dynamics.

t, the model operations can be formulated as follows.

wt = temporal attention(ht), at = wt � ht

yt = DecoderLSTM(ht, at, yt−1)

Here, ht is the hidden representation from the Encoder
LSTM, wt ∈ IRhN is the output weight from the tem-
poral attention module which is multiplied with the hid-
den representation to get the attention weights at ∈ IRhN .
This attention weights with hidden representation from En-
coder LSTM along with the previous time-step output yt−1
is given as input to the Decoder LSTM. The previous time-
step output yt−1 is used as a teacher forcing fashion during
the training with a 50% probability of choosing between the
actual output and the model output.

3.3 Feature and Temporal Attention LSTM
We merge the Feature Attention LSTM and the Temporal
Attention LSTM to get a dual-attention model as shown
in Figure 2a. In this model, there are two different atten-
tion modules - (i) Feature Attention module gives different
weights to every step of the input sequence, and (ii) Tempo-
ral Attention module gives different weights to the hidden
representations of the input sequences.

3.4 Hierarchical LSTM
We use a hierarchical LSTM model, which allows us to
jointly reason about the actions of multiple players that de-
fine the group dynamics. The higher level LSTM handles
the hidden representations of the individual players simul-
taneously which is necessary to understand the group inter-
actions as shown in [Ibrahim et al. 2016]. In our case, we
have two levels of LSTM models as shown in Figure 2b.
The first level identifies the person level interaction and the
second level aggregates the person interactions to determine
the group activities. The main difference between these two
models are that in [Ibrahim et al. 2016] each frame is la-
beled with a single group activity, whereas in our case, the

actors present in the data may have different group activities
in a single time-step. The input to the group level LSTM at
time-step t can be formulated as follows.

ykt = hk
t ⊕ xk

t

yht = y1t ⊕ y2t ⊕ · · · ⊕ yKt
Here, ykt is the concatenated sequence of hidden repre-

sentations and the input features for person k, and yht is the
concatenated input for K persons at time-step t. This input
is used in a similar fashion for the group level LSTM.

3.5 Hierarchical Feature Attention LSTM
We add the feature attention module with the hierarchical
LSTM model. The feature attention is given to the person
level interaction detection as in the Feature Attention LSTM
model. In Figure 2b, the first stage LSTMs are attached to
the feature attention module. The hierarchical part of the
model remains the same as the Hierarchical LSTM model
which takes input from the first stage, and outputs the prob-
ability distribution of the group activities for each actor.

For learning the hierarchical models, the single feature at-
tention LSTM is trained with each actor data separately. We
use Cross Entropy Loss function with the individual activity
labels to train it. The trained first stage LSTM is attached to
the second stage LSTM to train the whole model. This single
first stage feature attention LSTM is used multiple times to
generate the hidden representation for all the actors present
in the data (P1 to PK in Figure 2b). The hidden represen-
tations are concatenated to each actor data to generate the
input for the second stage LSTM. To train the whole hier-
archical model, we again use Cross Entropy Loss function
with the group activity labels.

3.6 Implementation Details
The person level interaction models are trained in an end-
to-end fashion. In the basic deep LSTM and Feature At-
tention LSTM models we use four layers with 128 hidden
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units. For the temporal attention models, we use two lay-
ers of LSTM units as the temporal attention module adds a
very large number of parameters to the models. To balance
the number of parameters so that the model does not overfit,
we decrease the LSTM layers in the Encoder and Decoder
LSTMs. We use teacher forcing in the Temporal Attention
models with 50% probability.

The hierarchical models are trained in two steps. We con-
catenate the trained person level models to the group level
LSTM to train the hierarchical models. The hierarchical
LSTM consists of a two layer LSTM with 128 hidden units
each. All the final layer LSTM models are followed by three
fully connected layers which outputs the probability distri-
bution of activity labels for each time-step.

We implemented our models in PyTorch and trained in
Google-Colab with Tesla V100 GPU and 26 GB of RAM.
We used Adam optimizer with a fixed learning rate of 0.1
to train all the models. For hyper-parameter (e.g. hidden-
units, learning-rate, window-size) tuning, we tried different
settings and chose the best performing one on validation data
for BoomTown. We kept similar settings for DotA2 except
for a shorter window-size as the data is more complex. We
used dropouts for regularization and weighted cross entropy
loss as the label distribution in the datasets are skewed.

4 Experiments
In this section, we describe our datasets and then evaluate
our models on the datasets.

4.1 Datasets and Preprocessing
We evaluate the performance of the models using two
datasets - BoomTown and DotA 2 that we developed. Boom-
Town is a multiplayer online team-based game where the
goal is to maximize the amount of collected gold in a two-
dimensional map. DotA 2 is a popular multiplayer online
battle arena (MOBA) game. The goal of this game is to de-
stroy the opponent team’s base. In both of the games, the
players take different actions individually and as a group to
perform various tasks and achieve the goal. The low-level
actions taken by the players in the games can be accumu-
lated as complex strategic activities as shown in [Ahmad
et al. 2019]. The activity labels for BoomTown and DotA
2 are defined by Ahmad et al. [2019] and in this work, we
use the same definitions of activities to annotate the datasets
for the individual and group activity recognition.

BoomTown Dataset. This dataset contains 19 matches
with a total of 68 players. Each team has 3-6 players and
each match is player by a single team. Each match data
contains temporal information of each player’s low-level ac-
tions with related attributes. We preprocess the match data
to separate data for each actor in a match. The data is then
normalized and converted to one-hot encoding for the cate-
gorical values. Finally, there are 28 features with 8 different
individual activity labels. The features include low-level ac-
tion name (e.g. change position, place explosive, etc), posi-
tion coordinates, timestamp, gold acquired, number of rocks,
items used, etc. Out of 19 matches, we randomly chose 4

BoomTown DotA 2

Individual Label Count Individual Label Count Group Label Count

Nothing 8127 Nothing 150060 Nothing 199650
Exploring 18366 Farm 16080 Gank 3760
Pickaxing for Gold 20791 Kill 750 Group Fight 4810
Tunneling Pickaxe 1815 Roam 83570 Push 11870
Explosive Inner 16227 Roshan 790
Explosive Tunneling 781 Split Push 4460
Explosive Miss 66 Team Fight 25120
Explosive Quick Mine 6041

Table 1: Label Distributions in the Datasets

Model Accuracy

Multi Layer Perceptron 23.3
Logistic Regression 57.5
Support Vector-Machine 68.5

Deep LSTM 73.4
Feature Attention LSTM 74.5
Temporal Attention LSTM 75.1
Feature and Temporal Attention LSTM 75.4

Table 2: Model comparison on the BoomTown Dataset

matches for testing, 4 matches for validation and the remain-
ing 11 matches for training. The distribution of the labels in
the BoomTown Dataset is given in Table 1.

DotA 2 Dataset. This dataset contains 6 matches with a
total of 60 players. Each game is played between two teams
of five players each. Similar to BoomTown data, we pro-
cess each match data to separate individual player data. Af-
ter normalization and one-hot encoding of the categorical
features there are 71 features with 4 individual and 7 group
activity labels. The features include low-level action name
(e.g. damage, acquire gold, get item, etc), linked unit, health,
xp, distance to nearest structure, etc. Out of 6 matches, we
randomly chose one match for testing, and the remaining 5
matches for training the models. As the dataset is small, we
did not use any validation set. The distribution of the labels
in the DotA 2 Dataset is given in Table 1.

4.2 Experiments on BoomTown Dataset
As mentioned previously, the BoomTown Dataset contains
only individual activity labels. For this dataset, we use
the person level interaction models to compare the perfor-
mances. We report the accuracy of each model for the indi-
vidual activity recognition. We also report the accuracy us-
ing Multi-Layer Perceptron, Logistic Regression and Sup-
port Vector Machine to compare our models to the tradi-
tional Machine Learning models.

Notice in Table 2 that our proposed models perform bet-
ter than the traditional ML models in terms of accuracy.
Among the traditional ML models, Support Vector Machine
performed closest to our baseline Deep LSTM model with
68.5% accuracy. The Deep LSTM model, which takes the
spatiotemporal data directly to the LSTM performs with
73.4% accuracy. The feature attention module gives atten-
tion to important features for learning the distribution, which
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(a) Feature and Temporal Attention LSTM (b) Deep LSTM (c) Hierarchical Feature Attention LSTM

Figure 3: Confusion matrix, recall and f1-score for BoomTown and DotA 2 Datasets using different models

improves the accuracy from the baseline. Using the tempo-
ral attention model gives even better accuracy, which can
be explained by the fact that the actions taken by the actors
have different impacts on the current activity. The tempo-
ral attention gives more importance to the low-level actions
necessary for the activity. Finally, when the feature and tem-
poral attention modules are aggregated the model performs
better than all the models with 75.4% accuracy.

In Figure 3a, the confusion matrix, recall and f1-score
for the Feature and Temporal Attention LSTM model are
shown. Note that, the main diagonal of the confusion ma-
trix contains the precision values. The model did well on
recognizing “Exploring”, “Pickaxing for Gold” and “Ex-
plosive Inner” having high precision, recall and f1-score.
The model got confused between “Nothing” and “Explor-
ing” as both behaviors mostly contain roaming around the
map which makes them pretty similar. Likewise, “Explosive
Quick Mine”, “Explosive Tunneling” and “Explosive Inner”
are similar where all these activities contain the use of ex-
plosives in a slightly different manners, and the model faced
a hard time distinguishing these labels. “Explosive Miss” is
a special label which refers to the misuse of an explosive in
a random place and appeared in only three matches among
the 19 matches. Therefore, the model did not get enough
instances to learn the distribution properly. This label also
has a short duration (average 7 seconds) compared to others
(more than 20 seconds except for “Tunneling Pickaxe”).

4.3 Experiments on DotA 2 Dataset
DotA 2 Dataset contains both individual and group activi-
ties. We use the person level interaction models as well as
the hierarchical models for comparison. We use the person
level interaction models to determine both individual and
group activities. The hierarchical models are only used for
group label recognition. We report the model accuracy for
individual and group activity recognition. We also report
the accuracy using Logistic Regression. In case of DotA 2,
Multi-Layer Perceptron and Support Vector Machine failed
to classify all the activity labels except for ‘Nothing’ label.

Notice in Table 3 that the Deep LSTM and the Feature
Attention LSTM performs similarly on the individual ac-

Model Accuracy

Individual Group

Logistic Regression 38.0 41.9

Deep LSTM 63.7 63.2
Feature Attention LSTM 62.9 57.0
Hierarchical LSTM - 65.3
Hierarchical Feature Attention LSTM - 66.8

Table 3: Model comparison on the DotA 2 Dataset

tivity recognition, however, Deep LSTM performed much
better on group activity recognition. The temporal attention
models were unable to learn the activities due to the high
skewness of the dataset. We argue that the number of model
parameter is very high for the feature and temporal atten-
tion models with respect to the size of the dataset, which
contributes to the performance drop compared to the base-
line. Between the hierarchical models, the Hierarchical Fea-
ture Attention LSTM performed better than the Hierarchical
LSTM with 66.8% accuracy. Both the hierarchical models
performed better than the person-level interaction models in
terms of accuracy of the group activity recognition.

The confusion matrix, recall and f1-score of individual ac-
tivity labels for the Deep LSTM are shown in Figure 3b. No-
tice that all the activity labels, specially the “Kill” label, are
biased to the “Nothing” label. These individual labels, par-
ticularly the “Nothing” and “Roam”, are very similar in be-
havior, which makes the model confused. Additionally, the
“Kill” label appears comparatively few times compared to
other labels. Also the duration of the “Kill” label (average 6
seconds) is significantly very small compared to other labels
(“Farm” - 37 seconds and “Roam” - 59 seconds).

The confusion matrix, recall and f1-score of the group ac-
tivity labels for the Hierarchical Feature Attention LSTM
are shown in Figure 3c. One can see a similar biasness to the
“Nothing” label due to the very large number of “Nothing”
label present in data as shown in Table 1. “Gank” behavior
is particularly similar to “Nothing” as both contains roaming
around the map with an additional attack scenario in the end
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(a) Feature and Temporal At-
tention LSTM for BoomTown

(b) Hierarchical Feature At-
tention LSTM for DotA 2

Figure 4: Training and Validation graphs of the models

for “Gank”. Additionally, “Gank” and “Group Fight” have
comparatively less duration (average 14 and 16 seconds re-
spectively) compared to others (more than 30 seconds). Be-
sides, some labels only appeared in a few matches. For ex-
ample, “Split Push” (a strategy taken by the players of a team
at the same time in different locations on the map), “Roshan”
(players engaged a non-player character named Roshan in
combat) labels were not present in all the matches.

4.4 Discussion
The data distribution and the confusion matrices show that
the models perform better on the labels that have more in-
stances. Though we used a weighted loss function, the mod-
els struggled to learn the labels that have very few instances
(e.g., “Explosive Miss”, “Kill”). Another observation is that
the labels having less duration are not well recognized by the
models (e.g., “Explosive Miss”, “Kill”, “Gank”). Besides,
some activities (e.g., “Explosive Miss”, “Roshan”) do not
occur in every match, therefore, the corresponding labels are
specific to special match conditions and hard to generalize
with small number of instances.

Notice that the models perform better on BoomTown than
on DotA 2 Dataset. A reason behind that is the fact that DotA
2 is a more complex game where the individual and group
activities are composed of very similar low-level actions.
Figure 4 shows the training and validation loss with respect
to the number of epochs. For Feature and Temporal Atten-
tion LSTM on BoomTown Dataset, the training converges in
between 30-40 epochs and the validation loss has a similar
trend. On the other hand, for Hierarchical Feature Attention
LSTM on DotA 2 Dataset, the model overfits very quickly
because of a small dataset having complex activity labels.
The other models have similar training patterns on both the
datasets. Ahmad et al. [2019] reported an Inter-Rater Relia-
bility (IRR) score of 0.95 for BoomTown and 0.72 for DotA
2 in Cohen’s Kappa measure [Bordens and Abbott 2002].
The IRR which is a measurement of agreement between la-
bels was calculated between two human labellers. Though
IRR is different from the metrics we used here, it showed
similar difficulty in recognizing the labels in DotA 2.

5 Conclusion
We studied the problem of individual and group activity
recognition in spatiotemporal data settings. We proposed
attention-based hierarchical LSTM models for individual
and group activity recognition in complex scenarios. We also
introduced group activity recognition task in spatiotemporal

data which is an unexplored area. We developed two datasets
from game data that can be further used to explore activ-
ity recognition in games using spatiotemporal data. We plan
to make the data available for research based on a contract
agreement between different parties that own the data. In
future, we aim to tackle the issue of small dataset so that
models can learn the dynamics using little amount of data.
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