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Abstract

Academic procedural content generation (PCG) efforts often
yield plausible game content but stop short of fully integrat-
ing it into the games that inspired it. This misses opportuni-
ties to discover game- and platform-specific constraints that
were previously ignored in evaluations of playability (e.g.
how invisible objects in a level design are used to explicitly
control camera movement). Grappling with existing games
can ensure that the PCG community is solving realistic prob-
lems, rather than convenient abstractions of them. In this
paper, we use technical knowledge from the ROM hacking
community along with the WaveFunctionCollapse example-
driven generator to reinject controllably-generated level de-
signs into the commercial Super Metroid ROM image (rather
than a clone) for execution on physical Nintendo hardware.
Our work charts a path for more realistic evaluation of the
playability of generated content and highlights challenges for
deploying generative methods. These challenges can spark a
conversation about the ways that abstractions are used in PCG
research.

Introduction
Much of the literature in the field of procedural content
generation (PCG) is focused on the problem of generating
level designs for videogames (Shaker, Togelius, and Nel-
son 2016). These systems often attempt to generate level
designs in the same style of those in an existing, inspir-
ing game. Data from the original game is sometimes used
for training in a machine learning setup (Summerville et al.
2018). However, analyses of the expressive range of these
systems often treat the level designs as if they were images:
to be passively inspected relative to inspiring inputs or to
have item counts and geometric shapes quantified (Smith
and Whitehead 2010; Summerville 2018). This analysis only
speaks indirectly to playability concerns for the designs,
some of which can only be determined by playing through
each design in multiple or even all possible ways (Smith,
Butler, and Popovic 2013). While Mario-style levels can eas-
ily be injected into the open-source game clones like Infi-
nite Mario Bros (Persson 2009) / Infinite Tux (Lewis 2009),
gaps between these clones and their inspiration Super Mario
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Figure 1: Playing a computer-generated reinjected Super
Metroid room. The game is running on the Super Nintendo
Entertainment System, loaded from a Super EverDrive X6
flash cartridge.

Bros (Nintendo Co. Ltd. 1983) go unexamined. While work-
ing with the original level data as input provides one kind
of research challenge, making sure a generator can output
new level data that is perfectly compatible with (safe for
reinjection into) the inspiring game provides an orthogonal
challenge, one that has so far not yet been addressed by this
community.

In this paper, we demonstrate a technique for reinjecting
procedurally generated levels into Super Metroid (Nintendo
Co. Ltd. 1994). The generated levels can run on the orig-
inal physical Nintendo hardware, as seen in Figure 1. In
order to do this, we use knowledge from the ROM hack-
ing community to identify the format for various data struc-
tures within the game. We extract the original game data for
a single room of Super Metroid, then use WaveFunction-
Collapse (Karth and Smith 2021), an example-guided con-
strained content generator, to create a new room in the same
style. In particular, we apply constraints to the level design
to ensure the result is compatible with contextual details as-
sumed by the game. We then reverse the extraction process
to reinject the new content, replacing the original room with
the generated one. In addition to describing this pipeline
in detail, this paper also lays out some of the main chal-
lenges and benefits to content reinjection. The engineering
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challenges of using a particular PCG method that are often
abstracted away can actually expose important new research
questions.

Background
This paper uses traditional PCG methods in a new domain:
consuming and producing data that is directly compatible
with the data from an existing game.

Procedural Level Design
A 10-year retrospective on the Procedural Content Genera-
tion Workshop (Liapis 2020) identified Super Mario Bros as
the most common platformer game targeted. When projects
attempt to use data from this game or generate data for it,
an abstracted proxy has always been used instead. For ex-
ample, the Mario level designs available in the Video Game
Level Corpus (VGLC) represents human-transcribed level
designs in a simplified annotation format intended to ab-
stract across a few different games rather than being accurate
to any one of them(Summerville et al. 2016). Meanwhile,
when the playability of generated levels is assessed, it is ei-
ther done by simulation within the Java-clone Infinite Mario
Bros (Volz et al. 2018) or using a tile-level abstraction of the
game’s movement rules that simplifies out notions charac-
ter momentum (Cooper and Sarkar 2020). In work that tar-
gets Super Mario Bros by name, often Infinite Mario Bros
is quietly used as a replacement without mention of possi-
ble divergences (Lucas and Volz 2019). This approach was
codified in the design of the 2010 Mario AI Championship’s
level design track (Shaker et al. 2011; Togelius et al. 2013).
While using a shared testbed makes it easier to make certain
kinds of progress in PCG, it leaves room for gaps between
the clone and the original game to go unexamined.

Work that modifies the original Super Mario Bros ROM
is not unheard of. For example, demonstrations of the
Reveal-More (Chang, Aytemiz, and Smith 2019) system in-
volved manually injected changes. The same authors’ fol-
lowup (Chang and Smith 2020) further explored the non-
obvious implications of small design changes: moderately
altering gravity breaks a cutscene, rendering large parts of
the game unreachable. These projects show that the playa-
bility of a level design does not cleanly reduce to tile-level
reachability analysis. Even the idea of a level design as a grid
of tiles is itself an abstraction over the game’s actual data for-
mat. For example, in Super Mario Bros, extended horizon-
tal runs of tiles are a primitive design element (Altice 2017,
p. 133). The view of level designs offered by the VGLC sug-
gests more design flexibility than the original games actually
support while also not providing enough information to ac-
curately predict playability.

Instead of using this type of abstracted data, we work
directly with data from an existing game, Super Metroid.
The generator reads and writes data directly to and from the
ROM using an existing PCG method that can work accu-
rately with an unspecified data format.

WaveFunctionCollapse
To generate content that is compatible with existing games,
a generator must exactly reproduce the kind of data

already available for that game. WaveFunctionCollapse
(WFC) (Karth and Smith 2021) is an example-driven gen-
erator that uses existing game data to define the building
blocks and re-composition rules for freshly generated con-
tent. In particular, it is a constraint-solving method for which
it is easy to mark certain parts of a level design as pre-
designed and leave the remainder to the generator to fill in
in a plausible way. Compared to the use of long short-term
memory (LSTM) models (Summerville and Mateas 2016)
or as Multi-dimensional Markov Chains (MdMCs) (Snod-
grass and Ontanón 2017), WFC allows directly expressing
constraints over parts of the level design that are assumed to
be in place for the larger game to function properly. While
LSTMs and MdMCs can accomodate constrained tiles, that
information is only propagated in the direction of genera-
tion, creating a problem when only small parts of the level
are known rather than an entire prefix (refer to Figure 5).

For content reinjection, many different kinds of genera-
tors could be used, but it is important that they be strictly
guided by the original game data. In this case, a mistake
in a single bit can cause the game to crash or other unex-
pected behavior. Therefore, a generator that uses discrete
tiles is preferred. WFC is in use in several commercial
games, such as Caves of Qud (Freehold Games 2021) and
Bad North (Plausible Concept 2018), but this work repre-
sents the first effort to use WFC to reinject content into a
game not originally designed to showcase PCG.

ROM Hacking
Super Metroid is a platformer videogame released for the
Super Nintendo Entertainment System (SNES) in 1994.
Players must traverse a large world, collecting items, com-
pleting platforming challenges, and using weapons to de-
stroy enemies. Instead of being a single two-dimensional tile
grid, The game world is composed of many rooms connected
by doors. Figure 2 shows an example level.

Videogames like Super Metroid were commercially dis-
tributed in physical cartridges containing read-only memory
(ROM) chips with both executable code, as well as game
data. In the present, flashcarts (in which rewriteable mem-
ory chips replace the ROMs) are used to store ROM images,
and interface with the original hardware. Communities ex-
ist around making and distributing playable modifications
or hacks to these games.1

In order to reinject content into ROM images, we need
to understand the internal data formats used by the game.
In modern games, much of the content is stored in well-
documented shared data formats, but Super Metroid and
many older games use proprietary data formats that were
designed only for use in a single game and as a result are
poorly-documented. Fortunately, Super Metroid has a vi-
brant game-specific ROM hacking community.2 This group
of people has reverse-engineered the code to gain a deep un-
derstanding of the internal workings of the game.

This level of understanding has led to a significant non-
academic and non-commercial application of PCG: Item

1https://www.romhacking.net/
2https://metroidconstruction.com/
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Figure 2: Original room design from the commercial game, as seen in the SMILE RF editor. This primarily shows tile graphics
data, but any tile with a special Behind The Scenes (BTS) value shows the value in red, or has a green outline if it is a slope.
Enemies present in the room are not shown.

Figure 3: An example generated level, as viewed in the SMILE RF editor. The configurations of a few pinned tiles selected in
Figure 5 are constrained to match the original level design from Figure 2.

Randomizers. An Item Randomizer is a program that reads
in a clean game ROM, and produces a new ROM by mov-
ing collectible objects around in the game’s world.3 There is
typically logic to ensure that the new placements still result
in a playable (completable) game, but players must make
new choices about how to traverse the game world. Other
randomizers reconnect existing scenes in the game in new
ways to create new gameplay experience4. To our knowl-
edge, randomizers have not yet attempted to redesign indi-
vidual scenes at the level of visible tiles in the way that hun-
dreds of many manually created Super Metroid hacks have
done.5

Despite being almost 30 years old, Super Metroid is
still an actively modified game. For example, a recent and
glowingly-reviewed ROMhack, V I T A L I T Y,6 released
in 2020, has over 5700 downloads. Using content reinjection
we can use and evaluate academic PCG techniques while tar-
geting an audience much larger than that of many researcher-
made playable experiences (Treanor et al. 2017).

In this paper we deal with the problem of creating fresh
level designs at the tile level. By reading community-made
documentation and code, using community-made tools, and
learning from community members, we learned how to ex-
tract existing content and reinject novel content for Super

3For example http://randommetroidsolver.pythonanywhere.
com/ and https://dashrando.github.io/

4https://metroidconstruction.com/resource.php?id=102 https://
www.worldrandomizer.com/

5https://metroidconstruction.com/hacks.php
6https://metroidconstruction.com/hack.php?id=623

Metroid. The main challenge of content reinjection is in un-
derstanding a game’s native data format. For Super Metroid,
the internal workings of the game are now particularly well-
documented thanks to the extensive work of ROM hackers.
For other games, this type of knowledge may or may not be
accessible to researchers.

Content Reinjection Demonstration
This section describes how content reinjection is used to
demonstrate a kind of design randomization not yet seen in
the academic or ROM hacking communities. In particular,
the generator will:
• Use only tiles present in the original level design in plau-

sible combinations.
• Enforce the presence of doors and enemies at locations

assumed by other parts of the game we are not modifying.
• Yield a tile grid that can correctly load and execute on the

original console hardware.
In order to focus on interacting directly with the game

ROM, this specification of the problem does not require that
the level be traversible (e.g. in terms of reaching one door
from the other).

Data Format
Level data on the Super Metroid ROM is stored in a com-
pressed format (used by some other Nintendo games, in-
cluding Super Mario World) associated with the Lunar Com-
press tool.7 We can inspect and edit data in this format using

7https://fusoya.eludevisibility.org/lc/
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Figure 4: SMILE RF view of one screen of the original game
showing the placement of enemies on top of tile data. Ene-
mies are not moved in this paper’s experiments.

the Super Metroid Integrated Level Editor (ReFactored) or
SMILE RF tool created by Scyzer and Jathys.8

The decompressed level data is a 2-dimensional array of
tiles. Each tile in the decompressed room has up to 40 bits
of information, which comprise four main components. First
is the tile type, which sets the physical properties of the tile
like collision and destructibility. Second is the tile graphics,
which indexes into a room-specific graphics table (with up
to 1,024 entries). Third is the background graphics index (if
present). The last value is known to ROM hackers as “Be-
hind the Scenes” or BTS data. It further differentiates tiles of
the same type (e.g. differently shaped slope tiles). The BTS
value of a door tile controls which door transition is trig-
gered when the player enters it. Rooms are organized into
16×16 tile screens, with the typical room ranging from 1 to
30 screens.

Figure 2 shows an example room viewed with SMILE RF,
which shows the BTS layer with brightly-colored overlays.
Figure 4 shows a detail from SMILE RF, with enemy posi-
tions overlaid.

In addition to the compressed two-dimensional array of
tile data, each room in Super Metroid has additional infor-
mation, including (but not limited to) where to place spe-
cific types of enemies into the room, instructions for camera
movement within the room, and a table of door transitions
leaving the room and connecting to other rooms. Many exist-
ing randomizers focus only on modifying this room-header
data. Our present work focuses specifically on replacing the
tile data, without modifying these other tables. The curious
reader is encouraged to read about the Post-Load Modifica-
tion (PLM) system by which aspects of a level design can be
customized by code executed during live play of the game.9
This feature, which allows for arbitrary code execution on

8http://sadiztyk.metroidconstruction.com/
9https://metroidconstruction.com/SMMM/\#plm-set-pointer

Figure 5: Enemies in Super Metroid are not part of the tile
grid and cannot easily be generated using WFC. In order to
make a coherent and functioning room, we constrained the
locations of doors and enemies (shown as yellow tiles) to
match the data from the original room.

the SNES main processor, is not used in our current work.

Reinjection Pipeline
Our content reinjection pipeline begins by extracting the
original game data. We used SMILE RF to identify the mem-
ory address of the original level data for our specific target
room shown in Figure 2. This room, informally known as
the Crateria Gauntlet Entrance room, is often traversed from
left-to-right much like a Mario level, however it can also be
traversed in the opposite direction as the player continues
to explore the world after collecting items. We use WFC to
generate a new room, but add constraints that improve the
playability of the output.

The enemy set for a room is part of the room header infor-
mation. Since our generator does not modify this data struc-
ture, enemies in the generated room will appear in the same
positions as in the original room. In order to create a room
where enemy placements make sense, we constrain the level
data at each enemy position to match the original room (see
Figure 5). We also constrain the doors on either side of the
room, so that the player may enter and leave the generated
room. Enemy and door positions were obtained manually
rather than by the generator reading ROM data structures.

Of the possible 40-bit representations for each tile, there
are 71 unique tiles used in the original room. From these,
we produce the set of 2 × 2 overlapping tile patterns (329
unique combinations). We then use WFC10 (with the pinned
tile constraints) to generate a new room with the same shape
as the original room, the same pattern vocabulary, and using
patterns adjacent to one another in only combinations seen
in the original data. We used WFC with 2 × 2 tiles because
the destructible blocks in the original level are made of a
2× 2 pattern of tiles that cannot be coherently recombined.
Keeping the shape of the room the same is important for
two reasons. First, if the new room is smaller than the origi-
nal room, the game will crash after receiving less level data
than expected. Second, if the room is larger than the origi-
nal room, putting the new room back into the ROM might
overwrite and garble other level data unless we manually re-
allocate the other rooms.

After obtaining new grid of tiles using WFC, we compress
it, and write the compressed bytes back to the same loca-
tion in the ROM where the original level data came from.
Fortunately, the reverse-engineered compression algorithm

10We use the ASP-based rational reconstruction of WFC de-
scribed by Karth and Smith (2017).

175



Figure 6: Playing the generated room using the bsnes em-
ulator.

is more efficient than the original algorithm used to create
the game, so the generated level will usually be small enough
to fit back into the original location. To make the new room
easier to demonstrate on the SNES hardware, we made sev-
eral other small modifications to the ROM (adding starting
items so that the player can reach the modified level more
easily, and automatically skipping the lengthy Ceres Station
introduction and tutorial sequence for the same reason).

Figure 3 shows an image of a generated level design. Fig-
ure 6 shows an in-emulator screenshot from within the gen-
erated room. Figure 1 shows the game running on the orig-
inal SNES hardware. In pursuit of using the original hard-
ware to run generated content, our system for reinjection has
significant limitations. Our goal in this paper is not to pro-
vide a complete system for generating Super Metroid con-
tent, but rather to show that it can be done, and use the prob-
lems that we encountered to focus future research.

Benefits of Reinjection
The design of Super Metroid exposes some important new
facets of creating playable levels. While the WFC algorithm
creates a new level in the same style as the original at the
resolution of raw tiles, it does not consider the true gameplay
semantics. For example, Figure 7 shows a case where the
player can clip into the floor and become stuck while playing
a generated level.

Rather than viewing this glitch as a shortcoming of Su-
per Metroid, it actually exposes an important responsibility
for generators of playable levels. Prior work on Super Mario
Bros has largely assumed that the player occupies a single
tile at a time (Cooper and Sarkar 2020). In Super Metroid,
the player can change their hitbox shape in many ways (e.g.
the single-tile morph ball shape or the multi-tile spin-jump
shape), and this makes collision detection more complicated.
Generators need to be able to recognize and avoid problem-
atic platform placement. Specific examples of bad arrange-
ments might be found by reinjecting generated content back

Figure 7: The player can clip into the floor and become stuck
at one point in the generated level.

into the original game and testing it there (i.e. by execut-
ing the modified ROM in an emulator). Some types of level
design mistakes can only be detected by playing the levels.
Reinjection makes it possible to find these problems.

Content reinjection also makes it easier for us to play
our generated content while ensuring there are no deviations
from the original videogame. Even though it took significant
effort to learn the necessary technical knowledge, it would
have been much more challenging to create a reasonably
faithful Super Metroid approximation designed to showcase
procedurally-generated content.

There are entire game features that are discovered by do-
ing content reinjection that would otherwise be missed by
working with simplified game clones. For example, in Su-
per Metroid, each 16 × 16 tile section of each room has
a scroll value, which controls how the camera behaves in
that segment. Scroll values are used to create the experience
of discovering a hidden passageway by keeping the passage
offscreen until the player enters an invisible trigger in the
mouth of the passage that temporarily changes the scroll val-
ues.

A generator that creates playable Super Metroid levels
should be aware of existing scroll values, or consider how
to control the camera at the same time that it designs the
level geometry. Extra annotations like camera controls and
loading triggers are commonly used in contemporary games.
These examples show that there is a need for generators
to consider level data outside of the tile grid. By learning
about existing game data formats, PCG designers can dis-
cover other nonstandard types of content that could be gen-
erated in addition to level data.

Finally, the lack of available level data is a significant bot-
tleneck in certain types of PCG approaches. Learning exist-
ing game data formats also provides a way to automatically
extract level data, which can improve the diversity of level
design data sets, such as the Video Game Level Corpus.
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Conclusion
In this paper we demonstrate a pipeline for generating and
reinjecting content for Super Metroid. This technique can
be used to replace existing rooms with generated content,
which can be played on the original hardware (or in an
emulator). We also describe some of the benefits of con-
tent reinjection for Super Metroid, exposing new facets of
level design generation. External validity is a concept that
refers to the generalization of research findings to new set-
tings(L Mitchell and M Jolley 2010, p. 48). The external va-
lidity of PCG research relies on developing generation tech-
niques that can be successfully applied to existing games.
To ground our research in the cultural and technical back-
ground of the practice of games, we need generators that can
demonstrate the ability to handle real-world technical chal-
lenges by integrating into commercial games that were not
originally designed to be PCG demo platforms.
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