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Abstract 
HTN (Hierarchical Task Network) is a widespread technique 
in the game industry to achieve long-term behavior and smart 
intelligence in NPCs. However, in the more real-time games 
of recent years, a situation has emerged where the system is 
not functioning effectively. We understand the re-planning 
process is the fundamental problem of HTN in real-time 
games and propose a new method to solve this problem. 

Introduction   
In recent years, HTN (Hierarchical Task Network) has been 
known as a method to achieve long-term behavior with AI 
Characters in game. (Sterren 2013) (Humphreys 2013) 
(Straatman et. al 2013) The general HTN system allows for 
long-term thinking and consistent behavior, which in theory 
improves the player's gaming experience. However, HTN 
systems have several vulnerabilities: it can’t respond to 
changes in the environment; it can’t respond to events with 
stochastic behavior; and it can’t anticipate the behavior of 
opponents. (Soemers and Winands 2016) In a real-time 
game, HTN has failed to improve the quality of the game 
experience beyond what game developers expected because 
of these vulnerabilities. In order to overcome these problems, 
we propose a method called ART-HTN (Advanced Real-
Time Hierarchical Task Network) to improve long-term be-
havior for real-time games. 
  

   Background 
HTN allows NPCs to make smart long-term decisions. For 
example, in a sneaking game, the NPC can plan the safest 
route to take when entering a stage with many enemies or 
make smart long-term plans on how to kill enemies and 
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which items to pick up. Such long-term NPC behavior can 
improve the player's experience and make the NPCs seem 
intelligent if the game progresses as planned. However, in 
many real-time games, the environment is constantly chang-
ing and, over time, the situation can become completely dif-
ferent from what was originally planned, and HTN responds 
by remaking the plan in a process called re-planning. How-
ever, the more frequently re-planning is performed, the more 
the NPCs lose their ability of long-term thinking, and the 
closer they get to the kind of reactive behavior described in 
the FSM or BehaviorTree. In order to address this issue, 
ART-HTN will make several improvements. 
 

   Functions of ART-HTN 
The ART-HTN has three main functions: Simulation Plan-
ner, Multi Scenario Plan and Plan Executor. 
 

Simulation Planner 
In the planning process, we use the simulation-based plan 
generation method instead of the traditional symbolic plan-
ner. Since it is difficult to run a fast simulation with all the 
variables of a 3D game, we create a simple game model that 
extracts the main parameters that affect the game’s outcome 
and use this model for simulation-based planning. (Sailer, 
Buro and Lanctot 2007) Thus, the simulation planner can 
consider multiple candidate tasks in a specific situation, and 
these multiple tasks become branches of actions to form a 
multi-scenario plan. 
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Figure. 1: ST-Network 

Multi Scenario Plan 
In existing planning methods, plans are output as a single 
chain of tasks connected by Precondition and Effect. ART-
HTN replaces this single-chain planning structure with a 
planning structure that includes multiple branches. It func-
tions similarly to a game tree in a turn-based game, output-
ting paired data of situations and actions that show the out-
come if the AI character takes specific action in a particular 
situation. We call this data Situation Task Network or “ST-
Network” for short (Fig. 1). By exploring the network, the 
AI can calculate what actions would be effective in a given 
situation. 
 
Plan Executor 
The Plan Executor calculates the appropriate situation in the 
plan and enumerates nodes close to the current situation as 
transition candidates. Among them, it chooses the most ef-
fective action and decides on it. When it comes to the stage 
of actually executing actions, the game situation becomes 
even more granular. The Plan Executor is also responsible 
for resolving the details that are not included in the plan. It 
adds actions to the plan during the execution phase, adjusts 
the plan’s details to ground it in the actual game situation, 
and keeps the plan running. 
 

   Usecase of ART-HTN 
In this chapter, we introduce a concrete example of how the 
main functions of ART-HTN work together, using a robot 
game as the subject. The ART-HTN consists of two modules, 
the Planning System and the Plan Execution System. The 
Planning System generates the planning data, ST-Network, 
and passes it to the Plan Execution System. The Plan Exe-
cution System modifies the received ST-Network partially 
if necessary, makes a decision on the optimal move, and de-
composes the task registered in the ST- Network (which is 
data that indicates what action a particular character will 
take in a specific situation) into Operators that can be exe-
cuted in the game environment. The task is the simple beha- 

Figure. 2: Process of ART-HTN Systems 

vioral data for running the character in the simulator, while 
the Operator is the behavioral data for running the character 
in the actual game environment. The task contains only the 
essential processing related to victory and defeat, while the 
Operator contains many controls related to the expression of 
the game, such as the direction of the character's head and 
posture. 
 
 The Planning System consists of several subsystems, in-
cluding Goal Maker, High-Level Planner, and Simulation 
Planner. At the beginning of the planning process, the Goal 
Maker determines the plan's direction. The Planning System 
specifies the main goal and sub-goals to be achieved as 
much as possible and their importance. This goal acts as a 
success condition for the planning and as an evaluation func-
tion for the simulation. 
 
 The High-Level Planner is responsible for rough march 
plans for units and logistics plans such as fuel and ammuni-
tion supply. At points where the enemy is likely to be hiding, 
the simulation planner can be used to estimate the damage 
that would be sustained if the enemy were to engage at a 
certain point. 
 
 The Simulation Planner is primarily responsible for battle 
planning with the enemy. When it enters into an engagement 
with the enemy, or when the High-Level Planner wants to 
predict an engagement scenario, the Simulation Planner runs 
a battle simulation and generates a battle plan. The plan data 
is output as ST-Network and passed to the Plan Executor 
(Fig. 2). 
 
 After receiving the plan data, the Plan Executor's role is 
actually to move the game characters. The Plan Executor de-
composes the tasks contained in the Situation and generates 
Operators. The contents of the Operators are written with 
functions supported by the game engine and can be run with 
standard AI systems such as BehaviorTree and visual scripts. 
The Situation node of the ST-Network has multiple 
branches, and the Plan Executor can respond to changes in  
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Figure. 3: An example of Task Assigning 

 

the Situation without replanning, as long as the actions taken 
by the opposing players are included in the ST-Network 
branches. Due to the robustness of the Plan Executor, the 
Planning System can be executed somewhat independently 
of the actual game progress. This separation allows for a 
longer-term search for superior controls, such as spending a 
few seconds in a separate thread to search for advanced 
moves. 

   Battle Planning 
Battle Planning performed by Simulation Planner does not 
use symbolic planning but rather a state-space exploration 
using a simulator. The simulation is executed at a particular 
time step, and the actions of agents participating in the battle 
are represented by data called to task. It is a kind of combi-
natorial search problem: what task w should be assigned to 
friendly agent a at a specific time t, and what task w could 
be executed by enemy e at that time. We show an example 
of Task Assigning (Fig. 3). If the problem is solved by brute 
force, the number of combinations would be too large to be 
executed on a consumer game console. For this reason, we 
used three approaches to reduce the number of states to be 
searched: meaningful action selection, using opponent mod-
els with Composite Task, and symbol extraction. 

Meaningful Action Selection 
Given the nature of the game, actions such as moving a few 
meters to the left or right are not very effective in the Action 
or RTS games we are targeting. When developing enemies 
with scripts or BehaviorTree, game developers create char-
acter AI behaviors in large granular actions such as "ap-

proaching the opponent," "moving away from the oppo-
nent," and "searching for obstacles and hiding." In the state-
space search performed by our Simulation Planner, the gran-
ularity of the task to be searched is aligned to a semantically 
adequate size to prevent the search for meaningless states. 
In random action search, the number of states increases with 
meaningless actions such as stepping left or right, but since 
the tasks we search actions with meaningful granularity such 
as "approaching the opponent" or "moving away from the 
opponent," we can prevent unnecessary increases in the 
number of states. 

Using Opponent Models with Composite Task 
The Simulation Planner can handle two types of tasks: Prim-
itive Task, simple behavioral task, and Composite Task, hi-
erarchical task that can have other tasks as child task. If the 
Composite Task performs probabilistic state transitions, the 
Simulation Planner will copy the Composite Task for each 
state transition. It is possible to assign a new Task to an 
agent running a Composite Task, but to avoid a pointless 
increase in the number of states, the Composite Task can 
reject the assignment. This authority of Composite Task pre-
vents the problem of a "hide behind a cover and attack" task 
being replaced to a "get closer to the enemy" task while the 
character is moving and being canceled by another task be-
fore the Composite Task can have any beneficial effect. 

Symbol Extraction 
In symbolic planning systems used in the game industry, the 
state of the game is often represented by multiple tuples, 
called WorldState, and although there is no restriction on the 
type of tuple values in principle, bool-valued flags are often 
used for convenience. Our Simulation Planner uses state-
space search and works without symbolic planning control 
in principle. However, for advanced tactical actions such as 
"surround the enemy and then attack them all at once" or 
"separate the enemy forces by diversion and then destroy the 
main enemy force," symbol-based plan generation has ex-
cellent advantages. In order to introduce symbol control, we 
have prepared a helper class called Symbol Analyzer. The 
Symbol Analyzer determines whether or not a particular 
symbol is established in a Situation. For example, in the case 
of the encirclement analyzer, it judges whether or not the 
enemy is encircled based on the relative positions of friend 
and enemy. The engagement state analyzer determines 
whether a battle has started or not. The variables extracted 
by the Symbol Analyzer are saved as part of the Situation 
data and can be used when assigning tasks to each agent or 
determining the Composite Task conditions. 

210



 Simulation Planner uses these functions to perform a 
state-space search to find a state that satisfies the goal con-
dition and a path to get there. Once a sufficient amount of 
paths have been obtained, the evaluation value is calculated 
from the terminal node of the ST-Network, and the number 
of enemies destroyed and the number of friends destroyed is 
propagated backward from the terminal node to the starting 
node and included in the evaluation value of the intermedi-
ate node. 

   Game Development with Assistant AI 
ART-HTN does not use Machine Learning directly, but it is 
designed to work with Machine Learning to improve devel-
opment efficiency. In general, the bottleneck of machine 
learning using Neural Networks in consumer game develop-
ment is the slow update time of the game. Since a single 
frame update of a game includes various processes such as 
physics calculation, graphics, and animation, even if draw-
ing processes are disabled to increase the frame rate, it is 
difficult to disable model asset loading and animation up-
dates. Even when machine learning using the game applica-
tion itself is accelerated by disabling unnecessary functions 
such as graphics, the acceleration of FramePerSecond is 
limited to a few dozen times. Learning efficiency can be im-
proved by installing more expensive hardware than a typical 
development PC, but the development cost will be higher in 
this case. 
  
 In the ART-HTN system, the Planning System is usually 
linked to the game engine as a static library, but it can be run 
as a C++ program independent of the game engine if neces-
sary, so the Planning System by itself does not necessarily 
require the game engine. In addition, since the Simulation 
Planner does not have a drawing system and the Physics 
Simulation performed in the planner is extremely simple, 
the simulation can be performed much faster than running a 
game engine. Using Neural Network as the evaluation func-
tion of the Situation, the results of hundreds of hours of sim-
ulations can be used as the evaluation value. It is currently 
challenging to provide Neural Network-based decision-
making systems as a game feature because a general-pur-
pose Neural Network inference engine works on all gaming 
platforms such as PS5, XBOX Series X, Switch is not stand-
ard yet. However, it is becoming technically and cost feasi-
ble to utilize Neural Networks in the development process. 
The system design allows for Machine Learning with Neural 
Networks in the development process for level design, en-
emy AI adjustment, and balancing of weapon and armor pa-
rameters. 
 
 
 

Figure. 4: a screen shot of the original ART-HTN demo  

 

Figure. 5: a generated ST-Network on ART-HTN demo 

   Demonstration 
To verify ART-HTN, we made a 3D action game with ro-
bots. The robot, which has an ART-HTN system, fights with 
the other enemies (Fig. 4). In this demo, ART-HTN gener-
ates offensive and defensive plans and chooses defensive 
plan to survive. By firing smoke grenades to block the en-
emy’s view, the robot attempts to reduce the hit rate of the 
enemy’s attacks. ART-HTN generates ST-Network(Fig. 5) 
and predicts the wining-rate(blue-color) and defeat-rate(red-
color) of each Situation. The Executor chooses a better task. 

 

   Conclusion and Future Work 
It has been more than 15 years since F.E.A.R. (Orkin, J. 
2006) introduced the planning method to games in 2005. To-
day, the main memory of game consoles has increased more 
than tenfold, and CPU resources have increased as well. As 
a result, many of the memory constraints that existed then 
are no longer an issue now. Our system is still only able to 
compute one-on-one situations, but in the future, we would 
like to achieve higher-order tactical in situations where mul-
tiple agents are fighting and improve player’s game experi-
ence. 
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