

Social Modeling via Logic Programming in City of Gangsters

Robert Zubek1, Ian Horswill2, Ethan Robison3, Matthew Viglione1
1 SomaSim, 2 Northwestern University, 3 Naughty Dog

robert@somasim.com, ian@northwestern.edu, ethan@ethanrobison.com, matt@somasim.com

Abstract
City of Gangsters is a commercial strategy game with signif-
icant social modeling mechanics: it is a tycoon management
game, where the player needs to work their social connec-
tions with a network of roughly 1200 NPCs to get things
done, and NPC opinions about the player modulate the
player’s ability to succeed.
 We found logic programming to be well suited to our
knowledge representation problem, including the need to per-
form inferences over a relationship network with more than a
thousand active characters, and to provide the player with
meaningful feedback about the consequences of their actions
in the social space.
 In this paper we present the technical details of this social
modeling problem, the details of our logic programming im-
plementation, and how this interacts with the game’s design
and its social and material economies.

Introduction
City of Gangsters (CoG) is a commercial “mafia manage-
ment” game developed by SomaSim and collaborators, and
shipping in Q3 2021. Social interaction is foundational to
the game – many game mechanics are accessed via conver-
sations with NPCs, and modulated by the NPC’s stance to-
wards the player. Moreover, the player’s actions have social
consequences: news about what the player did spreads
through the social networks of interested characters, and
may impact how various people interact with the player in
the future.

This design necessitated the development of several inde-
pendent AI components, and in this paper we will discuss
two: a logic programming subsystem for social inference,
and the application of constraint satisfaction for procedural
content generation. These resulted in two success stories,
and one lesson in system limitations learned for the future.

About the Game
CoG is set in the 1920s USA during Prohibition, and the
player’s goal is to try their hand at building and running a

Copyright © 2021, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

successful but illicit alcohol empire that eventually takes
over the entire city. Alcohol production and distribution are
illegal at that time, and therefore highly profitable, and the
player’s job is to build and operate a variety of production
facilities, set up and manage supply chains, find trustworthy
customers, run distribution operations, expand their territory
and sphere of influence, and manage a ruthless crew that will
get all this done and keep other competing outfits at bay.

Since the core business operation is completely illegal,
the game relies on the black-market dynamics of the real
world, such as secrecy and relationship management: to get
anything done, “you gotta know a guy”. In order to buy il-
legal ingredients or sell off alcoholic beverages, you must
have contacts who trust you and who will work with you,
because nobody will deal with someone unknown who
could rat them out. Those contacts in turn can be built by
getting introduced by mutual friends, or by slowly building
up rapport over time – and easily destroyed through acts of
malice or thoughtlessness towards that person or people they
care about. Similarly, the game encodes a few social norms
appropriate for the setting, such as revenge (e.g., “you will
pay with an eye for an eye”), and familial reciprocity (e.g.,
“you helped my brother, and now I will help you”) which
are the focus of this paper.

Social and Material Economies
In CoG the player operates within a two-level economy. The
nominal level is the traditional material economy of a tycoon

Figure 1. Screenshot of City of Gangsters

Proceedings of the Seventeenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

(AIIDE 2021)

220

game, concerned with the optimization of resource produc-
tion, supply chains, deliveries, and cashflow.

But this rests on a foundation of a social economy of re-
lationships and favors. Buying, smuggling, running speak-
easies, and getting anything else done involves talking to
NPCs, and the player’s action space is shaped by the rela-
tionship with that person and any favors they owe. This web
of relationships is crucial to manage well, because most of
the important game systems are modulated by the social
economy. Not just business dealings, but also traditional
game systems like tech trees, level-ups, quests, loot drops,
and other systems, are accessed by talking to people and
modulated by relationships, and the player who rushes head-
long into combat, and makes enemies, will find themselves
quickly cut off from being able to get anything done.

Due to space constraints, we will limit our description of
the game to the above, but for more details about the game’s
design and how it interacted with AI development, please
see our parallel design paper (Robison et al. 2021). We also
only focus on social modeling here, and omit other AI com-
ponents used in this game, such as opponent AI that gangs
use for decision-making or combat. We welcome the inter-
ested reader to experience these directly in the game.

Social Modeling
Before we turn to the core issue of social inference, and the
additional issues of constraint satisfaction, let us briefly in-
troduce the social data model that forms the foundation.

The game presents the player with large, procedurally-
generated (PCG) cities. In addition to physical city genera-
tion, its population is also rendered via PCG to create a
large, “lived-in” social context of businesses, rival gangs,
troublemakers, and police officers, all interconnected via
webs of family ties and friendships, and presenting the
player with a variety of opportunities and challenges.

In the typical case, like the “Chicago” map, the city will
be populated by about 1200 NPCs which can interact with
the player and each other (plus a larger number of non-in-
teractive characters which only exist as “window dressing”,
and which will not be counted here). These NPCs are part of
long-standing families that may have been in the city for a
couple of generations, and a typical NPC will have a number
of siblings, cousins, and other family members in different
professions (legal, illegal, organized crime, law enforce-
ment, and so on).

Relationship Model
The graph of relationships linking everybody together is a
labeled, directed graph 𝐺 = 〈𝐶, 𝑅〉 where C is the set of
characters (player or NPC), and 𝑅 is the set of relationship
edges. Each 𝑟 ∈ 𝑅 is a tuple of the form 〈𝑥, 𝑦, 𝑡, 𝑣, 𝐻, 𝑐〉,
where:

• 𝑥, 𝑦 ∈ 𝐶, such that r models how x feels about y
• t is a relationship type (e.g., brother, friend, etc.)
• 𝑣 ∈ ℝ is a scalar valence value, with positive or neg-

ative values for positive or negative opinions
• 𝐻 is the history affecting the relationship (described

below)
• 𝑐 is our stand-in for extra context data that is used by

the game but is not germane to this discussion
Consequently, each relationship edge is dyadic and unidi-

rectional, to represent the basic asymmetry of interpersonal
opinions. Edges are only added for characters who know
each other (either from existing PCG connections, or be-
cause they’ve become acquainted at runtime), and when two
characters meet, each of them adds a corresponding relation-
ship, e.g. when 𝑥 and 𝑦 meet, both 𝑥 → 𝑦 and 𝑦 → 𝑥 edges
are added separately.
History Elements
Each relationship is annotated with a history of events that
influence the relationship. Each history H can be considered
as a list of history elements 𝐻 = {ℎ0, … , ℎ𝑛}, which may be
empty, and each element is a tuple of the form: ℎ =
〈Δ𝑣, 𝑎, 𝑡, 𝑥, 𝑒, 𝑐〉 where:

• Δ𝑣 ∈ ℝ is the change in valence due to this element
• 𝑎 ∈ 𝐶 is the actor and 𝑡 ∈ 𝐶 is the target
• 𝑥 is an optional expiration time for this element
• 𝑒 is a set of text strings, for in-character and out-of-

character explanations of this action’s effect on the
relationship valence

• 𝑐 is additional context (e.g., which quest spawned
this history item) which is not material here

Actor and target elements are optional and can be left
empty, which creates two slightly different flavors of history
elements. The simpler flavor is just a “buff”, which comes
with just a valence modifier, an optional expiration, and a
human-readable explanation. For example, a simple buff
might be explained to the user as “+5 due to trait: friendly”
or “-15: they just don’t like the look of you (for another 3
turns / 15 days)”. Expiration allows for encoding of both
episodic and semantic knowledge, i.e., some memories will
be transient (e.g., being threatened), while some will relate
to immutable facts (e.g., this person is family).

The more interesting flavor is an “external action” ele-
ment. This one extends the “buff” flavor with pointers to the
actor and target. For example, a social history element
might include the player as the actor and some third party as
the target, and be explained to the player as: “-10: they
heard that you beat up their family member”. Figure 2 illus-
trates these kinds of history elements annotating a dyadic
relationship.
Relationship Valence
Valence is a scalar which is typically in the range [-50, 50]
(corresponding to negative-to-positive feeling), and is cal-
culated from relationship history, i.e., 𝑣 = ∑ Δ𝑣ℎℎ∈𝐻 .

221

This valence is the common (but not sole) driver enabling
and disabling various opportunities. For example, as the
player travels around the game world, they can chat up store
owners or their local beat cop, but if the relationship is
merely neutral, they can’t expect to get very far. However,
as the player works on improving the relationships, NPCs
may drop their façade and start letting the player know about
other, less public information: business owners may talk
about buying or selling illegal alcohols, or the beat cop
might indicate willingness to take a bribe. A particularly
good relationship with someone starts accruing favors,
which can be redeemed for opportunities: warm introduc-
tions to useful people, actions that expand the player’s terri-
tory, leads on ruffians to hire as crew, and many more.
Model Consequences
Each social history element can be considered as tetradic:
it’s applied to the dyadic relationship, but it can also refer-
ence an optional third and fourth party. This is useful for
representing a history of the player doing something to
someone, which affected the relationship between the player
and some other people (or maybe some other unrelated pair
of people).

Taken to its extreme, having a list of tetradic annotations
on each relationship means that each relationship, nominally
dyadic, can be essentially n-ary – it is influenced by a his-
tory of interactions between an arbitrary number of agents.
Furthermore, because of expiration timestamps, the arity
and valence of the relationship change fluidly over time. It’s
a powerful construct on which we lean heavily.

This enables the desirable “you gotta know a guy” kind
of gameplay. In order to keep the action space open, the
player needs to continually build new relationships, and try
to affect existing relationships by doing things that those
NPCs might appreciate: for example, if the player has only

one supplier of a key ingredient, they may wish to keep them
happy such as by agreeing to their quests or by hiring their
family as crew members. And because of different expira-
tion horizons, the total relationship valence will naturally
ebb over time if left unattended.

Consequently, one of the major strategies in the game is
working the social network – that is, building up relation-
ships with a range of people, finding opportunities to make
them happy, pushing them to gain favors, and then redeem-
ing those favors for additional introductions to other useful
people, which will reveal a breadth of new opportunities and
open many new doors for the player.

Social Inference
We can now return to effects such as “you will pay with an
eye for an eye”, or “you helped my brother”. These are the
kinds of indirect effects where the player’s (or anyone’s) ac-
tions on one person can affect their standing with another
person, perhaps someone who they didn’t even know ex-
isted, by inserting relevant history elements.

Here is one example of this effect, observed in a recent
play-through. The human player started extorting businesses
in his territory, as gangsters do, but as he drove around to a
different part of town a little bit later, suddenly he got am-
bushed and attacked by a previously-unknown corner hooli-
gan. A quick conversation showed that the hooligan was the
brother of one of the people who was extorted, and he didn’t
take it lightly.

Under the hood, the news of the player’s extortion propa-
gated to the target’s family members, and that was enough
for the hooligan brother to build a one-sided negative rela-
tionship towards the player, before the player ever had a
chance to meet him.

Figure 2. Relationship between three people, with history of buffs and social actions. Left: simple buffs.

Right: social action between Bob and Chris affecting relationship between Alice and Bob, with player-facing copy.

222

These kinds of effects are implemented by having the sys-
tem observe activities in the world, and then change rela-
tionships between the actor and other relevant NPCs by
stacking on new social history elements on those relation-
ships. This is done in three steps: querying the relationship
knowledge graph to see if some specific patterns have been
detected, figuring out how to respond, and finally modifying
the relevant relationship and possibly informing the player.

We wanted to implement querying and response as ge-
neric rules, so that we could apply them broadly across var-
ious situations.

Logic Programming and Social Inference
Logic programming languages allow algorithms and data to
be expressed in a logic-like formalism. In its simplest form,
the author provides basic facts and rules encoded as first-
order Horn clauses. The equivalent of subroutines are pred-
icates, and calls to predicates are treated as queries to find
values of the variables in the query that will make the query
true. Queries can also be used as iterators to find all possible
solutions to the query.
 Logic programs can be interfaced to the game’s native
data structures by writing a small number of primitive pred-
icates in the host language (C#) to perform low-level queries
of the game state. High-level queries and inference rules can
then be written against these primitives. The system exe-
cutes them automatically, without the need to write bespoke
loops. If the organization of the low-level data is changed,
the primitives can be updated, without having to change the
high-level code.
Social Norm Encoding
We encoded our social norms as logic rules, which scan the
relationship graph for specific link structure that spans any
kinds of persons. For example, a rule like “eye for an eye”
could be cast as the rule: X should retaliate against Y if Y
committed a violent action A against some member F of X’s
family. The game can then periodically query: find all X,Y
such that X should retaliate against Y.

 Queries of rules like this are performed routinely in re-
sponse to character actions. Most fail, but when matches are
found, the main game takes the appropriate action. In this
case, the result would be to add a new element to the rela-
tionship between persons X and Y with a drastically nega-
tive valence.

BotL
Queries and inference rules are written in BotL, a logic pro-
gramming language designed by Ian Horswill for real-time
execution inside game engines. BotL was originally de-
signed with two goals in mind: to be a more accessible
Prolog for an undergraduate class on social simulation, and
to be a proof of concept that logic programming could be
sufficiently performant for a real-time game with hundreds
or thousands of NPCs. From early on in CoG prototyping,
we had been considering using logic programming, but had
found existing implementations inappropriate for perfor-
mance or interoperability reasons. BotL makes a number of
departures from traditional LP systems to allow this.
 Unified object system. BotL and the underlying game
engine share a single object system and memory manager,
namely the Common Language Runtime (Miller &
Ragsdale, 2004) on which the Unity3D (Unity
Technologies, 2004) game engine is built. LP languages tra-
ditionally use bespoke object representations and memory
managers, meaning there are then two heaps, two garbage
collectors, many stacks, and two radically different repre-
sentations of objects. When interoperating with C or C#
code, each codebase must understand both implementations.
All other changes listed below are either forced by or ena-
bled by this design constraint.
 Compound objects are opaque to the unifier. Forcing
the logic programming system to use the native object sys-
tem makes standard Prolog-style data structures impossible.
In particular, (1) logic variables cannot be embedded in
compound objects such as arrays and record types, and (2)
the unifier cannot look inside compound objects for the pur-

// inference about violence goes along family links of any valence
socialInference(Interlocutor, Target, Human, $SocialLink.Family, "violence", "violence-inf") <--
 linkedVia(Interlocutor, Target, $SocialLink.Family),
 historyIncludes(Target, Human, "violence");

// respect from helping someone else (i.e. finishing a quest) follows all links
socialInference(Interlocutor, Target, Human, AnyLink, "quest-complete", "quest-complete-inf") <--
 linkedVia(Interlocutor, Target, AnyLink),
 historyIncludes(Target, Human, "quest-complete");

// X and Y have EventType in their history together
historyIncludes(X, Y, EventType) <-- historyExists(X, Y, History), includes(History, EventType);

Figure 3. Two examples of relationship-specific queries in BotL (edited for clarity).

223

pose of pattern matching. The language thus bears superfi-
cial similarities to DATALOG (Greco, 2015). Since previ-
ous social simulation systems (Samuel, et al. 2015; McCoy,
et al. 2012; McCoy, et al. 2011; Evans, Short 2014; Evans
2009) didn’t allow this either, it was not a problem for our
use cases.
 Higher-order predicates are macros. The lack of sup-
port for traditional Prolog data structures means BotL is not
fully homoiconic (Kay, 1969). This means that higher-order
predicates, which take abstract syntax trees of source code
and execute them at run-time, cannot be implemented. BotL
mitigates this limitation by allowing higher-order predicates
as compile-time macros that perform source-to-source trans-
formation into equivalent first-order code. These are used to
implement: logical connectives (and/or/not); so-called “all-
solutions” predicates that, given a query to perform, gener-
ate a collection of all unique solutions to the query; aggre-
gation predicates that fold a function over all solutions to a
query; and optimization predicates that find the minimal or
maximal solution to some query given an objective function.
 Support for functional expression. Since BotL does not
support the use of function terms as record constructors
(“structures” in Prolog), functional expressions are free to
be used to represent traditional function calls. In Prolog, the
call p(f(1)) would call predicate p with a record structure
of type f containing the single slot 1. In BotL, it means to
call the function f with 1 as an argument and pass its return
value as an argument to the predicate p. There is also sup-
port for calling user-defined predicates intended to denote
functions in functional style: if f(I,O) is a two-argument
predicate intended to represent a function from I to O, the
expression p(f(1)) will be converted by the compiler into
the conjunction: f(1, Temp), p(Temp).
 Static memory allocation. The primary performance
constraints on the BotL implementation were that (1) it run
in a small memory footprint, so it could be deployed to con-
soles and mobile devices, and (2) that it never trigger a gar-
bage collection, since GC causes dropped frames, which in
turn cause complaints from reviewers and users. On the one
hand, logic programming languages are a good match for
this application because they fully obey stack discipline:
when the system backtracks, all memory allocated since the
choice point being backtracked can be freed as a block. On
the other hand, modern host language VMs such as the CLR
and the JVM severely limit what kinds of data can be stack
allocated. As a result, the BotL VM maintains its own stacks
for all its internal data structures. These stacks are statically
allocated, meaning that once the VM itself is instantiated,
further calls into BotL code effectively run in constant
space.
 Hybrid logic/functional VM. BotL runs in an exotic
byte-coded virtual machine. It is a variation of the Vienna
Abstract Machine (Krall & Neumerkel, 1990), specifically

VAM2P, augmented with a separate instruction set for eval-
uating functional expressions that appears as arguments in
predicate calls.
 Calling sequences for logic programming involve the
caller pushing arguments on the call stack and the callee
then rescanning those arguments to determine if they match
the argument pattern of the left-hand side of rule from which
they are compiled. If so, the callee’s code continues on to
call the predicates making up the right-hand side of the rule.
If not, the system tries the next rule for the predicate being
called. Compiled rules therefore have the structure of a se-
ries of match opcodes followed by a series of calling op-
codes.
 Following the VAM2P, BotL runs these two sections in
lock step: it runs the push opcodes of the caller synchro-
nously with the corresponding match opcode of the callee;
the VM maintains two program counters: one for the caller
and one for the callee, and the inner loop of the VM dis-
patches not on a single opcode but on the (caller-opcode,
callee-opcode) pair. This allows the system to determine at
run-time that a given argument need not be computed be-
cause it will be matched with a wildcard on the other side. It
also allows for early outs from pattern matching: if the first
argument does not match, the subsequent arguments are
never even pushed on the stack.
Benefits of Logic Programming
Logic programming allowed us to formulate our social
norms as queries on a city-wide knowledge graph, using a
logical form decoupled from the game internals. This had
several positive effects:

• Hiding execution details: letting us focus on the spe-
cific patterns we wanted to detect, instead of devel-
oping code for traversing data structures

• Iteration robustness: queries written in a domain-spe-
cific language (DSL) were easy to modify and extend
as design changed

• Code separation: changing game internals required
modifying only the primitive predicates, not the in-
ference rules or queries

Additionally, the developer-cost profile of this setup was
very encouraging: even though there was a one-time cost to
integrating BotL into the game, once that was done, adding
or changing inferences in the existing setup had negligible
marginal costs.

Constraint Satisfaction
Another logic-based AI system employed in CoG was the
constraint satisfaction system CatSAT (Horswill, 2018),
which is a highly-performant randomized solver for an ASP-
like language.

Procedural content generation is a natural application for
constraint solvers, as PCG content typically needs to satisfy

224

a variety of simultaneous positive or negative constraints. In
our case, we used the solver in two specific cases: generat-
ing personality traits, and generating family members over
time.
Personality Trait Generation
CoG uses PCG to generate physical cities, and also to pop-
ulate them with entire families of interconnected individu-
als. We needed these individuals to have personality traits,
following some specific desiderata:

• Each individual gets 𝑛 ≈ 3 unique traits from a bag
of 𝑚 ≈ 20 total traits

• Some traits are incompatible with others and must
not be picked at the same time

• Some traits entail others and must be picked together
• Trait inheritance: some random traits from parents

will be selected and must be included in the solution
This problem forms a natural fit for constraint satisfac-

tion, and was successfully used to generate all traits for all
characters, giving them coherent personalities as well as
long-term patterns that are shared among family members.
Population Generation
In addition to trait generation for individuals, we experi-
mented with using the solver to generate entire populations
of individuals, by generating families from random individ-
uals using constraints such as age (children need to be suffi-
ciently younger from their parents and separated from each
other), setting-appropriate marriages (they needed to have
similar age, similar ethnicity, and opposite gender), and so
on.

Interestingly, this approach was not successful. The com-
putational problem of building 100+ family trees containing
1200+ people, connected via intermarriages that simultane-
ously satisfied the various constraints, was too large for the
solver to run within acceptable performance bounds. In the
end, we took this as a lesson about what kinds of problems
are the best fit for solvers – and instead re-implemented fam-
ily generation as forward-simulation over a period of several
generations.

Related Work
The last decade has seen a growth of interest in social sim-
ulation in game AI. Recent systems can be divided roughly
into reputation systems (Sellers, 2008), large-scale simula-
tions with hundreds of NPCs (Adams & Adams, 2006;
Ryan, 2018), which use forward-simulation, and smaller-
scale systems with 5-20 NPCs, which use symbolic reason-
ing (McCoy, et al. 2012; McCoy, et al. 2011; Samuel, et al.
2015; Evans, Short 2014). The Sims 3 (Evans, 2009) is an
interesting transitional case, as it used both forward simula-
tion and a simple rule-based system, although detailed social
simulation was only performed on the characters in the cur-
rent “lot.” CoG supports significantly more characters than

any of these systems and demonstrates that symbolic rea-
soning can be scaled to much larger groups. Of these sys-
tems, CoG is most similar to Versu (Evans & Short, 2014)
and CiF/Ensemble (Samuel, et al. 2015).
 Versu is implemented in what can generally be considered
a logic programming language, Praxis (Evans & Short,
2014). Versu also heavily emphasizes characters’ evalua-
tions of one anothers’ actions. It differs from CoG in the
logic on which it is based (eremic logic (Evans, 2010) rather
than FOL), its smaller scale, and its genre (interactive fiction
rather than a tycoon game).
 Like CoG, CiF (McCoy, et al. 2011), and its successor,
Ensemble (Samuel, et al. 2015), represent social state in
terms of a weighted graph of relationships and a history of
social actions, then query that using symbolic rules. They
differ from CoG in that they implement a much more com-
plex social simulation (hundreds of rules rather than tens)
for a much smaller group of characters (tens rather than a
thousand). And as befits a puzzle game, Prom Week focuses
less on explaining the causes of NPC responses than does
CoG.
 Finally, the arguments made here for logic programming
are very similar to the arguments made in entity-component
systems (Bilas, 2002) for placing all game objects in a rela-
tional database: the use of a general query language allows
developers to quickly react to design changes. However, the
architecture used here shows that such query languages can
be supported without having to literally store all game state
in a database.

Conclusions
The resulting system exceeded our expectations. It allowed
for a city with a very rich, “lived-in” feel, where everything
gets entangled in the webs of relationships and interpersonal
histories. For the player, these effects are impossible to es-
cape, and present interesting challenges and opportunities.

As for the technical approach, LP proved to be a very ef-
fective solution. BotL was robust to unexpected design
changes, and allowed for easy extensions. In fact, the use of
LP opened up additional design options – once we had a sys-
tem that worked well and was easy to extend, we decided to
double down on these social mechanics and use them more
widely than we initially planned, with excellent outcomes.

However, the use of a LP system is not without its chal-
lenges. Perhaps the main challenge is that both the initial
integration and the continuing use require someone with ap-
propriate expertise in AI and LP specifically. This can be a
great opportunity for collaboration with academia, but oth-
erwise might present a staffing difficulty. Secondly, the
standard challenge of embedded DSLs applies: they are ex-
ogenous to popular game engines, and their lack of debug-
ging and tracing tooling provides integration challenges.

225

References
Adams, T., & Adams, Z. 2006. Slaves to Armok: God of
Blood Chapter II: Dwarf Fortress. Bay 12 Games.
Bilas, S. 2002. A Data-Driven Game Object System. In
Game Developer’s Conference (GDC 2002). San Francisco.
Evans, R. 2009. AI Challenges in Sims 3. In Artificial
Intelligence and Interactive Digital Entertainment.
Stanford, CA: AAAI Press.
Evans, R. 2010. Introducing Exclusion Logic as a Deontic
Logic. In Deontic Logic in Computer Science, Proceedings
of the 10th International Conference, DEON 2010, Lecture
Notes in Computer Science Volume 6181 (pp. 179–195).
Fiesole, Italy: Springer.
Evans, R., & Short, E. 2014. Versu - A Simulationist
Storytelling System. IEEE Transactions on Computational
Intelligence and AI in Games, 6(2), 113–130.
Greco, S. 2015. Datalog and Logic Databases. Morgan &
Claypool.
Horswill, I. 2018. CatSAT: A Practical, Embedded, SAT
Language for Runtime PCG. In AIIDE-18. AAAI Press.
Kay, A. 1969. The Reactive Engine. University of Utah.
Krall, A., & Neumerkel, U. 1990. The Vienna Abstract
Machine. In International Workshop on Programming
Language Implementation and Logic Programming. PLIP
1990. Lecture Notes in Computer Science, vol. 456. Berlin,
Heidelberg: Springer.
McCoy, Josh, Treanor, M., Samuel, B., & Reed, A. A. 2012.
Prom Week. Santa Cruz, California: Expressive Inteligence
Studio at UC Santa Cruz.
McCoy, Joshua, Treanor, M., Samuel, B., Wardrip-Fruin,
N., & Mateas, M. 2011. Comme il Faut: A System for
Authoring Playable Social Models. In V. Bulitko & M. O.
Riedl (Eds.), Proceedings of the 7th AI and Interactive
Digital Entertainment. Stanford, CA: AAAI Press.
Miller, J. S., & Ragsdale, S. 2004. The Common Language
Infrastructure Annotated Standard. Addison-Wesley.
Robison, E., Viglione, M., Zubek. R., Horswill, I. 2021. AI
Design Lessons for Social Modeling at Scale. Forthcoming.
Ryan, J. 2018. Curating Simulated Storyworlds. University
of California, Santa Cruz.
Samuel, B., Reed, A. A., Maddaloni, P., Mateas, M., &
Wardrip-Fruin, N. 2015. The Ensemble Engine: Next-
Generation Social Physics. In Proceedings of the 10th
International Conference on the Foundations of Digital
Games (FDG 2015) (pp. 22–25).
Sellers, M. 2008. Otello: A next-generation reputation
system for humans and npcs. In Proceedings of the 4th
Artificial Intelligence and Interactive Digital Entertainment
Conference, AIIDE 2008 (pp. 149–154).
Unity Technologies. 2004. Unity 3D. San Francisco, CA.

226

