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Abstract

This paper addresses the problem of dynamically assigning
tasks to a crowd consisting of AI and human workers. Cur-
rently, crowdsourcing the creation of AI programs is a com-
mon practice. To apply such kinds of AI programs to the set of
tasks, we often take the “all-or-nothing” approach that waits
for the AI to be good enough. However, this approach may
prevent us from exploiting the answers provided by the AI
until the process is completed, and also prevents the explo-
ration of different AI candidates. Therefore, integrating the
created AI, both with other AIs and human computation, to
obtain a more efficient human–AI team is not trivial. In this
paper, we propose a method that addresses these issues by
adopting a “divide-and-conquer” strategy for AI worker eval-
uation. Here, the assignment is optimal when the number of
task assignments to humans is minimal, as long as the final re-
sults satisfy a given quality requirement. This paper presents
some theoretical analyses of the proposed method and an ex-
tensive set of experiments conducted with open benchmarks
and real-world datasets. The results show that the algorithm
can assign many more tasks than the baselines to AI when it
is difficult for AIs to satisfy the quality requirement for the
whole set of tasks. They also show that it can flexibly change
the number of tasks assigned to multiple AI workers in accor-
dance with the performance of the available AI workers.

Introduction
Recently, the creation of AI programs has been out-
sourced using crowdsourcing platforms such as Kaggle1

and AIcrowd2. In this context, volunteers with expertise in
IT actively develop software to solve real-world problems,
such as natural disaster situations. These platforms provide a
means for people unfamiliar with the complexities of AI im-
plementation to enjoy the benefits of AI in processing their
tasks.

Meanwhile, crowdsourcing platforms that utilize human
workers, such as Amazon Mechanical Turk, can similarly
process the tasks. However, there are few insights into how
to combine these two types of resources in processing a
fixed number of tasks to obtain high-quality data. Our goal
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Figure 1: Our proposed method gradually assigns tasks to
AI workers in the Human+AI crowd via the “divide-and-
conquer” strategy while satisfying the quality requirement.
Thus, it reduces human worker efforts better than do “all-
or-nothing” strategies, such as active learning-based assign-
ments.

is to provide an approach for integrating the power of human
workers and AIs in practical settings.

This paper deals with the following problem: Given a set
T = {t1, . . . tM} of classification tasks (e.g., image label-
ing) and a quality requirement q, we want to find the op-
timal assignment of tasks to humans and AIs. We say the
assignment is optimal when the number of tasks assigned to
humans is minimized (and therefore the number of tasks as-
signed to AIs is maximized) under the condition that the an-
swers of the workers satisfy the quality requirement q given
by the requesters. The task assignment will be decided incre-
mentally, and the tasks completed by humans can be used as
training and test datasets for AIs. Therefore, the main con-
cern in this situation is the prioritization of tasks. As studies
on active learning have demonstrated, the order of tasks sig-
nificantly affects the quality of AIs trained using those tasks.
Such a setting is especially important when we have limited
human resources, or we urgently need to obtain the task re-
sults with the help of AI in a domain that may have insuffi-
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cient training data, such as in natural disaster situations.
A typical approach to prioritize tasks is to apply active

learning to decide which tasks should be performed by hu-
mans (Zhu et al. 2010). In this method, to guarantee the
quality of the AI, we need to assign some random tasks to
humans to create a test dataset. When the AI undergoing ac-
tive learning satisfies the quality requirement q on the test
dataset, we can assign all of the remaining tasks to the AI
(Figure 1 (Top)). However, this approach has the following
shortcomings: (1) The method assigns tasks to AIs by the
“all-or-nothing” strategy; consequently, we cannot exploit
any of the benefits of the AI before the AI is accepted. (2)
The method assumes a single particular active learning ML
model; consequently, we cannot leverage many other AIs in
the crowd, and such the process is clearly not scalable.

In this paper, we propose a method that addresses these
potential issues by adopting a “divide-and-conquer” strat-
egy. The core idea of the proposed method is to evaluate the
quality of an AI partially on subsets of tasks that the AI clas-
sified into the same class, which we call task clusters. The
proposed method decides to assign tasks in a task cluster to
an AI if the AI satisfies a sufficient quality on the tasks in
the task cluster (Figure 1 (Bottom)). Using this strategy, we
can decide the assignment of AI-easy tasks to the AIs earlier,
meaning that we are able to exploit the AI’s answers before
the entire set of tasks T is completed (which addresses short-
coming (1) listed above). Additionally, the proposed algo-
rithm does not depend on a single active learning ML model
but can take many different black-box AIs, which we call
AI workers3. They can join or leave at any time during the
assignment process. In the proposed method, the output of
the AI workers is transformed into task clusters and evalu-
ated individually. Therefore, the participation of multiple AI
workers is handled naturally as a set of task clusters and is
used to find a better solution, which addresses shortcoming
(2) listed above.

The contributions of this paper are as follows:
(1) Human+AI Crowd Task Assignment Problem: This
paper introduces a novel human+AI crowd task assignment
problem (HACTAP) that assigns a fixed set of given tasks
to human and AI workers. This problem differs from ac-
tive learning problems in that we must determine which data
items should be given labels by AI workers. In addition, we
must guarantee the quality requirement of the requesters.
(2) Task Assignment Algorithms with Theoretical Guar-
antees: We propose algorithms that provide solutions to the
HACTAP with some theoretical guarantees, assuming that
the probability distribution of accuracy can be estimated
with beta distributions.
(3) Extensive Set of Experiments using Open Benchmark
and Real-world Datasets: We conducted an extensive set of
experiments using open benchmark and real-world datasets.
The results show that our algorithm can assign many more
tasks than baselines (including the active learning-based
method (Zhu et al. 2010)) to AI when it is difficult for AIs to

3We use the term ‘AI’ in the broad sense; AI workers are soft-
ware agents based on any algorithms, including rule-based and ma-
chine learning algorithms.

satisfy the quality requirement for the whole set of tasks and
that the algorithm can flexibly change the number of tasks
assigned to multiple black-box AI workers, in accordance
with the performance of available AI workers. Our code and
the data used in the experiments are available on GitHub4.

Related Work

There has been some research related to the issues discussed
in this paper. First, active learning (Settles 2009; Yan et al.
2011) is related to our problem in the sense that both algo-
rithms are designed to determine which data items should
be labeled by humans. Because the essential purpose of ac-
tive learning is to maximize the performance of the machine
learning model with a given budget (Kutsuna et al. 2012;
Yang et al. 2018), active learning is a less effective solu-
tion for problems with a fixed number of tasks (Jörger, Baba,
and Kashima 2016). In the experiment in Section , we show
that active learning cannot fully exploit the power of the AI
crowd even if we combine them using ensemble methods.

Second, ensemble learning is also related to our problem
because it examines the outputs of multiple AI programs to
generate an aggregate result (Beluch et al. 2018). Ensemble
learning unifies all the AI workers to be a single AI worker,
which leads to an “all-or-nothing” scheme in the assignment
for the human+AI crowd. Because we consider a dynamic
assignment of workers in our problem, we should assign
easy tasks to the AI workers early in the process so that the
human workers can focus on the AI-hard tasks. To address
this point, the proposed method examines the individual out-
puts of each AI worker.

There are different patterns of human–machine collabo-
ration for solving real-world problems (Kamar, Hacker, and
Horvitz 2012; Russakovsky, Li, and Fei-Fei 2015; Chandra
et al. 2020; Arous et al. 2021) while reducing human worker
efforts (Yi et al. 2012). A typical approach is to use AI pro-
grams to identify data items that require attention from hu-
man workers (Nguyen, Wallace, and Lease 2015; Yang et al.
2019; Wilder, Horvitz, and Kamar 2020; Liu et al. 2020).
Building a specific ML model that can output rejection to
avoid missing classifications (Herbei and Wegkamp 2006)
may also help determine human worker assignments. Train-
ing humans, such as crowd workers using an AI’s output, is
also an interesting application of human–machine collabora-
tion (Abad, Nabi, and Moschitti 2017; Honeycutt, Nourani,
and Ragan 2020; Wang and Sun 2021). In contrast, our ap-
proach identifies data items that can be processed using AI
programs. We consider these two approaches to be comple-
mentary.

There is another approach to aggregate task results by post
hoc label grouping (Chang, Amershi, and Kamar 2017): fine
data clusters can be generated based on the nature of the
data rather than using the actual fixed number of classes or
the type of labels from workers. This concept can be applied
to accept more task clusters from AI workers.

4https://github.com/crowd4u/HACTAP-Framework
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Figure 2: Left: Finding task ”clusters” for which AI workers return high-quality results. Right: Our proposed methods assign
tasks to human and AI workers (task cluster-wise) while keeping the quality requirement.

Section Notation Description
3.1 T = {t1, · · · , tM} A set of given multiple classification tasks with N classes.
3.1 A = {a1, . . . , aN} A set of the classes (labels)
3.1 W = {w1, w2, . . .}, where wi : T → N A set of AI workers implementing any algorithms such as un-

supervised, supervised, and rule-based algorithms. Here, we de-
note each AI worker wi as a function that returns a natural num-
ber representing a cluster assigned by the AI worker to a given
task.

3.2 Rwi
= {(tj , tk) | wi(tj) = wi(tk)} The equivalence relation in the set of tasks T by the AI worker

wi where wi(t) is the label given to t by wi.
3.2 Cwi = T/Rwi A set of task clusters wi generates. We define Cwi as the set of

sets of tasks with the same predicted label derived by the equiv-
alence relation Rwi

.
3.2 C =

⋃
wi∈W Cwi All task clusters from W at the current assignment progress.

3.3 ans : T → {A× (W ∪ {‘h’})} ∪ {(∅, ∅)} An updatable function that takes a task and returns a pair of the
result and the assigned worker. Here, a human worker is denoted
by h.

Table 1: Notation

Human+AI Crowd Task Assignment Problem
First, we define our problem setting as the Human+AI
Crowd Task Assignment Problem (HACTAP) in this section.
We then introduce task clusters, an essential concept of our
algorithms. Finally, we propose two task assignment algo-
rithms designed to handle numerous AI workers that dra-
matically change their performance.

Problem Definitions
Table 1 shows the notation used in this paper. We use T and
A to denote the set of given multiclass classification tasks
and the set of labels (i.e., class names) for T , respectively.
W denotes a set of black-box AI workers implementing any
algorithms developed by anonymous people. In our setting,
we only have access to the training and inference function-
alities of each AI worker. We assume that answers from hu-
man workers are aggregated in some way; thus, we simply
denote them as ‘h’.

Then, a task assignment S is a sequence of pairs (tj , wi)s,
where wi ∈ W ∪ {‘h’} and tj ∈ T , such that every tj ∈ T
is assigned to a worker, that is, |S| = |T |. Let 0 ≤ q ≤ 1
be a given accuracy requirement. We seek to calculate a task
assignment in such a manner that the overall quality of the

task results is at least q.
Definition 1 (Human+AI Crowd Task Assignment Problem,
HACTAP). We assume that we are given a set T of classi-
fication tasks, a set W of AI workers, and an accuracy re-
quirement of 0 ≤ q ≤ 1, where the accuracy is defined as
the ratio of the number of task results that are the same as
human task results. Then, the HACTAP computes a task as-
signment S such that the average accuracy of the results is
at least q.

In other words, the problem intends to find different as-
signments of tasks to AI and humans in a way that main-
tains the same quality level as using only human workers.
Note that this problem has a trivial solution, that is, assign-
ing all tasks to human workers. We describe a task assign-
ment S1 as more efficient than another task assignment S2 if
S1 has a smaller number of pairs (tj , ‘h’)s, to assign tasks to
human workers other than S2 and still satisfy the accuracy
requirement; that is, the average accuracy of the results is at
least q. A task assignment S1 is optimal, when no assign-
ment is more efficient than S1 in all the task assignments
that satisfy the q. However, obviously, the optimal solution
is undecidable when AI workers are black boxes and their
internal workings are unexaminable.
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Therefore, we must estimate the accuracy of the results
of AI workers from the outside to obtain a good task as-
signment. In addition, we must perform this estimation dy-
namically, as supervised AI workers are included that im-
prove their ability as the number of data items for training
increases.

Our Approach: Task Clusters
Before describing our algorithms, we introduce task clus-
ters, the key idea necessary for maximizing the number of
tasks assigned to AI workers in the HACTAP. If we iden-
tify the AI worker that provides sufficient accuracy for all
tasks, it is better to assign all the remaining tasks to that
AI worker. However, such ideal AI workers are not always
available and are likely to take a longer time to build. As the
experimental results show, our algorithms based on the idea
of task clusters can assign more tasks to AI workers than an
all-or-nothing approach.

We formulate the output of each AI worker as a set of
task clusters (illustrated on the left side of Figure 2). Each
task cluster is a subset of tasks for which the same label
is given by the AI worker. In our setting, each AI worker
is expected to receive a set of (task, label) pairs as training
data and divide a test set into k clusters of tasks, where k
can be independent of the number |A| of potential labels for
the task (such that unsupervised clustering algorithms can
be used as AI workers). Conversely, it is not realistic for
human workers to perform the same thing. In contrast to the
ordinary machine learning context, AI workers do not need
to have a high overall accuracy; instead, we evaluate each
task cluster and accept the submission of the task cluster if
its quality is sufficient relative to the required accuracy. This
strategy achieves a fine-grained tradeoff control between the
required quality and the number of tasks assigned to the AI
workers (right side of Figure 2).

Table 1 also summarizes the notation also for task clus-
ters. Let Rwi = {(tj , tk) | wi(tj) = wi(tk)} be the equiva-
lence relation in the set of tasks T by the AI worker wi. For-
mally, the set of task clusters obtained from an AI worker
wi is defined by Cwi

= T/Rwi
= {Twi,1, Twi,2, ...} that

is the quotient set for T . As mentioned previously, the size
of Cwi

depends on the AI worker. In many supervised al-
gorithms, the |Cwi

| will be |A|, however, cases other than
that are also assumed. For example, if the clustering algo-
rithm divides the tasks into k clusters, the |Cwi

| will be k.
The overall task clusters from AI workers W is denoted by
C =

⋃
wi∈W Cwi .

Clusterwise Test-based Assignment (CTA)
CTA uses the answers provided by human workers to sta-
tistically test each task cluster generated by AI workers.
Through the statistical tests, CTA determines whether the
quality of a task cluster satisfies the given accuracy require-
ment q, at a minimum (right side of Figure 2). If it holds,
CTA accepts answers to the tasks in the task cluster and as-
signs the tasks to the AI worker who generated the cluster.

Input and Output. CTA takes a set T of tasks, a set W of
AI workers, an accuracy requirement q, and a significance

level α. The output is a sequence [(t1, wt1), . . . , (tk, wtk)]
of (task, worker) pairs, which is the history of the executing
assign(t, w) function in the procedure.

Procedure. Algorithm 1 explains the CTA procedure. In
short, it executes assign(t, w) successively and updates the
function ans so that it records the task result (label) a ∈ A
obtained by the assignment (t, w). Formally, ans : T →
A × (W ∪ {‘h’}) ∪ {(∅, ∅)} is an updatable function that
takes a task as input and returns a pair consisting of the task
result and the assigned worker who provided the result.

Initially, ans(t) returns (∅, ∅) for every t, which implies
that no task has obtained the result. The algorithm updates
ans until ans(t) returns no (∅, ∅) for any t. We ask humans
to complete a task t, where ans(t) = (∅, ∅). CTA randomly
assigns tasks to human workers (Line 2). Each time we re-
ceive a label (e.g., a or b) for a task t from a human worker
(Lines 3), we perform the following steps (Lines 4 to 9. See
the left side of Figure 2, too): For each Twi,j ∈ C (the jth
task cluster submitted by AI worker wi), we conduct a sta-
tistical test. The test verifies whether the ratio of label â in
Twi,j is greater than the accuracy requirement q or not by
using the observation of human answers already provided.
Here, the â is the most frequent label type found in the hu-
man answers for that task cluster. For this step, any statistical
test can be applied if the test guarantees that the ratio of â
is greater than q at a given significance level α. In our ex-
periment, we used a binomial test in which the number of
trials nwi,j and the number of positive outcomes n(p)

wi,j
were

calculated as follows:

nwi,j = |{t ∈ Twi,j | ans(t) = (a, ‘h’), a ∈ A}|

n
(p)
wi,j

= |{t ∈ Twi,j | ans(t) = (â, ‘h’)}|

If the test is positive, we update the labels of ans(t) for every
t ∈ {t′ ∈ Twi,j | ans(t′) = (∅, ∅)} to (â, wi).

Theorem 1 explains how CTA guarantees the accuracy re-
quirement. The proof of Theorem 1 is provided in the ap-
pendix.

Theorem 1 (output quality of CTA). CTA calculates the
task assignments for AI workers such that the accuracy of
the task results is at least q with a (1−α)l probability, where
l is the number of statistical tests, and α is the significance
level for each statistical test.

When the number of tasks is large, the number of accepted
task clusters l tends to be large, which entails a consider-
ably high statistical error rate. This issue arises from how
each task cluster is tested independently, motivating us to
develop another method, which is explained in the next sec-
tion, Global Test-based Assignment (GTA).

Global Test-based Assignment (GTA)
This subsection explains an assignment algorithm that theo-
retically guarantees the overall accuracy of the task results.
In contrast to CTA, which tests each task cluster to verify
whether the accuracy is at least q, GTA tests the overall ac-
curacy of all task results, not just those of each task clus-
ter. GTA directly computes the probability distribution of the
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Algorithm 1 Clusterwise Test-based Assignment (CTA)

Require: A set T of tasks, a set W of AI workers, the ac-
curacy requirement q, and the significance level α.

Ensure: A sequence of (task, worker) pairs.
1: for all t ∈ T s.t. ans(t) = (∅, ∅) in a random order do
2: a′ ← task result(assign(t, ‘h’))
3: update ans so that ans(t) = (a′, ‘h’)
4: for all Twi,j ∈ C do
5: if statistical test(Twi,j , q, α) then
6: â = arg max

a∈A
|{t | t ∈ Twi,j , ans(t) =

(a, ‘h’)}|
7: for t′ ∈ Twi,j s.t. ans(t′) = (∅, ∅),

assign(t′, wi) and update ans so that ans(t′) =
(â, wi)

8: end if
9: end for

10: end for

Algorithm 2 The statistical testing function for GTA

Require: A task cluster candidate Twi,j , the accuracy re-
quirement q, and the significance level α.

Ensure: True if Twi,j is acceptable and false otherwise.
1: let Γaccepted be a set of accepted task clusters
2: let Γ = Γaccepted ∪ {Twi,j}
3: let n be the number of iterations
4: let vTi,j ∼ Beta(1 +Ti.r, 1 +Ti.c)∀Ti ∈ Γ, 1 ≤ j ≤ n
5: success = 0
6: for j in range(n) do
7: accj =

∑
Ti∈Γ vTi,j

Ti.size∑
Ti∈Γ Ti.size

8: if accj ≥ q then
9: success = success+ 1

10: end if
11: end for
12: return (1− (success/n)) < α

overall accuracy based on those over the results in each task
cluster.

The probability distribution of the overall accuracy was
computed as follows: In the GTA, the probability distribu-
tion of the accuracy of each task cluster is modeled as a beta
distribution. By observing the human worker labels obtained
thus far, we can compute the posterior distribution of the ac-
curacy of each task cluster by applying the beta-binomial
conjugacy. Let Γ = {T1, T2, . . .} denote a subset of the task
clusters5. We assume that VTi is a random variable that indi-
cates the accuracy of the task cluster Ti. The prior probabil-
ity of VTi

is assumed to follow a uniform beta distribution,
for example, P (VTi

) = Beta(1, 1). The posterior of Vi is
calculated as P (VTi

| Ti) = Beta(1+Ti.r, 1+Ti.c), where
Ti.r is the number of correct tasks and Ti.c is the number of
incorrect tasks labeled by human workers in Ti. Let Acc be
the overall accuracy of

⋃
Ti∈Γ Ti which is a random variable

5We used Tk instead of Twi,j because it is not important to
determine from which AI worker each task cluster originated.

transformed from V , and is defined as follows:

Acc =

∑
Ti∈Γ VTi

Ti.size∑
Ti∈Γ Ti.size

, (1)

where Ti.size is |{t′|t′ ∈ Ti, ans(t
′) = (∅, ∅)}|. Subse-

quently, we can calculate the probability of whether the task
assignments satisfy the accuracy requirement by assessing
the distribution of the overall accuracy P (Acc | Γ).

P (Acc < q | Γ) =

∫ q

0

P (Acc = a | Γ)da. (2)

P (Acc < q | Γ) < α must be satisfied to ensure that the
overall accuracy is at least q at a significance level α.

Global Test-based Assignment (GTA). Now we intro-
duce GTA, which is the same as CTA in Algorithm 1, except
that the statistical test function (Line 5) does not conduct a
cluster-wise test, but a global test as shown in Algorithm 2,
which conducts a Monte Carlo simulation to compute the ex-
pression (2). GTA keeps Γaccepted, which is a set of accepted
task clusters, including a special task cluster Thuman, which
is the set of tasks answered by human workers.

Theorem 2 explains the quality guarantee of GTA. We dis-
cuss the proof of Theorem 2 in the appendix.
Theorem 2 (Correctness of GTA). GTA outputs an assign-
ment such that the overall accuracy exceeds q as J → ∞,
where the J is the sample size of the Monte Carlo approxi-
mation.

Experiment Using a Benchmark Dataset
First, we experimented using an open benchmark dataset to
verify whether the outputs of the proposed algorithm actu-
ally satisfy the accuracy requirements and whether it could
handle the trade-off between the requirements and the cost
(i.e., the number of tasks performed by human workers).

Settings
We used 10-class classification tasks (i.e., |A| = 10) using
10,000 randomly selected images from Kuzushiji-MNIST
(Clanuwat et al. 2018). Further, we used 15 types of AI
workers implementing different algorithms with scikit-learn
0.23.1 and its default parameters. We compared our methods
with two baseline algorithms: Worker-wise Random Sam-
pling Test based assignment (WTA) and Active learning-
based assignment (ALA), both of which evaluate the overall
accuracy of AI workers. They require AI workers to output
a probability because they adopt a weighted voting ensem-
ble to deal with more than one AI worker, and ALA must
determine the next task based on that. Therefore, among the
15 AI workers, they can only deal with 10. Note that ALA
introduces a lack of flexibility in implementation (loss of
parallelism, need dynamic interactions with platforms, etc.).
Appendix shows the details and a full list of the 15 AI work-
ers.

Baselines and Algorithm Details
This subsection explains the details of the algorithms com-
pared in the experiments.
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Figure 3: Experiment results on KMNIST. The top graphs show the relationship between the number of tasks completed by
human workers and the number of completed tasks by human+AI workers. The bottom-row graphs show the overall accuracy
of the task results with each accuracy requirement q (error bars represent SD).

Worker-wise Random Sampling Test-based Assignment
(WTA). We introduce a worker-wise test-based assign-
ment that examines whether the entire output from the AI
worker has achieved the accuracy requirement (Algorithm
3). In our experiments, we combined the outputs from the set
of AI worker candidates by weighted majority voting when
there were multiple machine learning models.

Active Learning-based Assignment (ALA). We intro-
duce ALA, which takes committee-based active learning
using vote entropy sampling. In ALA, half of the human
worker assignments are determined by the query strategy,
and the other half is randomly assigned, in line 2 of Algo-
rithm 3. The AI worker is trained for each human worker as-
signment using queried (task, label) pairs and evaluated with
a random set. If the accuracy is equal to or better than the ac-
curacy requirement, we assign all of the remaining tasks to
the AI worker (Zhu et al. 2010). Note, however, that ALA
violates our problem settings because (1) the AI worker is
not a black box, and (2) the AI worker is assumed to join
at the beginning of the execution (not in the middle of the
execution).

Clusterwise Test-based Assignment (CTA). We used a
binomial test at Line 6 in Algorithm 1 to verify whether
Twi,j is connected to â. Here, the number of trials n is
n = |

⋃
t∈Twi,j

ans(t) = (∗, ‘h’)| (* is any label), and the
number of successes m (≤ n) is m = |

⋃
t∈Twi,j

ans(t) =

(â, ‘h’)|.
Global Test-based Assignment (GTA). We set n =
100, 000 for the number of iterations for the Monte Carlo
simulation).

In our experiments, we evaluated the AI worker and their
task clusters only when we obtained 200 new task results
from the human workers. In CTA and GTA, we repeated
lines 2 to 3 in Algorithm 1 to obtain the results of randomly

Algorithm 3 Worker-wise Random Sampling Test based as-
signment (WTA)

Require: A set T of tasks, an AI worker w, and the accu-
racy requirement q.

Ensure: A sequence of (task, worker) pairs.
1: while accuracy(w) < q or ∃t ∈ T s.t. ans(t)! = (∅, ∅)

do
2: let t ∈ T s.t. ans(t) = (∅, ∅) in a random order
3: a′ ← task result(assign(t, ‘h’))
4: update ans so that ans(t) = (a′, ‘h’)
5: end while
6: for all t′ ∈ T s.t. ans(t′) = (∅, ∅), assign(t′, w) and

update ans so that ans(t′) = (w(t′), w)

choosing 200 tasks. We set the significance level α = 0.05
in CTA and GTA.

The evaluation order for the available task clusters is also
an interesting problem. We believe that this order can be
extended to the reward design of AI workers. Because this
research focuses on task assignment algorithms that satisfy
the accuracy requirement, we evaluated the task clusters in a
random order.

Results
The experiments were run 100 times for each setting on a
computer with a Ryzen 9 3950X 16-Core Processor, 64 GB
RAM, GeForce RTX 3090 GPU, Ubuntu 18.04, and Python
3.8.2.

Figure 3 shows the results of the experiment. The graphs
in the top row illustrate the relationship between the number
of tasks completed by the human workers and the number of
tasks completed by human+AI workers for each algorithm.
The lines in the same color show the simulation results for
the same pair for a given accuracy requirement q with dif-
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ferent random seeds. Each figure contains only 10 lines ran-
domly chosen from one hundred trials for every setting.

Overall, all algorithms behaved well in response to
changes in the required accuracy; they assigned more tasks
to AI workers as the required accuracy decreased. There
are several points that are worth noting. First, CTA and
GTA complete tasks more quickly because they accept task
clusters from AI workers without waiting for the overall
accuracy that satisfies the requirement. Second, ALA per-
forms better than WTA in that it can assign tasks to the
AI worker even in settings with high accuracy requirements
(q = 0.9, 0.95), because AI learns more efficiently. Third,
ALA often performed better than CTA; it assigned more
tasks to AI workers when the accuracy requirements were
low (q = 0.8, 0.85). When q = 0.8 (blue line), ALA reached
100% (10000) tasks when the human workers completed
1000–2200 tasks, while CTA reached 100% with 2161–3780
tasks from human workers. This is because (1) ALA could
train the AI worker with a few human worker labels that
the AI worker selected, and (2) CTA needed some samples
from human workers to accept task clusters from AI work-
ers statistically. In particular, when the required accuracy
is not high and active learning easily accomplishes the re-
quirement, ALA accepts the task results of the AI model
in the early stage. As this suggests, the all-or-nothing ap-
proach works well if an AI worker can process the entire
task set with a quality higher than the required accuracy.
Fourth, GTA performed the best among the four strategies,
especially in high accuracy requirement settings. Note that
GTA always produces better or at least comparable perfor-
mance to ALA, even when the required accuracy is low. As
shown next, GTA maximizes the number of tasks assigned
to AI workers as long as the required accuracy is satisfied,
which was achieved by our task cluster-based approach that
allows fine control of the resulting quality.

The bottom row of Figure 3 shows the overall accuracy of
the task results for each accuracy requirement q. The solid
lines show the accuracy of the whole (Human+AI) task re-
sults and that of the task results by AI workers. The dotted
line represents the quality requirements that should be satis-
fied.

The overall accuracy with CTA is always above q despite
the weak theoretical guarantee. In contrast, GTA satisfies the
accuracy requirement, and the result accuracy is much closer
to the requirement. This is the result of fine control of accu-
racy through its statistical estimation over the entire set of
task results.

In summary, our findings are as follows: First, WTA and
ALA worked to meet the requirements of HACTAP, but they
were suboptimal when the required accuracy was high. Sec-
ond, CTA assigns tasks to AI workers conservatively, so the
quality requirement is satisfied in many cases (even though
there is no good theoretical guarantee), but is sometimes
too conservative in assigning tasks to AI workers. In other
words, the overall quality far exceeds the accuracy require-
ment. Third, our GTA, which has a theoretical guarantee,
performed well while assigning more tasks to AI workers
than the other algorithms.

In CTA, the final part of tasks are often assigned to a hu-
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Figure 4: Experimental results on a real-world dataset. The
top two graphs show the results of the task assignments. The
bottom two graphs show the quality of the task results.

man worker, but in GTA they are often assigned to an AI
worker. This is because the actual requirement for AI work-
ers decreases in the final part by increasing the number of
task assignments to human workers.

Experiment using a Real-World Dataset
We also confirmed the performance of our algorithms using
a real-world application, an international natural disaster re-
sponse drill6. In natural disaster responses, the requesters,
such as local governments, need task results as soon as pos-
sible, as the situation can be rapidly developing and informa-
tion is needed to make the up-to-date decisions. However, it
is often difficult to predict what kind of system is required in
advance, and it takes time to build such systems after a disas-
ter occurs. We believe that the fully automatic integration of
human and AI workers will be effective in such a situation.

Settings
We used aerial photographs of the Western-Japan Big Flood
of 2018 that were captured by the Geospatial Informa-
tion Authority of Japan7, which includes 106 aerial photos.
Specifically, we selected 10 images from them showing the
surroundings of the actual flooded area. Then, we divided
each image into 1024 blocks; hence, 10240 tasks were pre-
pared for the experiment. In each task, the workers classi-
fied an image into three classes: non-flooded, flooded and
covered by clouds. We collected labels from human work-
ers using Amazon Mechanical Turk. The breakdown of the
labels obtained was as follows: 4736 “non-flooded” labels,
2327 “flooded” labels, and 282 “covered by clouds” labels.
The remaining 2895 tasks remained unlabeled.

Three classifiers based on deep neural networks were used
as the AI workers. One of the AIs was developed by an

6https://crowd4u.org/events/mind-cndd/index.html
7https://www.gsi.go.jp/BOUSAI/H30.taihuu7gou.html
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(A) Original Image (C) Labels by ALA (q = 0.85)

(B) Ground Truth (D) Labels by GTA (q = 0.85)

Human+AI Assigned to humans Assigned to AI workers

Figure 5: Experimental results of the part of an aerial photo. (A) The original aerial photo which contains a flooded area. (B)
The ground truth labeled by human workers from Amazon Mechanical Turk. (C) The result labels assigned by ALA. (D) The
result labels assigned by GTA.

anonymous developer for this disaster response project on a
commercial crowdsourcing service. Although our idea does
not require access to the code of AI workers, in this exper-
iment, we received the corresponding executable code writ-
ten in Python and Keras. It consisted of an eight-layer net-
work, including convolution, pooling, dense, and dropout
layers. The others were the ResNet-18 and VGG-16 mod-
els provided by the torchvision library in PyTorch. We paid
the programmers approximately 240USD for 2h of labor (as
reported by the crowd worker).

Results
We conducted the experiment ten times for each quality re-
quirement, on the same computer as in Section 4.

In short, the result was similar to that of the simula-
tion experiment; GTA assigned more tasks to AI workers
than ALA, especially with higher accuracy requirements
(q = 0.9, 0.95). However, ALA often performed better with
lower accuracy requirements (q = 0.8, 0.85) because AI
workers may easily reach the required performance. The
top-side graphs in Figure 4 show the results of ALA and
GTA with quality requirements q = 0.8, 0.85, 0.9, 0.95. The
top two show the relationship between the number of tasks
completed by human workers and the number completed by
human+AI workers. The bottom two show the actual final
accuracy by quality requirements. In the setting of q = 0.8
and 0.85, both GTA and ALA assigned a similar number of
tasks to AI workers while maintaining the requirement. In

the setting of q = 0.9 and 0.95, ALA assigned all tasks to
humans because the AI worker did not satisfy this require-
ment. In contrast, GTA accepted task results from AI work-
ers. The actual accuracy of the task clusters was lower than
the requirement; however, GTA allowed them by consider-
ing the overall accuracy.

Figure 5 illustrates how our divide-and-conquer approach
effectively found the task clusters that AI workers are good
at. Figures 5 (A) and (B) is a part of the original image and
the ground truth given by human workers, respectively. Fig-
ures 5 (C) and (D) show what tasks (fragments) of the im-
ages were assigned to human and AI workers by ALA and
GTA with q = 0.85, respectively. GTA found that the AI
worker was good at finding non-flooded parts in the forest
area and immediately assigned the tasks in those areas to AI
workers. Human workers were assigned tasks that focused
on areas where the decision was more difficult.

Limitations and Future Work

Task type. We focused exclusively on image classification
tasks in this study. However, our framework can be applied
to classification tasks with other data types such as natu-
ral language and audio. Extending our framework to tackle
other task types, such as semantic segmentation (Zhou et al.
2017) and object detection (Lin et al. 2014), is an interesting
direction for future work.
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Definition of accuracy of task results. We define accu-
racy as the ratio of the number of task results that are the
same as human task results. The assumption here is that we
want AI workers to behave like human workers. However,
there may be scenarios in which we want to use accuracy as
the ratio of the number of tasks that are the same as some
ground truth, with the expectation that AI workers will per-
form better than other human workers. For this purpose, we
need higher-quality task results to test the AI workers. A po-
tential approach is to incorporate techniques such as (Daniel
et al. 2018; Yang et al. 2019) for quality improvements of
task results into our framework. This is an interesting future
work.

Consideration of monetary cost and speed. We focused
principally on maximizing the number of classification tasks
assigned to AI workers while satisfying the accuracy re-
quirement of the result. The underlying assumption is that
human resources are more precious than AI resources, and
we may not have enough people. However, we can con-
sider more complex scenarios in which we need various la-
bor costs for workers. It is relatively easy to set an objective
function to consider the factor and optimize the assignment
accordingly. Considering speed is trickier, we need to max-
imize parallelism for the fast completion of tasks, but it is
a tradeoff between finding the best assignment and maxi-
mizing parallelism. Actually, CTA is the best when consid-
ering parallelism because it requires fewer sequential pro-
cesses than ALA and GTA. The question of how to handle
the tradeoff is also an interesting issue for future work.

Task clusters to be considered. The methods in this pa-
per dealt with the task clusters given by AI workers as is.
However, our definition of task clusters does not require it
and states that the number of task clusters does not have to
be the same as that of the classification labels. Therefore,
we can artificially divide the task clusters given by AI work-
ers to obtain a larger number of task clusters in smaller sizes.
Such a division can be done by introducing additional (built-
in) k-means, taking intersections of task clusters from other
AI workers, using heuristics, etc. The obtained task clusters
may help us assign tasks to AI workers more quickly.

Malicious AI workers. This paper did not deal with the
problem of explicitly removing malicious AI workers. Low-
quality or spam workers do not necessarily harm our frame-
work because poor task clusters will not survive the statisti-
cal test. However, malicious AI developers may develop AI
workers that returns correct answers to tasks in the test set,
but arbitrary answers to other tasks. A potential approach to
deal with such a problem is to compare task clusters from all
AI workers to each other or use a built-in AI worker to pro-
duce meaningful task clusters. Then, we may find malicious
AI workers by comparing the task clusters and finding ones
that are inconsistent with others.

Efficient evaluation of task clusters. Although CTA and
GTA are scalable, in the sense that they do not depend on
a particular AI model and can deal with any number of AI
workers simultaneously, it does not mean that they are com-
putationally efficient in terms of the number of AI workers

and task clusters. Potential approaches to deal with the prob-
lem include evaluating the task clusters in parallel and prun-
ing clusters that are unlikely to be accepted. Pursuing these
directions is one of our future work.

Conclusion
We introduced a novel Human+AI Crowd Task Assignment
Problem (HACTAP) that satisfies the accuracy requirement
of requesters. Our approach in solving HACTAP is based on
accepting AI outputs partially instead of fully. We provided
some theoretical analyses of the proposed algorithms.

The experimental results demonstrated that the outputs of
the algorithms satisfied the accuracy requirements and that
the algorithms can flexibly change the number of tasks as-
signed to AI workers according to the quality requirements.

Our results suggest the possibility of efficient task pro-
cessing by appropriately sharing tasks between AI workers
and human workers.
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Proof of Theorem 1
Proof outline. This is a straightforward conclusion based on
the family wise error rate (FWER). 2

Theorem 1 clearly shows that it is difficult to guarantee
that the accuracy of the final CTA result is at least q. In the
general statistical context, FWER control methods such as
the Bonferroni correction, are applicable to multiple statis-
tical tests by adjusting the actual significance level. How-
ever, in the HACTAP, FWER control methods cannot be ap-
plied directly because the number of task cluster candidates
is unknown until the assignment is completed. There are two
potential approaches to address this issue: (1) adjusting the
significance level to be acceptable for the FWER by estimat-
ing the number of statistical tests, and (2) applying online
FWER control methods (Javanmard, Montanari et al. 2018).

Proof of Theorem 2
Proof outline. Although the accumulated density cannot be
analytically calculated, we can obtain the samples from the
distribution P (acc | Γ) by sampling each Ri from the pos-
terior beta distribution Beta(1 +Ti.r, 1 +Ti.c). By approx-
imating the accumulated density P (acc > q | Γ) using the
Monte Carlo method, the requirement can be approximately
verified using the following equation:

1

J

J∑
j=1

δ

(∑
iRi,jTi.size∑

i Ti.size
< q

)
, (3)
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where δ(·) is the delta function that returns 1 if the predicate
· is true, and 0 otherwise. Based on the assumption given in
Eq. (1) and (2), this quantity converges to P (acc < q | Γ)
when J → ∞. The J means the sample size of the Monte
Carlo approximation. This coincides with the quantity Al-
gorithm 2 calculates. Therefore, GTA approximately guar-
antees that the overall accuracy is greater than the accuracy
requirement q under the model assumption. 2

AI Workers Participated in Experiment 1
The machine learning models used in Experiment 1 are
listed below. Each item refers to the class name of the ma-
chine learning model implemented by scikit-learn.

1. MLPClassifier

2. ExtraTreeClassifier

3. LogisticRegression

4. KMeans (Used only by CTA/GTA)

5. DecisionTreeClassifier

6. SVC (probability=True option was used in WTA and
ALA)

7. KNeighborsClassifier

8. GaussianProcessClassifier

9. MultinomialNB

10. AdaBoostClassifier

11. PassiveAggressiveClassifier (Used only by CTA/GTA)

12. RidgeClassifier (Used only by CTA/GTA)

13. RidgeClassifierCV (Used only by CTA/GTA)

14. ComplementNB

15. NearestCentroid (Used only by CTA/GTA)
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