
Advisor Agent Support for Issue Tracking
in Medical Device Development

Touby Drew
Medtronic, Inc.

7000 Central Avenue NE; MS RCE290
Minneapolis, MN, 55432-3576

touby.drew@medtronic.com

Maria Gini
University of Minnesota

4-192 EE/CSci, 200 Union St SE
Minneapolis, MN 55455

gini@cs.umn.edu

Abstract

This case study concerns the use of software agent advi-
sors to improve efficiency and quality in issue tracking
activities of development teams at the world’s largest
medical device manufacturer. Each software agent mon-
itors, interacts with, and learns from its environment
and user, recognizing when and how to provide different
kinds of advice and support to facilitate issue tracking
activities without directly modifying anything or other-
wise violating domain constraints. The deployed soft-
ware agent has not only enjoyed regular and growing
use, but contributed to significant improvements. Issue
rejection was significantly reduced and more focused,
yielding significant quality and efficiency gains such
as fewer reviews by quality assurance. This success re-
flects the benefits of the underlying AI technology.

Application Domain
The medical device industry produces software-intensive
devices such as implantable pacemakers, drug pumps, and
neurostimulators that provide critical therapy for millions of
people with a range of diseases from diabetes to chronic
pain. In this domain, software is developed under strictly
regulated processes to ensure patient safety. A hallmark ex-
ample of why this is so important is the radiation therapy de-
vice called Therac-25 for which poor software development
practices were identified as the root cause of three associated
patient deaths in the 1980s (Leveson and Turner 1993). To
help prevent such catastrophic outcomes, issue tracking is
used at the heart of development, management, and quality
assurance processes.

The issue tracking process manages and documents each
concern, its resolution, the review of that resolution, related
artifacts, and its closure. This process converts issues iden-
tified by team members, including enhancements, defects,
new features, and other items, into documentation and prod-
uct. These are eventually delivered to such stakeholders as
regulatory agencies, clinicians, and the host business itself.

In this paper we describe a novel software agent, called
PnitAgent, used to support the issue tracking activities of
teams of engineers (that we call S team and P team) work-
ing together to develop software for next generation neuro-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

modulation therapies. The S team (n≈20) focuses primarily
on drug delivery device software, while the P team (n≈15)
focuses on platform software that supports communications,
data management, and other functions common to drug de-
livery, spinal cord stimulation, and other therapies. Part of
this software will be used by clinicians as their primary
means of interacting with many different medical devices
including nearly all recent and next generation implantable
drug delivery systems. In these systems, delivering fluids too
quickly or too slowly are among several hazards that can
lead to severe harms such as overdose (e.g., with opiods for
treating pain) or underdose (e.g., with Baclofen for treating
spacticity). Improving software quality not only saves effort
but also increases product safety.

The Production Neuromodulation Issue Tracking System
(PNITS) and the supporting Software Quality Assurance
(SQA) engineers tracked the essential activities of the S and
P teams before PnitAgent was first used in early 2010 and
more broadly after July 2010. Data prior to the introduction
of PnitAgent reflect the mechanisms developed and refined
by Medtronic for identifying quality related software issues
and for tracking their resolution. The characteristics and per-
formance during this before period establish the baseline
against which we measure the impact of PnitAgent.

The S team had accumulated a number of issues over the
previous 2 years. 537 issues had been closed, 560 issues had
been reviewed by SQA and more than 1000 had not yet re-
ceived review by SQA (typically issues received several re-
views with SQA review just before closure review). Of the
issues reviewed by SQA, more than 50% (268) had been re-
jected at least once, and more than 20% had been rejected at
least once by SQA.

Several members of the team chose to co-locate in a
laboratory-environment, held daily meetings, practiced pair
programming and pair issue tracking, sat with the develop-
ment lead that acted as the local process owner, and em-
ployed a TWiki website for distributed capture and review
of detailed process description. However, detailed process
alignment, scenario-specific application, and in-context re-
call of the relevant details remained elusive.

Near the beginning of April 2010 a team including the au-
thor of this work was formed to improve issue tracking. This
team classified a sample of 120 rejections (30 SQA and 90
peer/self rejections) and abstracted these into themes. More

Proceedings of the Twenty-Fourth Innovative Appications of Artificial Intelligence Conference

2201

than 75% of rejections related to the story told by issues
(primarily problems with version, resolution description, re-
lated issues, and review information) rather than defects in
the systems under development. Flaws in the product under
development (source code, documentation, verification, and
other artifacts) are often found in other related activities (de-
velopment, code/design meetings, or test development), but
are within the scope of issue reviews. These flaws were com-
monly referred to as “content issues”. The major sources of
rejection, along with concerns identified by interacting with
potential users, formed the basis of PnitAgent.

The issue tracking system cannot be changed easily be-
cause of the associated costs and the need to maintain con-
sistency. It is also not feasible to provide any direct replace-
ment for user review or editing of issues.

These domain constraints naturally suggested the use of
advisor software agents. Knowledge and expertise can be
built into and collected by agents which monitor and interact
with their environment and users and provide different kinds
of advice and support without directly modifying issues, al-
tering validated systems, or otherwise violating domain con-
straints. The agent must be appropriate for various degrees
of user adoption under real conditions. This implies usabil-
ity, performance, and other requirements such as the ability
to be used and maintained by different users with low effort.

Example Use
This section presents an example use case to introduce the
domain and agent. In this scenario, a developer was assigned
an issue; has made changes to product software and docu-
mentation; and has described her initial work in the issue.

Intending to check over the issue, the user opens it in the
issue tracking system. PnitAgent has been running in the
background, recognizes that an issue has been brought into
focus, and identifies the issue. It gathers information from
the issue tracking system and presents a small bubble win-
dow in the lower right hand corner of the user’s screen. The
bubble window has links that allow the user to check the is-
sue for problems or take other actions. The window fades
away over a few seconds, but first the user clicks on a link in
it to request Automated Issue Analysis.

The agent collects data about the issue from the issue
tracking system, the version control system, its local mem-
ory files, and product artifacts. It uses text processing and
information retrieval techniques to analyze the data (as de-
scribed later in Agent Design and in (Drew and Gini 2012)).
When it identifies some concerns, it presents them to the
user in the form of warnings and related information. In this
case, the agent has determined from the free-form English
text entered in the issue description and resolution descrip-
tion that the user has made changes to fix a problem in the
product software and that there is no indication that review
of these changes should be deferred to another issue.

The agent analyzes the assigned reviewers and who has
contributed to the resolution of the issue and its associated
artifact changes. Based on this, it produces a warning that
there does not appear to be an independent reviewer even
though one is expected in this situation. It explains which
reviewers appear to have been contributors based on issue

Figure 1: Example agent window and tray menu

tracking and version control data, and which users do not
seem suited to be independent reviewers of this issue be-
cause they are verification or SQA engineers.

The agent also warns of areas of vagueness in the res-
olution description, contradictions between a version men-
tioned in the resolution description and other fields in the
issue, and that the issue has been referenced from comments
about work that is not yet complete in the code and design
documents. In addition to textual explanation, the agent pro-
vides a link to a relevant website that documents the review
roles expected and required in common scenarios.

After resolving or deciding to ignore the warnings, the
user asks the agent to get all the artifact changes associated
with the issue by clicking the “Get File Changes” button.
This triggers a related desire/event for the requested goal to
be raised in the agent’s primary control thread. The agent
starts a short term background thread to act on the goal. The
background processing is tied to the “Get File Changes” but-
ton, which the user can use to stop it prematurely, and is safe
in the sense that abort or failure of, or in, the thread will not
be treated as an error. The background thread checks that
the issue context is valid and gathers information about it
and the files referenced from the issue tracking system, dis-
patching status updates back to the primary control thread
which presents them on the main UI window if it is open.

The agent extracts information on change sets from the
issue tracking and version control systems before examin-
ing the text of the issue to identify any changes made to
artifacts not kept in the version control system. This in-
volves retrieving free form text fields within the issue, re-
placing noise characters, removing noise words, using a reg-
ular expression to match references to documents in the doc-
ument control system, then doing some additional informa-
tion retrieval (Manning, Raghavan, and Schütze 2008) to
extract version information about any document references
that were found. The agent eventually integrates, organizes
and dispatches a list of all the associated file changes to the

2202

primary thread.
Finally the agent presents a list of changes to the user, who

re-sorts them by clicking on the column headers. The user
then double clicks on the change-items and the agent takes
its default support action for each. This generally takes the
form of retrieving the changed and previous versions (e.g.,
from the version control system or the Medtronic Revision
Control System) and displaying them in a graphical differ-
encing tool to the user, converting them if needed.

Occasionally, the user uses a context menu to do other
types of review activities, such as start static analysis, view
associated commit comments, or review approval status. Fi-
nally satisfied, the user marks the issue as ready for review.

With her last issue resolved, the user wants to urge her
colleagues to complete any remaining work for the upcom-
ing release. Having already created a query named “Release
X” in the issue tracking system to return the relevant issues,
she types “Release X” into the agent’s entry box. Then she
uses a menu item to notify the outstanding users (see Fig-
ure 1). The agent sends an email to each relevant user letting
them know which issues are waiting on them, for what, and
who asked that they be notified.

Agent Design
Key design challenges in the design of PnitAgent included:

1. Monitoring the user activities in a way that is non-
intrusive, has acceptable performance, is ubiquitous, and
is easy for users to control.

2. Abstracting the complexity of user and environment
specifics to ensure robust and appropriate operation with
different user credentials, preferences, levels of experi-
ence, and access to tools, data and services.

3. Building a model of each user, with history and prefer-
ences, and creating appropriate analysis tools to enable
the agent to support each user.

4. Presenting information, intentions, status, and suggest
next actions in a way that is helpful and acceptable to
users.

This work builds on previous research into highly abstract
monitoring of the user’s actions as the user shifts focus be-
tween windows and widgets within those windows (Drew
and Gini 2010). This previous work described the agent’s
probabilistic modelling of sequences of user focus. The
agent observes the user and builds a Markov-chain model
of the sequence of contexts it observes over a period of time.
It then uses the model to recommend next user actions. The
model leverages an efficient trie-based data structure and an
algorithm for training and prediction that is similar to the
Prediction by Partial Match algorithm proposed in (Cleary
and Witten 1984) and further analyzed in (Begleiter, El-
Yaniv, and Yona 2004). In this way the agent can guide users
though complex and unfamiliar user interfaces.

This previous work also described how the agents sup-
port ubiquitous annotation by leveraging a simplified form
of programming by demonstration in which the agent ob-
serves the user as she demonstrates UI focus contexts and
associates annotations with them. The agent later recognizes

that the user (or someone they have distributed their annota-
tions to) enters one of these contexts and presents the asso-
ciated annotation content. This capability was simplified in
PnitAgent to remove the need for a browser plugin, and was
seeded with content from previous training to make it im-
mediately useful without requiring users to train the agent.
Advanced users may selectively train, save, combine, and
load alternate models as may be appropriate for their team
or other specific use. This proved useful for new users, but
for most use it was so pedantic as to be annoying.

Figure 2: Logical architecture diagram

To address these shortcomings, PnitAgent gathers infor-
mation directly from the various tools and systems available
to it in addition to working through the graphical user in-
terface (see Figure 2). The fact that the agent gathers in-
formation directly from other systems creates a greater cou-
pling to existing software that made deployment and mainte-
nance more difficult, but enables additional capabilities. For
instance, access to data, such as textual, unstructured, user-
entered descriptions of concerns and resolutions requires
the ability to effectively process the contents of the text.
The agent does not do full grammatical analysis of the En-
glish free form text, but uses a series of application-specific
pattern matching and basic language processing techniques
(e.g., stemming, proximal text extraction, and replacement
of noise words and characters). An example of simple stem
matching is given in Listing 1.

Listing 1: Simplified stem match for target modifier
i f (lowerQuery . C o n t a i n s (” c l o s ”))

m o d i f i e r s (M o d i f i e r T a r g e t T y p e . ToClose) ;

To increase performance, the agent exploits information
about the context to guide its process of elimination in ex-
tracting and classifying information.

The agent is built around dynamic dialog with its environ-
ment. The agent control layer of the logical architecture (see
Figure 2) reflects the control and flow of its processing. The
agent performs its primary processing on a main thread onto

2203

which some key event processing is dispatched and from
which other background threads are started and managed.
Ongoing monitoring and reporting provide support and in-
put events even during initialization and shutdown. Much of
the agent’s architecture and processing is structured around
interfaces with the user and the environment, that are sup-
ported and abstracted by services and components.

Each agent maintains information that is unique to it and
its users, including observations, user responses, context as-
sociations, and use information. It acts differently based on
that information and a number of environmental factors such
as who the user is, what folder it was started from, who
logged in with it last, what version its software is, what sys-
tems it can access and the like. The agent keeps track of
its past and current users with separate information associ-
ated with each. Unless a user has been explicitly identified
to the agent, it typically assumes its user is the one currently
logged into its host operating system (OS).

Multiple agents can act on behalf of the same user. Differ-
ent instances started from the same location share persisted
information. If these are started by the same user (or as link
handlers on their behalf), they will heavily share informa-
tion, but may operate on different tasks and observe different
user interfaces (e.g., if started on different machines from a
common network folder). Multiple instances may be started
simultaneously by one user on one or several machines for
various reasons. For example, the OS starts new agent in-
stances to handle links activated outside of an active agent
and, depending on what is requested, a new agent instance
may start, complete the task, and exit automatically.

A key focus of the design was enabling the agent to dy-
namically alter how it observes and interacts with the user
and electronic resources around it. For example, when the
agent experiences an unanticipated exception while trying
to access the COM interface to the version control system, it
keeps a note that it is unavailable and tries the command-line
interface. More generally the agent identifies the availability
of the interfaces and systems by attempting to find and test
them, validating their responses and recognizing failures in
this process and during use. If a system is completely un-
available, the agent overrides and hides access to any con-
flicting settings or actions and explains the situation both
immediately and as needed later on (e.g., indicating that re-
viewer independence can only be partially checked without
version control access).

The agent uses information from the OS to identify the
local user and, based on that, searches for other information
about them. For example, if a user asks the agent to notify
others about what is waiting on them (through a link or as
shown in Figure 1), the agent will not notify all users about
everything waiting on them. Instead, it asks the user for con-
text (or retrieves it from the PNIT field if it is not already in
focus on the screen). Responses in forms including “4494”,
“Release X”, “everything related to 4494”, “waiting on my
closure”, and many others are understood by the agent. This
is accomplished by processing summarized in Algorithm 1.

The algorithm uses application-specific techniques such
as the regular expression shown in Listing 2 to match, clas-
sify, and extract information from the user’s response.

Algorithm 1 Get issue context from user response R
if R is an issue id then “4494”, “PNIT 4494”
else if R is a publicly defined query then . . .
else if R is a currentUser defined query then “Release X”
else if R is a list of issues ids then “1,2” “Pnit1 Pnit2”; see Listing 2
else . R is a natural language query or invalid

if R is a ’waiting’ type query then . “the stuff waiting on doej1”
type⇐ waitingOn

else if R is a ’related’ type query then . “everything related to 4494”
type⇐ relatedTo

. . .
end if

. . .
if R has a specific issue target then . “everything related to 4494”

target⇐ issue id from R

targetType⇐ issue

else if R has a specific user target then . “the stuff waiting on doej1”
target⇐ user id from R

. . .
end if
if R has current user target then . “. . . my . . . ”, “. . . me . . . ”

target⇐ currentUser

end if
if targetType = specificUser or targetType = currentUser

then
targetMods⇐ modifiers from R . “. . . my closure”; see Listing 1
if count of targetMods ¡ 1 then

targetMods⇐ resove + review + close

end if
end if

. . .
end if

Listing 2: Regular expression identifying lists of issue ids
new Regex (” (, | ; | ([0−9] +\\ s [0−9]+)|([0−9]+\\ s p n i t)) ” ,

The use of domain-specific information retrieval tech-
niques is possible because, despite the large variety of in-
formation the agent needs to find and process, the domain
is constrained and structured around the issue tracking inter-
face and the issue context.

Agent Capabilities
PnitAgent is a true assistant, which supports the user in a
diligent, proactive, and non-intrusive way. The support is
provided through a variety of capabilities as described next.

Annotation and Sequential Support
The agent supports display, capture of annotations, and next
step recommendation by constantly monitoring the window
and widget in focus. This nearly ubiquitous capability was
seeded with content to make it immediately useful to every
user. This included a set of annotations that are shown au-
tomatically as users visit an issue’s fields and selections to
provide usage information. For instance, while selecting the
Fixed value for the Resolution field shown in Figure 3 the
agent provides a link to more information and indicates that
Fixed is used only when a defect has been fixed under the
current issue.

2204

Automated Issue Analysis
This capability provides automated analysis of issues and
their associated artifacts, with the aim of giving warnings to
help users identify problems and context information. This
requires access to issue tracking and other data, which the
agent accesses through command line, COM, dynamically
linked library, web, and other interfaces on the users behalf.

Once the agent has logged into the issue tracking system,
it provides a text field where the user can identify one or
more issues of interest by typing an issue id or the name of a
query stored in the issue tracking system. This is flexible (as
described earlier), but requires the user to know and enter
this information. The user then activates the “Check” button
to begin full analysis (taking a minute or more per issue) or
“Fast Check” for faster but less thorough checking (taking
only a few seconds per issue). While checking, the agent
reports its status in a transient text block and prints out the
results of its analysis and explanations into a larger area.

Hybrid Interactive Support
Support is also provided in a hybrid form, which combines
Annotation and Sequential Support and Automated Issue
Analysis. This requires the agent to monitor the user’s focus
to see when the user enters a different context, and provide
context-appropriate dynamic content or links to capabilities.
For example, the agent recognizes in the background that
the user is looking at an issue when they select or open it
in an issue tracking client. The agent proactively analyzes
the issue, and, only if concerns are identified, presents those
concerns to the user in a transient message. In another ex-
ample, the agent recognizes that the user is modifying the
“Version Implemented In” field of an issue. The agent helps
identify information about the appropriate build and copies
it to paste buffer, as seen in Figure 3.

Figure 3: Example of hybrid support for version recommen-
dation

Associated Artifact Review Support
The agent provides two primary modalities of support for re-
viewing the artifacts associated with an issue under review:

1. When the Automated Issue Analysis is enabled, the agent
examines the contents of the issue itself, and does addi-
tional analysis to identify concerns in related artifacts.

2. When asked to identify artifacts directly associated with
an issue, the agent finds the artifacts and supports useful
activities related to those artifacts.
In case 1, the agent uses a cache of results from the last

time it looked through the contents of the files in the asso-
ciated version control workspace(s). It identifies which files
have changes directly associated with the issue, updating the

cache first if necessary. Using this information it raises rel-
evant concerns. For example, it issues warnings about any
case in which the issue under review is referenced from
one of the cached files (e.g., Microsoft Word documents, or
product source code files). The agent intentionally excludes
from its search certain files that commonly retain references
to issues (such as change summaries or files that appear to be
design or code review records). The remaining references re-
flect work on the current issue that remains to be addressed
before the issue is ready for review. The agent also warns
about similar concerns where issues that are already closed
appear to be referenced from such reminders. In another ex-
ample, the agent checks that all static analysis exclusions are
bounded and justified and that the security coding standards
(not enforced by other tools) have been met.

In case 2, the user can ask the agent to list all the artifacts
that appear to have been changed as part of the issue under
review. This includes parsing the change package informa-
tion automatically associated with an issue by the version
control system as well as examining the free form text en-
tered by users into various fields of the issue that often de-
scribe related artifacts controlled by systems other than the
version control system. The list is presented in two forms,
one as text that the user can copy and modify, and a second
as a spreadsheet in which users can sort (by attributes such
as file name, version, date of change, or author of change)
and interact with each item by double-clicking or working
through a right-click context menu. In this way, users can
rapidly identify differences, promote comments, contribut-
ing authors, and various versions of the affected artifacts
without having to work through the interfaces of the differ-
ent systems in which they are stored.

Analysis and Collaboration Support
Finally, the agent supports related analysis and collaboration
tasks. An agent can be asked to save baselines and identify
changes in requirements and issue tracking systems or just a
specific subset (e.g., defined by a query or list) for individ-
ual users. The agent can provide detailed information rapidly
and transparently. The agent can identify who and what an
issue, document or group of items are waiting on and no-
tify users of their pending work with user-specific emails.
The agent also registers itself as a link-handler to be started
by the OS when a specific link is clicked. This allows the
agent to retrieve artifacts from different systems or take ac-
tions such as navigating through items on the user interface
(e.g., to reproduce a bug). Its support for saving baselines,
calculating statistics and providing notifications can be left
running automatically in the background, for example to cre-
ate weekly status updates. Certain analysis tasks, such as the
number of open “product code” issues in a baseline, involve
asking questions to users (e.g., as to whether they think an
early stage issue will affect product code). Agents save those
answers, referring to them later to avoid repeat questions.

Other Capabilities
The agent has additional capabilities that are useful for its
support. For example, it logs its usage, automatically at-
tempts to update itself, and emails use, and exception in-

2205

formation back to its administrator. Users can also ask their
agent to start an email to the administrator filling in useful
log and version information that the user can send or modify.

Development, Deployment and Maintenance
PnitAgent was developed by a single developer outside of
their full time job, consuming an estimated 400 hours of time
during the fall of 2009 and spring of 2010. Until April 2011,
the agent was intentionally left unchanged to reduce vari-
ables that could complicate use and impact analysis. After
this, about 4 hours a month from the original developer have
been devoted to maintenance and enhancements. In the ag-
gregate, a few hours of implementation, dozens of hours of
beta testing, several hours of discussion, and a few hours of
documentation and validation exception support were pro-
vided by others within Medtronic. No direct funding or plan-
ning was provided by Medtronic, but company resources in-
cluding meeting facilities, computers, servers, and propri-
etary software were used for development, deployment and
maintenance of the agent.

Challenges during development were identified and ad-
dressed with short development cycles directed by ethnog-
raphy and beta test feedback. This iterative, user-focused
development was uniquely possible with the AI-based ap-
proach employed. The advisor agent paradigm allowed the
capability to be deployed without requiring the overhead
of formal validation, which would have slowed or stifled
further change after it was first used. Furthermore, the au-
tonomous capabilities of the agent to dynamically adapt, fa-
cilitate user and agent feedback, and update itself transpar-
ently when appropriate made its evolution more rapid.

The agent was beta tested in more than 50 versions that,
anecdotally, largely went unnoticed by beta users. Its basic
functionality was kept unchanged after its release to allow
for its impact to be analyzed without additional variability.

Evidence of Success
Information collected from agent emails and the issue track-
ing system itself provide evidence for the success of PnitA-
gent. Dozens of users adopted the agent and the rate and na-
ture of issue rejections it was designed to address improved.
In fact, regular users of the agent, saw greater rates of im-
provement than those who did not use it regularly. Addition-
ally, the agent may have dampened the negative effect of
issue complexity on rate and repeat of rejection. Finally, as
a result of this success there have been changes in business
practice such as reduction in reviews required by SQA in
groups using PnitAgent.

In evaluating the impacts of the agent, we compare the
period before its use with a period afterwards. Unless noted,
we consider the period before to include issues that were re-
viewed by the S and P teams before January 2010 when a
couple of users began to provide feedback on an early proto-
type. Similarly the period after includes only issues first re-
viewed after announcement of the agent and broader use fol-
lowing a presentation on 16 July 2010 but before 14 March
2011 when data analysis for impact evaluation first began.

Improvement in Rates and Timing of Rejection
When comparing these periods, the overall rate of rejection
decreased significantly as shown in Table 1. Table 2 shows
how the number of reviews before a rejection and the reject
rates at all levels decreased. All the differences are statisti-
cally significant (at 95% or better confidence level).

Table 1: Overall before & after
Issues Reviews Rejects Rate

Before 355 1954 336 17.3%
After 517 2668 267 10%

Table 2: Decrease in reviews before rejection and reject rates
Avg # SQA reject rate Closure reject rate

Before 4.42 19.8% 11.9%
After 3.95 7% 3.2%

For a project of this size with a total of approximatively
7,000 review cycles a conservative estimate of the savings
due to the reduced time spent on SQA reviews and rejection
rework is $350,000.

Greater Improvement with Regular Agent Use
To examine the relationship between use of the agent and is-
sue tracking improvements in the after period, we divide the
populations of issues (and their reviews) based on how much
their resolvers had used PnitAgent. About half of PnitAgent
users qualify as regular users, because their agents reported
more than 5 days of use and 12 issues checked. Although
not all regular users were developers, most S and P team
software developers were regular users. For all but one of
them, there was an email reporting use within the last nine
days (between March 10, 2011 and March 18, 2011). Their
median reported days of PnitAgent use was 84 work days
(where a new work day of use was defined to start with any
detected use more than 12 hours after that of the start of the
last work day of use). For these regular users the primary use
involved Automated Issue Analysis (directly and/or through
Hybrid Interactive Support) with a median rate of 2.04 is-
sues analyzed per work day. All of them also used the agent
for issue related artifact review and all but three for Annota-
tion and Sequential Support.

Table 3: Decrease in reject rates due to agent use
Overall Reject SQA reject Closure reject

Regular users 7.9% 4.0% 1.6%
Improvement 50.9% 78.9%
Others 12.3% 9.9% 4.3%
Improvement 38.2% 57.5%

Table 3 shows how reject rates at all levels decreased and
were lower (at 95% or better confidence level) for regular
users versus others, which include both non-users and users
that are not regular users. Those that never used the agent
had even higher rejection rates.

2206

Figure 4: Rejections by classification before and after. Relative pie size reflects the total number of issues in the sample period.

Improvement in the Nature of Rejection
In addition to the reductions in their quantity, the nature
of rejections has changed for the better. Based on forma-
tive classification of rejections sampled in March 2010, the
agent was primarily designed to address the four major non-
content sources of rejection that were identified as Versions,
Resolutions, Related Records, and Reviewers. As seen in
Figure 4, these sources of rejections shrunk significantly
(both in number and as a percentage) in the sample from
September 2010 through March 2011 (shown together in the
bottom left side of the charts). So there was not only an over-
all reduction in the rate of rejection, but there was a greater
reduction in the areas that the agent was designed to address.
Note that the size of the pie charts reflects the total number
of issues.

The rejection due to Change During Review (typically
higher level design or scope change) dropped both in num-
ber and percentage, presumably due to easier, more rapid
completion of issue reviews. Finally, the part that increased
to become almost half of the rejections was that related to
the content associated with the issues (typically product soft-
ware and documentation).

Resulting Changes In Business Practice
Though more difficult to quantify, important positive
changes were seen in business practice that were attributed
by many involved to the positive effects of the agent.

The most clear and direct change was apparent in the use
and users of the agent itself. Though purely optional, most of
the software developers on the P and S teams were reported
by the agents as users, many of them regular users. Several
users emailed their managers and peers positive comments
and recommendations about the tool such as: “I found the

PnitAgent tool . . . extremely useful when doing reviews. Not
only have I been able to complete them faster, but the tool
found problems I may have otherwise missed. I also found
it helpful in analyzing my own issues prior to routing them
for review, which should help lower my rejection rate. . . ”

For the teams where the agent was used most heavily,
SQA engineers stopped reviewing the majority of issues. Di-
rectly citing dropping rejection rates and the positive effects
of the agent software to project leadership, they praised the
progress and indicated they no longer expected to be added
as reviewers of most issues addressed near the end of 2010.
This has lead to greater efficiency, improved quality, and ac-
cording to at least one of the SQA engineers simplified anal-
ysis of the product for the purpose of regulatory review.

AI Technology and Related Work
The PnitAgent software meets many of the criteria and com-
pletely satisfies some of the notions set for agency in AI tra-
dition and literature such as those put forth in (Wooldridge
and Jennings 1995) and others. It is more specifically an “ad-
visory agent” (Lieberman 1998), making it uniquely suited
to operate and evolve in its heavily regulated environment
semi-autonomously and free of stifling overhead. More fun-
damentally, it realizes AI and agent concepts and reflects the
advantage of designing with these perspectives in mind.

Each agent acts to support its local user as an expert ad-
visor analyzing, warning about, and helping to standard-
ize issue tracking practices. Agents are designed to (and in
some cases are allowed to) operate continuously for days
or weeks (with, for example, close to tray and fade-away
message behavoir, automatic re-login, and daily rebaselin-
ing and artifact caching), but may be stopped and started by
the user at any point. At the same time, they retain informa-

2207

tion that shapes their activities regardless of how long their
current incarnation has been running. Their support involves
at times acting on the file system, retrieving data from var-
ious sources, starting and interacting with other programs
and windows, displaying information to and soliciting infor-
mation from users, and performing what might be called do-
main oriented reasoning, but never altering the issue tracking
system or other product-related artifacts.

PnitAgent falls into “a class of systems that provide
advanced UI functionality on top of existing applica-
tions” (Castelli et al. 2005). Relevant work in this area in-
cludes various attempts to support task modeling (Armen-
tano and Amandi 2009), groupware procedures (Bergman et
al. 2005), and automation after pattern recognition through
programming by demonstration (Lau et al. 2004; Lieberman
1998). PnitAgent has also been shaped by concepts such
as caching into a world model (Castelli et al. 2005); dy-
namic negotiation of protocol between agent and applica-
tion (Lieberman 1998); how to adaptively monitor (Castelli
et al. 2005); usability concerns such as graceful failure, par-
tial automation, perceived value and other “critical barriers
to widespread adoption” (Lau 2008), and work on focused
crawling (Menczer, Pant, and Srinivasan 2004).

PnitAgent further involves AI-related technologies. These
include association by demonstration of annotations,
Markov modeling for learning and recommending next ac-
tions (Drew and Gini 2010), application-specific informa-
tion extraction from free form text and conversational inter-
action with users (more details in (Drew and Gini 2012)).
This work also draws on other parallels with AI ideas and
challenges. For example it borrows from expert system de-
sign and knowledge representation the idea of using a sepa-
rate and partially externalized rule base with rules, such as
those on the roles of reviewers and how to classify require-
ments, provided in default reasoning/settings which the user
(or team lead) may override or extend.

The agent is a culmination of research and ideas from AI
and other communities, such as software engineering (Os-
terweil 1987; Storey et al. 2008) and business (Choo, A. et
al. 2007), applied to software development issue tracking.

Conclusions
This work presented an agent, built on AI concepts and tech-
nology, designed as an advisor for, and adopted by, those in-
volved in issue tracking activities that are part of software
development for the medical device industry. As summa-
rized previously, there is significant evidence of the broad
and positive impact of the agent in improving the efficiency
and quality of issue tracking activities that in turn enrich
medical products. In the year after we completed the collec-
tion of data reported here, the agent has continued to be used
successfully, in new ways, and by additional users. In addi-
tion to being suited for and achieving unprecedented suc-
cess in this important, but narrowly defined new domain for
AI, this work reflects an interesting and practical use of AI
technologies and agent perspectives. This exemplifies a dy-
namic blend of coupling from automated and autonomous
to interactive and tightly integrated. The agent was adopted,
and found useful in a complex development environment.

Several of those involved with this work commented that it
helped the team to align on terminology and their broader
understanding and execution of issue tracking activities.

References
Armentano, M. G., and Amandi, A. A. 2009. A frame-
work for attaching personal assistants to existing applica-
tions. Comput. Lang. Syst. Struct. 35(4):448–463.
Begleiter, R.; El-Yaniv, R.; and Yona, G. 2004. On predic-
tion using variable order Markov models. Journal of Artifi-
cial Intelligence Research 22:385–421.
Bergman, L.; Castelli, V.; Lau, T.; and Oblinger, D. 2005.
DocWizards: a system for authoring follow-me documenta-
tion wizards. In Proc. 18th Symp. on User Interface Software
and Technology, 191–200. ACM.
Castelli, V.; Bergman, L.; Lau, T.; and Oblinger, D. 2005.
Layering advanced user interface functionalities onto exist-
ing applications. Technical Report RC23583, IBM.
Choo, A. et al. 2007. Method and context perspectives
on learning and knowledge creation in quality management.
Journal of Operations Management 25(4):918–931.
Cleary, J. G., and Witten, I. H. 1984. Data compression us-
ing adaptive coding and partial string matching. IEEE Trans.
on Communications 32(4):396–402.
Drew, T., and Gini, M. 2010. MAITH: a meta-software
agent for issue tracking help. In Proc. 9th Int. Conf. on Au-
tonomous Agents and Multiagent Systems, 1755–1762.
Drew, T., and Gini, M. 2012. Automation for regulated issue
tracking activities. Technical Report 12-010, Univ. of MN.
Lau, T.; Bergman, L.; Castelli, V.; and Oblinger, D. 2004.
Sheepdog: learning procedures for technical support. In
Proc. 9th Int’l Conf. on Intelligent User Interfaces, 109–116.
Lau, T. 2008. Why PBD systems fail: Lessons learned for
usable AI. In CHI 2008 Workshop on Usable AI.
Leveson, N. G., and Turner, C. S. 1993. An investigation of
the Therac-25 accidents. Computer 26(7):18–41.
Lieberman, H. 1998. Integrating user interface agents with
conventional applications. In Proc. 3rd Int’l Conf. on Intel-
ligent User Interfaces, 39–46. ACM.
Manning, C. D.; Raghavan, P.; and Schütze, H. 2008. Intro-
duction to Information Retrieval. Cambridge Univ. Press.
Menczer, F.; Pant, G.; and Srinivasan, P. 2004. Topical web
crawlers: Evaluating adaptive algorithms. ACM Trans. In-
ternet Technol. 4(4):378–419.
Osterweil, L. 1987. Software processes are software too. In
Proc. 9th Int’l Conf. on Software Engineering, 2–13. IEEE
Computer Society Press.
Storey, M.; Ryall, J.; Bull, R. I.; Myers, D.; and Singer, J.
2008. TODO or to bug: exploring how task annotations play
a role in the work practices of software developers. In Proc.
30th Int’l Conf. on Software Engineering, 251–260. ACM.
Wooldridge, M., and Jennings, N. R. 1995. Agent theo-
ries, architectures, and languages: A survey. In Intelligent
Agents, volume 890/1995 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg. 1–39.

2208

	AAAI12
	Contents
	Index
	Help
	Terms
	AAAI

