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Abstract
In this paper we present DrillEdge - a commercial and
award winning software system that monitors oil-well
drilling operations in order to reduce non-productive
time (NPT). DrillEdge utilizes case-based reasoning
with temporal representations on streaming real-time
data, pattern matching and agent systems to predict
problems and give advice on how to mitigate the prob-
lems. The methods utilized, the architecture, the GUI
and development cost in addition to two case studies
are documented.

Introduction
DrillEdge is a software system that provides real-time deci-
sion support when drilling oil wells. Decisions are supported
through analyzing real-time data streams of parameters mea-
sured both on the surface and downhole when drilling. The
real-time analysis identifies symptoms of problems, which
are combined to provide best practices for how to handle
the current situation. Verdande Technology has developed
DrillEdge to reduce the cost and decrease the probability
of failures in oil well drilling. Currently, DrillEdge contin-
uously monitors around 30 oil well drilling operations in
parallel for several customers and has been deployed com-
mercially for two years. Verdande Technology’s customers
include Baker Hughes, Petroleum Development Oman and
Shell, among others. In March 2011, Verdande Technology
was awarded the Meritous Award for Engineering Excel-
lence for its DrillEdge software platform by E&P Magazine.

More and more oil well drilling operators monitor a large
part of their drilling operations in real-time from off-site
Real-Time Operation Centers (RTOCs), which are located
close to their experienced subject matter experts of various
kinds. In this way the operators seek to provide remote sup-
port and ensure that knowledge can be transferred between
shifts, operations and regions. Typically, less experienced
personnel are located at the drilling rig and more experi-
enced personnel are stationed in the RTOCs. The experi-
ences gained from handling a problem at one rig can be uti-
lized by the personnel in the RTOC when handling another
problem later on at a different rig probably located in an-
other region. Another advantage of RTOCs is cost reduction

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as subject matter experts are centralized. Booth has docu-
mented the advantages and history of RTOCs (Booth 2011).

Monitoring a situation is to become aware of the situa-
tion, which is a main concern for decision makers. Situa-
tion awareness is investigated in depth by Endsley, and three
levels of situation awareness are identified (Endsley 1995).
First the elements of the situation are perceived, then the sit-
uation must be comprehended, and finally the future state of
the situation can be projected. It is only after the decision
maker is aware of the situation that a decision can be made
regarding how to handle it. This of course applies to oil well
drilling operations too. Experience with similar situations is
valuable when making decisions. By recalling similar prob-
lems, different options for actions and risk assessment may
be identified (Crichton, Lauche, and Flin 2005).

Reusing past experience, i.e., being reminded of similar
situations and making use of decision steps made earlier, has
turned out to be an efficient way for human beings to handle
new situations. Case-based reasoning (CBR) is a computa-
tional method that is based on this principle. CBR compares
the current problem with a set of concrete, past episodes
called cases. The most similar cases are retrieved and used
to solve the current problem (Aamodt and Plaza 1994). In
DrillEdge, a case is a concrete drilling situation comprised
of a collection of symptoms that lead to a problem with an
advice for how to handle a similar situation. Cases are cap-
tured from actual historic drilling data and contain the oper-
ators’ best practices for how to handle the situations.

The rest of the paper is organized as follows. In the next
two sections we explain some core terms of oil well drilling
and explain the type of problem addressed by the DrillEdge
system. This is followed by three sections in which the ratio-
nale for our method choices are described, also describing
the two main method types - Pattern recognition and CBR
in more detail. Followed by a subsequent chapter on related
work, the DrillEdge system architecture is described. Infor-
mation about the system development process and costs are
provided, and a status description of the system’s deploy-
ment status is given. Finally two case studies of DrillEdge
in real operation are summarized.

The Problem
The main task of drilling engineers situated remotely in a
RTOC is to monitor and understand the situation on the oil
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well drilling rigs in order to be able to support the rig crews
if a problematic situation occurs. There are several problems
related to that task.

Perceiving elements of the drilling situations is done
through monitoring the real-time parameter graphs. For
some drilling engineers, this means staring at graphs for 12
hours straight. This is of course a tiring and boring task,
which might result in important symptoms and trends being
overlooked. Therefore all elements of the situation might not
be perceived.

In order to comprehend the current situation, all relevant
information that describe the situation should be available.
Even if the perception of elements is performed perfectly,
as two or more shifts perform the monitoring task, impor-
tant information might be lost because of rotating the shifts.
Symptoms of problems that might have been deemed unim-
portant in the past might be crucial in understanding what is
happening currently. If these seemingly unimportant symp-
toms were observed by another shift, but were not commu-
nicated, making the right decision in the current situation is
hard.

Another problem is the huge amount of data provided
by different sources. Understanding a problem is to build
a mental model of it based on the relevant information. Of-
ten the problem for a drilling engineer is not that the right
data is not available, but it is combining all the information
or finding the right clue (Booth 2011). Some of the infor-
mation is provided in real-time, like some physical models
that are updated accordingly, while others need manual com-
putation. Other information is stored in the drilling plan or
daily drilling reports. Combining all the relevant informa-
tion to get the full view constitutes a high workload and is
not practically possible.

Being able to project the future status of the situations
requires not only principle knowledge, but also experience.
One of the reasons for moving expert knowledge from the
rigs to RTOCs was to co-locate the experience. However,
there is still unsatisfactory experience transfer in the oil well
drilling industry, which easily leads to a lack of experience
when it would be needed. The two main reasons for this is
the age gap and the connection between personnel demands
and the oil price. Because the oil price governs the personnel
demands, lots of personnel are laid off when the oil price is
low. The age gap describes the current distribution of per-
sonnel experience. Recently, the oil price has been high and
the demand for personnel is high. Also, many are close to re-
tirement age, and there are few people in between. Therefore
the industry expects a gap in the experience needed.

Lack of experience can be mitigated by looking up best
practices or incident reports that are relevant to the current
situation. However, as searching for the right information in
a data base or report often results in too many or too few
relevant documents, this is rarely done.

Motivation for using AI technology
In the past decade, the focus in the oil & gas industry has
been on collecting drilling data and making it available re-
motely in real time. This focus has seen the development of
standards for transferring data as well as web-service based

standards for accessing databases. This work means that
there is now a common platform to plug into data streams.
However, applications that plug into this infrastructure to
do useful things with the data have been limited, and ini-
tially focused on visualization tools to support manual in-
terpretation of data in centralized real-time operation cen-
ters. The idea behind RTOCs is that if a problem develops,
deep expertise from across the organization can be brought
in to assist, rather than having to depend solely on people
at the rig site. However, in order to bring expertise in on a
well, the rig or the RTOC must first recognize that a problem
is developing, and manually monitoring sensor data from a
rig is a highly skilled and work-intensive task. It is difficult
for even an experienced person to monitor more than a few
operations at a time manually. This means that unless such
monitoring can be partially or fully automated, the value of
RTOCs cannot be fully realized.

The most obvious way to automate rig monitoring is to set
more or less complex alarms that will notify human opera-
tors if some value or combination of values crosses a thresh-
old. This type of technology exists, but is of very limited
use because most symptoms are much more complex than
what can be captured by such an alarm. Traditionally, the
oil & gas industry has relied on physical models to gener-
ate expected data for many sensor values, such as down-
hole pressure. These physical models are essential tools in
planning a well, and much research in the industry has been
directed towards making real-time versions of these mod-
els that are continuously updated and tuned with data from
the well. This is a challenge because it involves such issues
as inverse modeling of fluids, taking single point measure-
ments of pressure and flow and working out the fluid dynam-
ics of the whole system. Further complications arise as the
physical properties of the formation are not completely un-
derstood in many cases, and differences in equipment cause
differences in sensor responses. Still, drilling specialists are
able to interpret the data to understand what is going on in
the operation. In this situation, we are interested in investi-
gating a data-driven AI approach to modeling the heuristics
used by domain experts, rather than the use of full physical
models. This approach has proved highly successful.

Our initial approach to the problem was to use instance-
based reasoning and other machine learning approaches to
predict problems directly. This very quickly proved difficult.
First, there are relatively few examples of serious incidents.
An incident such as stuck pipe, where the drill string gets
stuck and part of the well has to be re-drilled can happen
a few times a year. It is therefore necessary to have a sys-
tem that is able to learn from very few examples, ideally a
single case. The data dimensionality and dynamics increase
the difficulty of the task. Although there may not be more
than 10-20 parameters to monitor, it is not possible to de-
tect symptoms of these problems without taking the dynam-
ics into account, often looking at trends and the frequency
of occurrence of events over the last 12-24 hours. Learning
such dynamics directly from sensor data would be extremely
difficult even with an abundance of cases, but to do so with
only a few examples is clearly not feasible. The approach
we have taken is to use a two-stage approach. First, pattern
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matching agents are used to identify symptoms in the data,
by forming abstractions over the sensor data, then CBR is
used to identify if this set of symptoms has caused problems
in similar situations in the past.

The pattern matching agents making up the first step of
this process are designed so that each agent seeks to identify
one type of symptom that the domain experts have identi-
fied as important in diagnosing a particular problem. For in-
stance, one type of symptom that can be predictive of stuck
pipe is the pack off (plugging of the wellbore around the
drill string) symptom. The process of creating these agents
is a classical knowledge acquisition process seen in expert
systems in general. The domain experts are typically able
to provide some pointers in what to look for, and can easily
identify examples, but the expert is typically not conscious
of all the heuristics he or she uses in identifying the pattern.
Thus, the creation of agents that reliably identify symptoms
is an iterative process where the agent is tested on as much
data as possible, and the results studied by the knowledge ac-
quisition engineer and the domain expert together in order to
improve it for the next iteration. The abstraction provided by
the pattern matching agents provides an abstraction where
machine learning can be performed even with relatively few
instances. Our main reason for choosing case-based reason-
ing during this stage, is that DrillEdge is a decision support
system used by domain experts, and we need to be able not
only to provide an answer, but also explanatory support for
that answer. In DrillEdge we have even chosen not to make
the prediction of the system explicit. DrillEdge simply dis-
plays all the most similar cases (if any is sufficiently simi-
lar), and sorts the cases by the prediction they imply. This al-
lows us to present DrillEdge as an automated search tool that
will bring relevant cases to the attention of the user when-
ever a situation develops, rather than a classical style expert
system that provides a prediction or a diagnosis. This has
helped in presenting DrillEdge as a tool rather than a threat
to the expertise of the user.

Symptom Recognition
Several methods of symptom recognition are being and have
been tested. So far we have settled on two stable and reliable
methods: Rudimentary Mathematical Modeling and Devia-
tion from Expected Trend.

Rudimentary mathematical modeling is able to describe
the following type of symptoms: Formation Hardness, Soft
Formation and Hard Stringers. Advanced models provide
good understanding of the underlying physical processes,
but they can be computationally very expensive and highly
dependent on data quality, and, on the assumptions. There-
fore, in many occasions, it is better to use simple models by
just focusing on selected effects. A simple or a rudimentary
model, as opposed to an advanced model, is characterized by
selecting only the most obvious influencing parameters and
by ignoring unimportant effects. Such models do not explain
or model every aspect of the process, but are limited to those
parameters that are important for the specific deviation from
the normal background level. A simple model of hardness is
exemplified below:

ROP = C1 ·DR ·WOBC2 ·RPMC3 (1)

Here, ROP is Rate of Penetration, DR is Drilling Resistance,
WOB is Weight on Bit, and RPM Rotations per Minute.
Testing this equation for roller-cone bits has shown that best
results were found when C2 and C3 were equal to 1.5 and 1
respectively. C1 is taking into account all effects not explic-
itly included in the Equation above, like bit type, bit char-
acteristics, hydraulics, pore pressure etc. These effects are
assumed constant after drilling has started.

FH = C1 ·DR = ROP/(WOB1.5 ·RPM) (2)

If formation hardness, FH, is above a certain threshold value
recorded over a drilled distance of less than 2 meters, then
Hard Stringers and Soft Formation are triggered and marked
in the real-time drilling data.

We have selected the problem of interpreting repeatedly
mechanical resistance during the tripping operation (remov-
ing the drill pipe from the hole to replace a dull drill bit) to
introduce Deviation from Expected Trend, illustrated by the
two symptoms Overpull and Took Weight. Whenever the re-
sistance of moving the drill string axially becomes too large
(more than 15-20 tons), it is necessary to stop and clean
(ream) the hole in accordance with Best Practice. Neglecting
to do so may turn the situation into worse failures like stuck
pipe or lost circulation. To be able to detect the event Over-
pull when tripping out on the basis of this method we need
first to establish a normal HKL (hook load) value. Overpull
is seen as a deviation above a certain threshold value. When
tripping-in the corresponding deviation will be recognized
as Took Weight.

Case-Based Reasoning
While the heuristic mathematical models identify the symp-
toms observed while drilling, the CBR engine compares the
current drilling situation with past drilling situations stored
in the case base in order to find out whether the current
situation develops into a problematic one. Thus the CBR
engine is diagnosing the current situation and this encom-
passes finding out which type of problem is being observed.
The past drilling situations stored in the case base are se-
lected because they represent problems experienced in the
past that the operator wants to avoid. However, the role of a
case is not only to classify the current situation, but also to
provide experience and best practices for how to handle the
situation. Also, the outcome of the past situation is known,
and it indicates what might happen in the current situation if
the problem develops and corrective action is not taken.

Symptoms of drilling problems typically happen around
the drill bit, and the drill bit can be placed anywhere in the
well. As the drill bit is not at the bottom of the well at all
times, but often is pulled up from the bottom when clean-
ing the hole or completely out of the hole when a change of
tools is required, the position where a symptom is observed
is essential. Some sections of the well (i.e. vertical parts)
might be particularly problematic, and in such sections the
symptoms typically cluster together. Also, the exact time a
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symptom has been observed is important, as it is essential for
the operator to know whether the rig is experiencing prob-
lems right now. So, both the location in the well and the time
when a symptom was observed is important.

Some problematic situations are characterized by symp-
toms occurring in the same section where previous symp-
toms were observed, while other situations are characterized
by symptoms occurring repeatedly over the last couple of
hours. In some situations the operators should be warned
that they are pulling through a section in which problems
were experienced earlier.

However, symptoms of problems are not the only features
that characterize a problematic oil well drilling situation.
Some problematic situations are characterized by the de-
sign of the bottom hole assembly that is used, such as which
drill bit, the number of and the placement of stabilizers and
whether a mud motor is used or not. Others, again, are re-
lated to a specific formation or its composition. Also the type
of drilling fluid that is used and its composition might be rel-
evant, as some drilling fluids react with the formation, which
can cause swelling of the well making it thinner. The prob-
lems experienced in vertical wells might be quite different
from the ones experienced in one with a horizontal trajec-
tory. Considering the fact that paths of wells are getting more
and more complex, some wells have trajectories that curve
more than ninety degrees from the vertical (going upwards
rather than downwards), the trajectory of the well is impor-
tant too. Hence, the context in which the symptoms occur is
an important factor when differentiating between problem-
atic situations, especially when trying to identify possible
root causes.

Cases have two parts; one that is used by the computer
to compare the two cases, the case description, while the
other is an experience transfer from one human to another,
the case solution. All the above mentioned features are parts
of the case description. The problem solution part is a textual
description intended for humans, and it has four subparts. A
problem description part that describes the operation they
were performing in the specific situation, a symptoms part
that describes the symptoms they were experiencing, a re-
sponse action that describes the actual actions they took in
this situation to rectify the problem, and a recommended ac-
tion, based on a post-analysis, that describes what should
have been done. The problem description can easily contain
pointers and links to best practices or incident reports that
are stored in different software systems. Cases are captured
and written by drilling experts that are trained in recognizing
problematic situations with symptoms that can be identified
by DrillEdge.

Cases are represented in tree structures and stored as
XML files. The root node of the case contains two main
sections, the problem description and the problem solu-
tion. Sections might contain other sections or leaf nodes.
For example, the problem description contains the forma-
tion, drilling fluid, bottom hole assembly, well geometry
and symptoms. The formation section contains the forma-
tion name and the formation composition (lithology), while
the drilling fluid section contains properties describing the
drilling fluid that is used, such as mud weight and whether

Figure 1: The DrillEdge CBR cycle.

it is oil-based or water-based. The bottom hole assembly de-
scribes the design of the bottom hole assembly. Important
features are how long it is, which drill bit is used, the number
of stabilizers and their positions. The section well geometry
represents target depth of the current section and the depth of
where the section started. The sequence section is a special
kind of section that contains events, and events are repre-
sentations used for symptoms. Events have different types
corresponding to the type of symptoms they represent. The
symptoms section contains two sequence sections. One rep-
resents the distribution of events over a given depth around
the drill bit, while the other represents the events distributed
over a limited time period. The end of the time sequence is
the time the drill bit was located at a given depth, and the
start of the time sequence represents the time the current sit-
uation started. The ranges above and below the drill bit in the
depth sequence indicate the section of the well that is rele-
vant for the situation in the opinion of the expert that built
the case.

The degree of similarity between two cases is found by
comparing the root nodes in the case trees. The similari-
ties of root nodes are aggregated into section similarities,
and section similarities are combined recursively until the
similarity of the root nodes are found. The similarity of the
root nodes is the resulting similarity of the case comparison.
Root nodes can be of different types, like integers, doubles,
enumerations and sequences. For each type of node a set of
similarity measures can be configured for comparison. For
example, all numeric features are not compared using the
same type of similarity measure. Both standard similarity
measures (Richter 2008) and custom made similarity mea-
sures are used to compare features.

The CBR process continuously compares the current sit-
uation with cases stored in the case base. Figure 1 illustrates
the reasoning process. For each time step, the real-time data
parameters are interpreted, and if symptoms of problems are
identified, events are fired. The current situation is repre-
sented by both important events and contextual information.
Events are stored in the case as depth and time sequences
sorted on the distance from the drill bit and distance from
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the current time respectively. The CBR system searches for
and retrieves cases from the case base and compares them to
the current case. The comparison result is sorted on similar-
ity. All past cas es with a degree of similarity above a given
threshold are visualized on a GUI element, the radar, to alert
and advice the user of past historic cases that are similar to
the current situation. By investigating the similar situations
the user is advised on what others did and what should have
been done in similar situations in the past. A new case is
made by the drilling engineer if the current situation is not
covered by any cases stored in the case base or if other ad-
vice applies to this situation. New cases are typically quality
assured through peer review by a group of domain experts.
The system learns when new cases are added to the case
base.

Related Work
Several researchers and companies have tried out case-based
reasoning methods for oil drilling assistance. Very few sys-
tems have reached deployment, however, and no other sys-
tem than DrillEdge, to our knowledge, links on-line data
streams to past cases for real-time decision support in an
ongoing drilling process. Partly based on a previous study
(Shokouhi, Aamodt, and Skalle 2010), we discuss related
work where CBR methods are applied to an ongoing oil
drilling operation as well as applications in related drilling
domains, such as well planning, reservoir engineering, and
petroleum geology.

An application of CBR in planning of a drilling opera-
tion was described by the Australian research organization
CSIRO (Kravis and Irrgang 2005). The system, Genesis, can
use multiple cases at varying levels of generalization.

Mendes et al. (Mendes, Guilherme, and Morooka 2001)
developed an application of CBR in offshore well design.
A genetic algorithm (GA) was used to determine the proper
trajectory of the well, starting out from a set of solutions
that form the initial population. The cases retrieved via CBR
constitute the initial population.

Perry et al. (Perry et al. 2004) developed a case-based
system for drilling performance optimization. Project docu-
ments, well summary documents, and technical lesson doc-
uments are three levels of documents in the knowledge base
hierarchy.

Popa et al. (Popa et al. 2008) applied CBR to determine
the optimum cleaning technique for filter failures. A small
subset of historical cases was taken from the database to
evaluate the proposed solution with the actual results. Ac-
cording to the similarity assessment, 80% of the cases were
correctly assigned to the successful cleaning method.

Bhushan and Hopkinson (Bhushan and Hopkinson 2002)
developed a CBR system to search for reservoir analogs in
the planning of new fields. A knowledge sharing tool, called
the Smart Reservoir Prospector (SRP), was developed.

A CBR framework was developed by Schlumberger to as-
sess the applicability of seven lift methods for land, plat-
form, and subsea wells (Sinha, Yan, and Jalali 2003).

Abel et. al. developed a CBR system to support the in-
terpretation and classification of new rock samples (Abel,

Reategui, and Castilho 1996). To provide petrographic anal-
yses, the system achieves its reasoning power through the
set of previous cases combined with other domain knowl-
edge. Later the system was introduced into a real corporate
environment (Abel et al. 2005).

Research related to the DrillEdge system, but not part of
it, has been done as joint work between Verdande Tech-
nology, Statoil, and our university groups. One line of re-
search has been to study the effects of including an ex-
plicit model of general domain knowledge with the cases,
as done in the earlier Creek system (Aamodt 2004). Shok-
ouhi et.al. utilized a newly developed version of Creek to
integrate case-based and model-based reasoning (MBR) for
oil drilling (Shokouhi et al. 2009). Abdollahi et al. studied
the problem of uncontrolled release of formation fluids into
the well through the lifecycle of a well. It was shown that
pre-defined rules could successfully be integrated with CBR
to obtain causes of well leakages (Abdollahi et al. 2008).

DrillEdge
DrillEdge has a client server architecture in which the server
is a distributed system running on large computing clusters
like the Amazon Elastic Computing Cloud (ECC) while the
clients run on regular desktop machines.

Architecture
As depicted in the leftmost part of figure 2, the process view
of the architecture can be illustrated as a layered architec-
ture with four layers. The lowest level is data acquisition in
which data are acquired from the data sources. Data sources
can be both manually updated when starting to monitor an
operation and updated automatically in real-time. The sec-
ond lowest level is data interpretation where patterns are
recognized and symptoms are flagged by software agents.
The symptoms are fed into the case-based reasoning engine,
which recognizes broader patterns, not focusing on a smaller
set of parameters, but the complete situation. Finally, at the
topmost level the data and findings are visualized for the
users.

The middle part of figure 2 depicts a client-server view
of the architecture. Each machine in the cluster is indicated
by a gray, squared box which runs services that are drawn
as white boxes with soft corners. Different kinds of services
are provided by the server cluster. The main service is the
operation service, and it is responsible for the three lowest
levels of the processes view which are related to one real-
time drilling operation. In the illustration two machines run
a total of 4 operations designated with an O and a subscript
for its ID. Other services are the license service, which en-
sures that the operator is not running more operations than
it has licenses for and is designated L, and the management
service, designated M, which manages the setup and con-
figuration of operations. Clients, on the right, communicate
with services through a front end server, which the only task
is to ensure that the services get the right messages. All com-
munication between the server cluster and the clients is done
using the HTTP protocol.

The rightmost part of figure 2 shows the architecture
of the operation service. The operation service includes a
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Figure 2: The DrillEdge architecture explained: Process view to the left, the client-server architecture in the middle and the
operation service to the right.

WITSML (Wellsite Information Transfer Standard Markup
Language) client that requests data from a WITSML server
and is responsible for storing the received data in the appro-
priate data structure. Some data are stored in a depth table
while other are stored in a time table. The agents fetch data
from the data structures to perform their calculations. Some
of the agents compute new values each time step, for exam-
ple trend agents, while others only store data when they find
new symptoms. The CBR engine is also implemented as an
agent. It is however dependent on the calculations from all
the other agents, so it will not execute until all other agents
have done their calculations for a given time step.

Client
The intention behind the client is that it should be easy to
use and self-explanatory. Users can choose between several
different tabs that visualize data in different manners, like
parameters plotted against time or depth, the static properties
that the operation is configured with, or an overview. The
two main tabs are the time tab and the overview tab. Figure
3 shows screen captures of the two tabs with the overview
tab on the left and the time tab on the right. The screen shots
are included in order to illustrate the structure of the screens
and not their detailed contents.

The overview provides three main types of information:
the depth view, the radar and the case solutions. The depth
view visualizes the drill bit in the hole, and it shows the cur-
rent depth and the formation layers and their lithology. Both
rotation of the drill bit and mud flow are animated to make it
easier for the users to understand the current activity. Also,
events are plotted according to depth so if the drill bit is
pulled through a section of the well that was problematic to
drill, then this can be seen from the depth view. The most
important GUI element on the overview screen is the radar,
and this is emphasized by the amount or screen real estate
it occupies. Past cases are plotted on the radar according to
how similar they are to the current situation. The more sim-
ilar a case is to the current situation the closer to the center
of the radar the case is located; if a case is 100% similar, it
will be in the center. The radar threshold is 50% so all cases

that are less similar that the threshold will not be plotted on
the radar. This ensures that only relevant cases are brought
to the attention of the user. The radar is divided into different
sectors according to the problem area the cases in the case
base are representing, such as Lost Circulation and Mechan-
ically Stuck Pipe. When clicking on a case on the radar, the
case solution will appear on the right describing the past sit-
uation, the problem and recommended actions.

The time tab provides a list of available parameters that
can be dragged over to the parameter graph columns so that
the values will be drawn as graphs with time flowing down-
wards. Events are drawn in the event column so that users
can see exactly when symptoms appeared. As event names
use common terminology for the users, they can easily look
at the corresponding parameters to see whether they agree
with the symptoms. Case graphs can be drawn for each case
in the case base, and they show the similarity degree of the
cases at every time step. Thus the case graphs convey the his-
tory of how the current situation has developed seen through
the lens of the past cases stored in the case base.

Development and Cost
The development of DrillEdge was based on research per-
formed at the Norwegian University of Science and Technol-
ogy (NTNU), more specifically within the AI and Drilling
Engineering research groups (Skalle, Sveen, and Aamodt
2000; Aamodt 2004). In 2006, the Norwegian Research
Council’s Petromaks program in conjunction with Statoil,
the largest Norwegian oil company, provided funding for
a two year project to develop a pilot system for study-
ing whether case-based reasoning and related technologies
could be used to detect and predict drilling problems. This
project funded the two first years of commercial develop-
ment, providing approximately $3 million to fund 14 man-
years of development over these two years. At the end of
this period, in 2008, a prototype of DrillEdge was finished,
although another 6 man-years of development were required
before the first customer version was released in 2009, plac-
ing the total development cost (excluding marketing, but in-
cluding all overhead) at around $4.5 million. Since then,
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Figure 3: Two different screens from the DrillEdge client is shown above.The overview screen is on the left hand side and the
time view is shown to the right.

development has continued both to broaden the types of
drilling problems that can be detected, but also to develop
features such as administrator tools, email alerts, support for
cloud deployments and so on. Today, the DrillEdge develop-
ment team consists of 12 full-time developers and testers.

Commercial Deployment
Drilling for oil and gas is very expensive, especially in off-
shore locations. In the North Sea, a single 6000 meter well
can cost $100 million to drill. The industry also recognizes
that there are significant savings possible here – depending
on the well complexity, the average NPT can be as much
as 30%. Some of this NPT is unavoidable; e.g., waiting out
especially bad weather, but DrillEdge is currently able to ad-
dress problems causing about half of this downtime. At the
time of writing, there are 1190 offshore rigs in the world,
about 70% of which is operational at any time (RIGZONE
2012). These rigs have an average day rate (cost for the op-
erator company to rent the rig) of $144,000 per day per rig.
Provided that the NPT can be reduced by 5% across the off-
shore rig fleet, this translates to a cost saving of over $2.1B
per year. In addition, there are over 3000 rotary land rigs in
operation in the world, a number that is increasing rapidly
due to the drilling for shale gas in the United States (there
are about 2000 rotary land rigs in the US alone, an increase
of about 300 over the last year) (Hughes 2012). These rigs
have lower NPT and day rates than offshore rigs, but are in-
terested in real-time drilling data to improve efficiency and
consistency of drilling.

DrillEdge is in use by Shell in their Real-Time Operat-
ing Centers in the US, where it has been used on many
of the most challenging wells drilled by Shell across the
world in the last six months. It is also installed as a core
part of the real-time monitoring infrastructure in the national

oil company of Oman, PDO. At the time of this writing,
DrillEdge monitors over 20 rigs in Oman alone. In Septem-
ber 2011, Verdande Technology signed a partnership with
Baker Hughes, a major oil service company, which means
they will use DrillEdge as a key component in their real-time
monitoring services as sold to operators, starting in 2012. In
addition, Verdande Technology also executed successful pi-
lot installations for more than 15 oil operators during 2011.

Case Studies
DrillEdge has been used successfully for analyzing data for
several customers both in pilot tests and commercial deploy-
ment. Two of the case studies that have been made are sum-
marized below. In each of them DrillEdge analyzed several
sets of historical data. The tests were performed blindly; Ver-
dande Technology was not informed beforehand of which or
when the operator had experienced problems. Nor was any
information about the outcome given.

Case Study: Stuck Pipe
A major service company wanted to minimize the risk of
stuck pipe events for their clients in Latin America and
around the world. DrillEdge was employed in a post-well
historical analysis to determine if the losses and ballooning
events could have been recognized in advance.

A project was launched to evaluate the potential of
DrillEdge technology to recognize the stuck pipe prob-
lems. Time and depth-based data from several prior land
drilling operations in Latin America were employed in a
rigorous testing routine. Overpull events, erratic torque and
pack offs were thought to be key contributors to the stuck
pipe scenarios. Cases were built in DrillEdge and these
cases were associated with other data, such as BHA, trajec-
tory, mud properties and the formation. Well drilling data
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was then streamed while DrillEdge technology monitored it
for precursor events. Tests were highly successful with the
DrillEdge technology consistently predicting stuck pipe in-
cidents 6 to 8 hours prior to the events occurrence. While
drilling, this window was deemed sufficient to proactively
address a stuck pipe risk. The success of this project set the
stage for further testing in live field trials from RTOCs.

Case Study: Lost Circulation
A major operator encountered costly NPT due to mud losses
and subsequent hole ballooning. DrillEdge was employed in
a post-well historical analysis to determine if the losses and
ballooning events could have been recognized in advance.

Using a combination of information including pit vol-
umes, well and drill string geometry, ROP and lag times,
the DrillEdge system was able to recognize changes in vol-
ume that were not accounted for by the drilling process. In
a historical analysis of a well with known problems related
to mud losses and hole ballooning, DrillEdge first saw indi-
cations of losses three days before the customer experienced
total losses. During this time, a series of loss events was de-
tected, combined with hole ballooning at connections. Had
DrillEdge been employed on this well, these risk associated
with these problems could have potentially been better as-
sessed, leading to remedial actions based on company best
practices that could have reduced costly NPT.

Conclusion
In this paper, we have presented DrillEdge, a software sys-
tem for supporting decisions in real-time when performing
oil-well drilling operations. DrillEdge has been developed
since late 2006 and has been commercially deployed for
over two years on more than 200 wells. We show how AI
methods such as case-based reasoning, pattern matching and
agent systems have helped large oil-well drilling operators to
prevent doing the same mistakes over and over again.
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