
Statistical Anomaly Detection for Train Fleets
Anders Holst and Markus Bohlin and Jan Ekman

Swedish Institute of Computer Science
Box 1263, SE-164 29 Kista, Sweden

Ola Sellin
Bombardier Transportation

Östra Ringvägen 2, SE-721 23 Västerås, Sweden

Björn Lindström1 and Stefan Larsen2

1 Addiva Consulting AB 2 Addiva Eduro AB
Kopparbergsvägen 8, SE-722 13 Västerås, Sweden

Abstract

We have developed a method for statistical anomaly detec-
tion which has been deployed in a tool for condition moni-
toring of train fleets. The tool is currently used by several
railway operators over the world to inspect and visualize the
occurrence of “event messages” generated on the trains. The
anomaly detection component helps the operators to quickly
find significant deviations from normal behavior and to de-
tect early indications for possible problems. The savings in
maintenance costs comes mainly from avoiding costly break-
downs, and have been estimated to several million Euros per
year for the tool. In the long run, it is expected that mainte-
nance costs can be reduced with between 5 and 10 % by using
the tool.

Introduction
Anomaly detection is a growing area with more and more
practical applications every day. It has been used for fraud
detection and intrusion detection for a long time, but in later
years the usage has exploded to all kind of domains, like
surveillance, industrial system monitoring, epidemiology,
etc. For an overview of different anomaly detection methods
and applications, see e.g. (Chandola, Banerjee, and Kumar
2009).

The approach taken in Statistical anomaly detection is to
use data from (predominantly normal) previous situations to
build a statistical model of what is normal. New situations
are compared against that model, and are considered anoma-
lous if they are too improbable to occur in that model.

Addtrack is a tool for condition monitoring of trains de-
veloped in collaboration between Bombardier Transporta-
tion AB and Addiva AB. Addtrack is currently used by Bom-
bardier and several railway operators to inspect and visual-
ize the occurrence of “event messages” generated on train
fleets. The data sets analyzed often consists of several thou-
sand data points, and a common complaint from analysts
was that it was, as a consequence, difficult to observe pat-
terns and anomalies in the fleet of trains. Of particular inter-
est was the ability to more directly point out the most anoma-
lous observations, so that further investigative actions could
be taken.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

SICS has for several years developed methods for sta-
tistical anomaly detection, based on a framework called
“Bayesian Principal Anomaly” (Holst and Ekman 2011).
The framework has already been successfully used and eval-
uated in several real application domains, such as alarm fil-
tering in telecommunication networks, intrusion detection
(Dey 2009), alarm call monitoring for crisis management,
and maritime domain awareness (Bjurling et al. 2010). In
this paper we describe a novel application domain for the
anomaly detection method; condition monitoring of trains
(Holst, Ekman, and Larsen 2006). The developed methods
have been deployed as a component of the Addtrack system,
and are in use helping analysts to quickly find significant de-
viations from normal behavior in several train fleets, and to
detect early indications for possible problems.

Other Bayesian methods have previously been applied to
a wide variety of problems including intrusion detection
(García-Teodoro et al. 2009; Cemerlic, Yang, and Kizza
2008; Chebrolu, Abraham, and Thomas 2005), dynamic sys-
tem diagnosis (Lerner et al. 2000), spam filtering (Su and
Xu 2009), environmental anomaly detection (Hill, Minsker,
and Amir 2009) and energy expentiture estimation (Shahab-
deen, Baxi, and Nachman 2010). However, applications to
train diagnosis have, as far as we know, not been published
before.

The rest of this paper is organized as follows. First, the
Addtrack tool is described together with the original require-
ments for an anomaly detection module and an outline of
how the application is used. Next, the principal anomaly is
presented as the basis for the module, followed by a descrip-
tion of the Bayesian learning used to estimate the normality
model and the particular application to event data anomaly
detection. The anomaly detection module is then described,
and the development and deployment process follows. The
paper ends with a brief evaluation and a discussion of the
results and future development.

The Addtrack Tool
Addtrack is a tool developed originally by Bombardier
Transportation for general analysis, monitoring and visual-
ization of train condition and event data, which is period-
ically or continuously uploaded from the train units. It is
“intelligent” in the sense that analysis modules, such as the
one described in this paper, can be used to preprocess and vi-

Proceedings of the Twenty-Fourth Innovative Appications of Artificial Intelligence Conference

2217

Figure 1: Addtrack visualization of selected event occurrences for five units in the Chinese fleet.

sualize data sets. Today, Addtrack is developed by the inde-
pendent company Addiva Consulting AB. Addtrack includ-
ing the anomaly detection module described in this paper is
currently deployed in Sweden, India, China and Germany,
and has approximately 270–300 active users in total. Out
of these, most use the anomaly detection functionality. The
main purpose of Addtrack is both to let the maintenance per-
sonel get an overview of the condition of the fleet to catch
problems early, and also to find out the circumstances and
causes when a failure has occurred.

The primary user of Addtrack is Bombardier Transporta-
tion, one of the world’s largest rail-equipment manufactur-
ing and servicing companies with more than 100 000 in-
stalled rail cars and locomotives worldwide. Here, the main
use of Addtrack is to detect faulty units during the devel-
opment of new railway vehicles and the subsequent com-
missioning phase. Following this, Addtrack is used during
the guarantee period to perform a simple form of root-cause
analysis. Finally, the tool is used during the maintenance
phase for acute fault localization. To a lesser extent, it is
also used for predictive maintenance, but this mode of use
is growing since it allows the operators to catch faults early,
thereby avoiding much more severe stopping failures. To-
day, customers using Addtrack prevent on average one or
two stopping faults annualy for each train unit.

A key functionality of Addtrack is to visualize the num-
ber of events of different types that have occurred on a set
of trains during some period. Figure 1 contains such a view,
where the diagram shows the number of events per event
code (on the x-axis) and train (on the z-axis) that have oc-

curred during the last month. Only event codes that have
occurred at all during the month are shown. In the menu to
the left it is possible to select which set of trains to show.
It is also possible to click a bar in the diagram to see a time
series of which days those events occurred (not shown here).

As can be seen, there are rather many event codes with
a high number of events for most trains, indicating that this
is the normal state. There is also a high variability between
trains in the number of events of some event codes, but it
is not obvious from the diagram when a bar is (statistically)
significantly higher than the others. Before the integration
of the anomaly detection module, analysts were analyzing
the raw fault rates exclusively by choosing a period and a
subset of trains and codes for events or condition data to vi-
sualize. It is however a time consuming and tedious work for
an analyst to go through all high bars to see if they indicate
something out of the ordinary. There may even be quite low
bars that nevertheless are significantly higher than for other
trains, but may go unnoticed among all the normally high
bars. Indeed, sometimes it may even be remarkable with a
too low number of events, which is almost impossible to spot
in the diagram.

As an example of the size of the data set, for the Swedish
fleet of Regina trains operated by SJ, which consists of 57
different train sets, there is over 1 000 different event and
condition types. The data is typically collected weekly, and
for each such interval the analyst therefore have a set of over
57 000 data points to watch in total. On the more modern
train sets, over 12 000 data points are collected per train set.
The main complaint of analysts was therefore that it was

2218

very difficult to observe patterns in the huge amounts of data
that the analyst has to handle. A particular problem was the
analysis of rare events, for which obvious patterns was hard
to detect even for experienced analysts.

In summary, it would be advantageous with a tool to in-
dicate which bars are significantly different from expected,
and should thus be focused on. To be useful in practice, it
was also judged important that an anomaly detector module
for Addtrack fulfill several conditions:

• It must be able to handle a large number of input features.

• It must be able to handle several different normal situa-
tions.

• It must allow for training data to include realistic amounts
of anomalous cases.

• It must be fast when dealing with large amounts of data.

• It must be robust in the light of very small amounts of
training data.

• It must have a sufficiently small false alarm rate, while
still being maximally sensitive to real anomalies.

The following two sections describe an anomaly detection
module designed from these requirements.

Principal Anomaly Detection
The general idea in statistical anomaly detection is to build
a statistical model over normal cases, and then compare new
samples with this model when they arrive. Samples that
would have a too small probability of being generated by
the statistical model are considered anomalous, i.e. they are
very unlikely to belong to the set of normal cases. This is so
far similar to classical hypothesis testing in that we are try-
ing to reject the hypothesis that a new sample is generated
by the normality model.

However, there is also a Bayesian statistics part, which
comes in when estimating the parameters of the normality
model. This estimation must be robust also when there are
very few data samples. A classical maximum likelihood
point estimate of the parameters can make the estimated dis-
tribution sensitive to random fluctuations in the data, which
tends to result in too many false alarms. Using a Bayesian
approach, we can remedy this by taking appropriate consid-
eration to the uncertainties in the actually observed data, and
thereby avoiding some of the false alarms.

Let us initially assume that the normal situation samples
are generated by a known probability density P (x | θ) for a
set of parameters θ. To define what is meant by an “anoma-
lous” observation, we note that intuitively, the smaller the
probability of generating a new observation z from the dis-
tribution, the more anomalous is it. However, just looking at
the probability P (z | θ) of generating the observation z from
the distribution won’t do, since the magnitude of P (z | θ)
depends on the variance of the distribution (for continuous
distributions). Therefore, it is not possible to specify a fixed
probability threshold that is the same for all distributions,
and below which a sample should be considered anomalous.
Instead, we should look at the same entity as in hypothe-
sis testing, i.e. the probability of generating an observation

at least as unusual as z. This also gives a natural way of
controlling the rate of false alarms, which may otherwise be
high in many anomaly detection applications.

Thus, let us then define the principal anomaly of a new
observation z as the probability of generating a more com-
mon sample than z from the distribution:

A(z | θ) =

∫
x∈Ω

P (x | θ) (1)

where Ω = {x : P (x | θ) > P (z | θ)}

Figure 2: Illustration of the principal anomaly A(z | θ).

This measure is illustrated in Figure 2, and has a number
of desirable properties. First, A(z | θ) increases when the
sample z gets more unusual, which is intuitive. Second, it is
directly comparable to the principal anomaly of other distri-
butions or sets of parameters. Third, it is directly connected
to the rate of false alarms. If we set a threshold on the prin-
cipal anomaly of 1 − ε over which an observation is judged
anomalous, the probability that a normal sample is wrongly
detected as anomalous is then simply ε.

In the context of statistical anomaly detection, we claim
that all sound scores of anomaly should be related to this
principal anomaly, since it defines how unusual a sample
is. Conversely, any score that is a monotonic function of
the principal anomaly will rank the samples identically with
respect to anomaly.

However, although suitable in the formal sense, the prin-
cipal anomaly itself is not so convenient to work with and
inspect manually, since its anomaly values are most of the
time very close to 1. Its complement may therefore be more
useful:

Ā(z | θ) = 1−A(z | θ) =

∫
x∈Ω̄

P (x | θ) (2)

where Ω̄ = {x : P (x | θ) ≤ P (z | θ)}
This is the probability of getting an equally or less prob-

able sample than z from the distribution, i.e. the probability
of the tails beyond z (and beyond other samples with the
same probability as z), and therefore equal to ε. For anoma-
lous samples it will be very close to 0, and therefore easier
to compute with high precision than the principal anomaly
itself. Also useful, and more intuitive to work with, is the
negative logarithm of the complementary principal anomaly:

Λ(z | θ) = − log(Ā(z | θ)) (3)

2219

It ranges from 0 to∞, and increases with higher anomaly,
such that each constant step higher represents a factor lower
probability. But as mentioned above, exactly which trans-
form is used for presentation purposes is irrelevant, as long
as it is strictly monotonically increasing in the principal
anomaly A.

Bayesian Learning
Let us now consider the case when the parameters θ are
unknown, and we instead have to estimate the result from
a number of samples. To be useful, the anomaly detector
should be able to provide an anomaly score already after
a very small number of training samples. With maximum
likelihood estimation of the parameters, the estimates will
be far too sensitive to chance occurrences, and the resulting
detector will tend to strongly underestimate the probability
of new samples, resulting in too many false alarms. With a
Bayesian approach, all parameter values that may have given
rise to the observed samples are considered (appropriately
weighted). The result is a detector that is much more robust
to random fluctuations in the training data, and doesn’t indi-
cate an anomaly unless it is sufficiently certain. The side ef-
fect is that early on a Bayesian anomaly detector will accept
more samples as normal. However, as more training data
is collected, the parameter estimation will become more ac-
curate which in turn will make the anomaly detector more
precise.

More formally, the Bayesian approach is thus to find the
posterior distribution over the parameters θ given the set of
training samples X:

P (θ | X) ∝ P (X | θ)P (θ) =
∏
i

P (xi | θ)P (θ) (4)

Here, P (θ) is the prior distribution over the parameters. In
this paper we use a standard non-informative prior which has
proven adequate in practice. We can now obtain the princi-
pal anomaly by integration over all possible parameter val-
ues:

A(z | X) =

∫
θ

A(z | θ)P (θ | X) (5)

We define this as the Bayesian Principal Anomaly.

Anomalies in Event Data
In the train condition monitoring application, the data used
to check for anomalies are the rates of different event mes-
sages generated on the trains. As on most technical systems,
there is a large amount of log messages generated when
things happen, representing events ranging from harmless
to serious. The serious events are straightforward to han-
dle, since they typically require service more or less imme-
diately. More interesting from an anomaly detection per-
spective are changes in the rates of less serious or seemingly
harmless events. Such often subtle changes in the rates nev-
ertheless indicates that something has changed on the train,
which may merit action in the form of an extra inspection of
the corresponding subsystem.

To model normal behaviour, we assume that when the
train is in a normal state, each event type has a certain nor-
mal rate with which it occurs. Under this assumption, we

can model the number of events in an interval of length T
with a Poisson distribution:

P (x | λT) = (λT)xe−λT /x! (6)

where λ is the rate of events per time unit. For each event
type xi, we get the Bayesian Principal Anomaly from Equa-
tion (5) by inserting the above expression with θ = λT in
Equation (4). The resulting expression requires numerical
evaluation of an indefinite sum, but not more complicated
than that it can be computed rather fast on a normal com-
puter.

It is now possible to test each train against the others, by
counting the number of events of each type for each train
during a certain time period of interest, and computing the
Bayesian Principal Anomaly for the counts of each train,
basing the normality model on the others counts. This will
find trains that behave differently from the others with re-
spect to some event type. Alternatively it is possible to find a
train that has changed behavior recently, by testing its counts
from a recent time period against those from a longer histor-
ical time period.

The Anomaly Detection Module
Figure 3 shows the anomaly detection view in Addtrack,
which is powered by the anomaly detection module de-
scribed in this paper. Here, the bars indicate how deviat-
ing from normal, i.e. anomalous, each event code count is
for each train during the last month. The high bars are much
more sparse in this view, and thus easier to go through, com-
pared to those in Figure 1. Also, there are indeed some high
bars that corresponds to rather low bars in the count dia-
gram, and which consequentially might have been missed
without the anomaly detection. Using the module, analysis
can therefore be made much more efficiently by allowing the
analyst to focus on a particular subset of trains, event codes
and time periods.

Savings from using the anomaly detection module in
Addtrack comes mainly from being able to faster diagnose
and correct faults on train units in all phases during their
lifecycle, which has a number of benefits including a higher
ratio of trains delivered on time. The annual savings from
using Addtrack are in the order of ten of millions Euro.
Out of these, the monetary savings from using the anomaly
detection part are substantial but harder to quantify. Bom-
bardier has however estimated that in the long run, mainte-
nance costs can be reduced with between 5% and 10% by
using Addtrack with anomaly detection.

In order to simplify the application of anomaly detec-
tion for different kinds of log and alarm data in different
domains, the anomaly detection algorithm for event data
is placed in a separate program module with a very sim-
ple API designed to be independent of the specific domain.
Since Addtrack runs on the Windows platform, the mod-
ule was wrapped in a DLL compiled from the C source
code, which was then integrated in Addtrack. The API
has only four functions: CreateAnomalyDetector which cre-
ates a new anomaly detector and trains it with a set of pro-
vided event counts and intervals; ApplyAnomalyDetector

2220

Figure 3: Addtrack deviation detection mode for selected event occurrences for five units in the Chinese fleet (same as in
Figure 1).

which tests it on some also provided event counts and in-
tervals; SetAnomalyThreshold to set a threshold used when
filtering out anomalous samples from the training data; and
DeleteAnomalyDetector to call when the detector is not
needed anymore.

This simple design with a minimum of free parameters
makes it easy to provide anomaly detection capacity to other
programs. To use the anomaly detector, the host program
will have to take care of any user interaction to e.g. se-
lect a time period of interest and a set of entities to check
for anomalies (like trains in the case of this paper); look up
from appropriate databases a list of event counts for the dif-
ferent entities during the selected interval; create and apply
an anomaly detector to get anomaly values for the entities;
and visualize the results in a suitable way to the user. If
the surrounding program is a commercial product aimed at
analysis of log or event data, it is likely to have functionality
for user interaction, data base access, and result visualiza-
tion already, and it will therefore be relatively simple to add
anomaly detection functionality as well.

Development and Deployment Process
Addtrack has been continuously developed for approxi-
mately ten years by a small team of developers, first at
Bombardier Transportation, and then at Addiva. The need
for anomaly detection was first uncovered in a collabora-
tive research project which was initiated in 2003. At this
time, Addtrack was used internally at Bombardier under the
name of Edgar (the graphical user interface part) and T-

Rex (the database part). Early experiments with much sim-
pler anomaly detectors resulted in a high number of false
alarms, which is why a Bayesian approach was chosen. The
anomaly detection techniques had also been previously de-
veloped at SICS since 2001 during several basic and applied
research projects. Isolation of the anomaly detection func-
tionality into its own module started in 2007, and have since
then taken only a few person months of work, spread out
over time. The addition of the anomaly detection module
to Addtrack was, in comparison to the development effort,
quite small, and took in the order of 3–4 person weeks of in-
terface design for SICS and approximately the same amount
of integration work for Addiva. The roll-out of the mod-
ule was done via an automatic update of Addtrack over the
Internet, and distribution and deployment were therefore rel-
atively easy.

The anomaly detection module was officially released
by Addiva at the Addtrack user group conference in 2009,
which was used as a marketing channel. From there, the
users have spread the information further within their re-
spective company. Manuals and other supporting material
have been developed by Addiva, and maintenance and fur-
ther development of the Bayesian module have been done as
part of two consecutive collaborative research projects. In
the end, Addiva has the responsibility to integrate new ver-
sions of the Bayesian module into Addtrack.

2221

Evaluation
To illustrate how the Bayesian anomaly detection approach
performs we have used event data from Regina train sets,
which are operated by SJ (the largest passenger railway op-
erator in Sweden) and manufactured by Bombardier Trans-
portation. A Regina train set may consist of two or three
cars: either a type DMA car coupled with a type DMB car, or
a type DMA car followed by a type T0 car and a type DMB
car. These different car types have somewhat different pro-
files in what events are generated. Therefore it is often ad-
visable to compare a car to other cars of the same type when
looking for anomalies. The data were collected from 57
Regina train sets running in the Mälar region in Sweden in
the period between 2003-10-01 and 2004-04-19. The num-
ber of different possible event codes is 1013, of which 695
different codes were registered during the period. The num-
ber of events in each sample was between 1 and 1849 with a
median of 5 and interval lengths varied between 16440 and
40845 kilometers. The number of samples per event type
varied between 1 and 21, with a median of 6 samples per
type.

For each of the occurring event codes, each Regina car
was compared to all other cars of the same type, over the
time period as a whole. The cars displaying the largest
anomalies are shown in Table 1. It is then possible to take
a closer look at the anomalies of interest by comparing the
data for a single week at a time of a car and event code in
question against all other cars and weeks. This is shown for
the two first entries of Table 1 in Figure 4 and 5.

Car Event type Anomaly (Λ)
3029 HVAC communication failure 9316.7
9024 Train heating, fuse failure 8900.6
9004 Incorrect speed, axle 4 5605.0
1002 Large speed difference, axle 3 3213.6
9046 Low cooling water level in converter 3185.0
3044 Incorrect speed, axle 3 3046.3
9052 Large speed difference, axle 2 3024.3
9049 Large speed difference, axle 1 2834.8
1054 Carbon strip supervision disconnected 2371.1
1053 Carbon strip supervision disconnected 2304.7

Table 1: The ten most abnormally occurring event codes.

As can be seen from the figures, many of the detected
anomalies above lasted for a long time before they were
eventually eliminated. At the same time it is clear that they
are detectable already from the first week or even first few
days. Using this kind of anomaly detection therefore has the
potential of giving important information to the service or-
ganization, with the possibility to rectify the problem earlier
than today, often requiring less extensive repairs, causing
less wear on related components, and giving shorter time
with reduced functionality.

We have above mentioned the importance of using
Bayesian statistics, rather than classical point estimates of
parameters, to limit the false alarm rate. For comparison
between the approaches, a simple anomaly detector was im-
plemented based on a point estimate λ̂ of the Poisson rate

Figure 4: Anomaly per week for the event “HVAC com-
munication failure”, for the detected car 3029 (upper curve),
and for the “normal” car 3030 for comparison (lower curve).

Figure 5: Anomaly per week for the event “Train heating,
fuse failure” for car 9024.

per time unit λ together with the principal anomaly defined
in Equation (1), using θ = λ̂T for the interval length T . The
simple detector uses the maximum likelihood estimate for
the Poisson rate, which is equal to the sample mean value
for the observed data divided by the interval length:

λ̂ =
1

n

n∑
i=1

xi/Ti (7)

where Ti is the length of the interval for sample i.
An anomaly threshold of ε = 10−6 was used in both

cases. When comparing the two anomaly detectors, out of
2841 samples, 2483 were classified as normal and 323 as
anomalous by both. In addition, 35 samples were classified
as anomalous by the point estimate anomaly detector but not
by the Bayesian anomaly detector, while no samples were
classified as anomalous by the Bayesian anomaly detector
but not by the point estimate anomaly detector. In this case,

2222

the Bayesian anomaly detector was therefore more robust
with regard to false alarms than the non-Bayesian approach.

An anomaly fraction of 0.11 or 0.13 can be considered
high compared to the 10−6 which should be expected if the
Poisson model assumption holds perfectly, there is no mea-
surement noise, and no anomalies occur. Nonetheless, the
Bayesian anomaly detector is quite useful in practice to fo-
cus further analysis efforts, which field experience from the
use of Addtrack also confirms.

Discussion
There are many challenges when trying to use anomaly de-
tection in a real world application. The Bayesian Princi-
pal Anomaly however, has many suitable properties for this:
the false alarm rate, which is a major problem for many
anomaly detection algorithms when used in practice, can be
controlled directly by adjusting the anomaly threshold; the
Bayesian approach makes the system work also when there
are limited amounts of training data, as is often the case; and
the training data used may itself contain anomalies, i.e. it
need not be absolutely clean as for some other anomaly de-
tection methods, since the method will itself test each sam-
ple and only learn those that are judged non-anomalous.

Anomaly detection of event data is a rather general task
that is applicable in a large number of situations. Many sys-
tems today generate log messages or alarms, and typically
in such volymes that manual inspection is problematic. The
risk that an operator misses an important alarm among the
large amounts of less important alarms is significant. The
chance of manually noticing subtle changes in rates of dif-
ferent alarms is small. The anomaly detection method pre-
sented here is not limited to the train domain, but will func-
tion on log data from almost any system.

The design of the anomaly detection module, with only a
small number of access routines and a minimal amount of
free parameters, makes it easy to plug into existing analysis
tools for various domains and application areas. This allows
the module to go piggyback on existing analysis products,
thereby avoiding the overhead of producing, marketing, and
supporting a stand-alone anomaly detection product.

References
Bjurling, B.; Holst, A.; Ståhl, O.; and Wallgren, A. 2010.
Statistical Anomaly Detection and Visualization. In Proc. of
the 1st National Symposium on Technology and Methodol-
ogy for Security and Crisis Management.
Cemerlic, A.; Yang, L.; and Kizza, J. 2008. Network intru-
sion detection based on bayesian networks. In Proc. of the
20th International Conference on Software Engineering and
Knowledge Engineering.
Chandola, V.; Banerjee, A.; and Kumar, V. 2009. Anomaly
Detection: A Survey. ACM Computing Surveys 41(3).
Chebrolu, S.; Abraham, A.; and Thomas, J. 2005. Feature
deduction and ensemble design of intrusion detection sys-
tems. Computers & Security 24(4):295–307.
Dey, C. 2009. Reducing IDS false positives using Incre-
mental Stream Clustering (ISC) Algorithm. Master’s thesis,

Dept. of Computer and Systems Sciences, Royal Institute of
Technology.
García-Teodoro, P.; Díaz-Verdejo, J.; Maciá-Fernández, G.;
and Vázquez, E. 2009. Anomaly-based network intrusion
detection: Techniques, systems and challenges. Computers
& Security 28(1-2):18 – 28.
Hill, D.; Minsker, B.; and Amir, E. 2009. Real-time
bayesian anomaly detection in streaming environmental
data. Water Resour. Res 45:W00D28.
Holst, A., and Ekman, J. 2011. Incremental Stream Clus-
tering for Anomaly Detection and Classification. In Kofod-
Petersen A., H. F., and H., L., eds., Proc. of the 11th Scan-
dinavian Conference on Artificial Intelligence, 100–107.
Trondheim, Norway: IOS Press.
Holst, A.; Ekman, J.; and Larsen, S. 2006. Abnormality
detection in event data and condition counters on Regina
trains. In Proc. of the IET International Conference on Rail-
way Condition Monitoring, 53–56.
Lerner, U.; Parr, R.; Koller, D.; and Biswas, G. 2000.
Bayesian fault detection and diagnosis in dynamic systems.
In Proc. of the 12th Innovative Applications of Artificial In-
telligence Conference, 531–537.
Shahabdeen, J. A.; Baxi, A.; and Nachman, L. 2010. Am-
bulatory energy expenditure estimation: A machine learning
approach. In Proc. of the 22nd Innovative Applications of
Artificial Intelligence Conference.
Su, B., and Xu, C. 2009. Not so naive online bayesian
spam filter. In Proc. of the 21st Innovative Applications of
Artificial Intelligence Conference.

2223

	AAAI12
	Contents
	Index
	Help
	Terms
	AAAI

