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Abstract 

In this paper we describe eBird, a citizen science project that 
takes advantage of human observational capacity and machine 
learning methods to explore the synergies between human 
computation and mechanical computation. We call this model a 
Human/Computer Learning Network, whose core is an active 
learning feedback loop between humans and machines that 
dramatically improves the quality of both, and thereby 
continually improves the effectiveness of the network as a whole. 
Human/Computer Learning Networks leverage the contributions 
of a broad recruitment of human observers and processes their 
contributed data with Artificial Intelligence algorithms leading to 
a computational power that far exceeds the sum of the individual 
parts.  
 

 
Introduction   

 
 The transformational power of todays computing, 
together with information and communication 
technologies, are providing new opportunities to engage 
the public to participate in and contribute to a myriad of 
scientific, business and technical challenges. For example, 
citizen-science projects such as Galaxy Zoo, eBird, and 
Foldit demonstrate the power of crowdsourcing for 
investigating large-scale scientific problems. These and 
similar projects leverage emerging techniques that 
integrate the speed and scalability of mechanical 
computation, using advances in Artificial Intelligence (AI), 
with the real intelligence of human computation to solve 
computational problems that are beyond the scope of 
existing algorithms [1]. 
 Human computational systems use the innate abilities of 
humans to solve certain problems that computers cannot 
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solve [2].  Now the World Wide Web provides the 
opportunity to engage large numbers of humans to solve 
these problems. For example, engagement can be game-
based such as FoldIt, which attempts to predict the 
structure of a protein by taking advantage of humans’ 
puzzle solving abilities [3]; or Galaxy Zoo, which has 
engaged more than 200,000 participants to classify more 
than 100 million galaxies [4]. Alternatively, the Web can 
be used to engage large numbers of participants to actively 
collect data and submit it to central data repositories. 
Projects such as eBird, engage a global network of 
volunteers to report bird observations that are used to 
generate extremely accurate estimates of species 
distributions [5].  
 Now systems are being developed that employ both 
human and mechanical computation to solve complex 
problems through active learning and feedback. These 
Human/Computer Learning Networks (HCLN) can 
leverage the contributions of broad recruitment of human 
observers and process their contributed data with AI 
algorithms for a resulting total computational power far 
exceeding the sum of their individual parts. This 
combination can be deployed in a variety of domains and 
holds enormous potential to solve complex computational 
problems. 
 A key factor in the power of an HCLN is the manner in 
which the benefits of active learning are cyclically fed 
back among the human participants and computational 
systems. We use “active learning” in both of its commonly 
used senses: the machine learning sense as a form of 
iterative supervised learning, and the human sense in 
which learners (our volunteers) are actively and 
dynamically guided to new levels of expertise.  The role of 
active learning in a HCLN is illustrated in figure 1. In our 
example, broad networks of volunteers act as intelligent 
and trainable sensors to gather observations.  AI processes 
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dramatically improve the quality of the observational data 
that volunteers provide by filtering inputs based on 
aggregated historical data and observers’ expertise.  By 
guiding observers with immediate feedback on observation 
accuracy AI processes contribute to advancing observer 
expertise. Simultaneously, as observer data quality 
improves, the training data on which the AI processes 
make their decisions also improves. This feedback loop 
increases the accuracy of the analysis, which enhances the 
general utility of the data for scientific purposes. 
 A successful HCLN must be able to address the 4 
following challenges. First, a task must be identified that 
human computational systems can complete but 
mechanical computational systems cannot [1]. Second, the 
task must be sufficiently straightforward and incentivized 
to maximize participation [6]. Third, the complimentary 
abilities of both humans and machines must be clearly 
identified so that they can be leveraged to increase the 
accuracy and efficiency of the network [7]. Finally novel 
methods for extracting biological insights from the noisy 
and complex data provided by multiple human computers 
must be employed [8]. In this paper we use our experience 
with eBird as a model to address these 4 HCLN challenges.  

Challenge 1: Species Identification 
Few mechanical computational systems have been 
developed to classify organisms to the species level. Those 
that do exist typically can only identify a single or small 
group of species, and cannot classify a multitude of 
organisms. Only human observers can reliably identify 
organisms to the species level [9], and are capable of 
classifying hundreds of species.  This is because 
identifying a species is a complex task that relies on a 
combination of factors. First, observers must be able to 
process impressions of shape, size, and behavior under 
variable observation conditions. As this process continues, 
the observer must combine these impressions with a mental 

list of species most likely to occur at that specific location 
and date until the species is correctly identified. 
 eBird (http://ebird.org) [5] is a citizen science project 
that engages a global network of bird watchers to identify 
birds to species and report their observations to a 
centralized database. Anyone can submit their observations 
of birds to eBird via the web. To date more than 83,000 
individuals have volunteered over 4 million hours to 
collect over 75 million bird observations; arguably the 
largest biodiversity data collection project in existence. 
These amassed observations provide researchers, scientists, 
students, educators, and amateur naturalists with data about 
bird distribution and abundance across varying spatio-
temporal extents.  Dynamic and interactive maps, graphs 
and other visualizations are available on the eBird website, 
and all data are free and readily accessible through the 
Avian Knowledge Network [10]. Since 2006 eBird data 
have been the basis for 56 peer-reviewed publications and 
reports, from highlighting the importance of public lands in 
conservation [11], to studies of evolution [12], climate 
change [13] and biogeography [14]. 

Challenge 2: Maximizing Participation 
eBird is a crowdsourcing activity that engages large 
numbers of people to perform tasks that automated sensors 
and computers cannot readily accomplish [15]. This is 
accomplished through the development of straightforward 
rules for participation and incentives for contributing. 
eBird gathers data using protocols that closely match the 
activities of individuals when they are birding. This 
maximizes the number of participants in eBird [6]. While 
eBird requires that participants submit sufficient effort data 
(see below) to allow the quantitative analysis of the 
observations, sufficient incentives are provided to reward 
participation. For example, eBird participants can: (i) keep 
track of their bird records; (ii) sort their personal bird lists 
by date and region; (iii) share their lists with others; and 
(iv) visualize their observations on maps and graphs. By 

Figure 1. An HCLN example. Human observers and AI processes synergistically improve the overall quality of the entire system. 
Additionally, AI is used to generate analyses that improve as the quality of the incoming data improves. 
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providing these record-keeping facilities as a direct reward 
for participation eBird appeals to the competitiveness of 
participants by providing tools for determining relative 
status of volunteers (e.g. numbers of species seen) and 
geographical regions (e.g. checklists submitted per state 
and province).  
 A key component of eBird’s success has been the 
implementation of a sound data management strategy, 
which reduces the risk of data loss and allows for efficient 
use and re-use of the data.  All eBird data contain the 
following information: observer identification, location, 
visit, and what was collected.  These data form the core 
observational data model [16] and provide the opportunity 
for integration, visualization, experimentation and analysis.  
For example, eBird collects the name and contact 
information for every observer, which allows each 
observation to be attributed to a specific person.  Location 
data such as the site name the coordinates where the 
observations were made and the geographic area 
represented by the location are stored with every visit to 
that location. Information about a specific visit consists of 
data and time of visit, amount of effort expended, such as 
distance traveled, time spent and area covered, and whether 
or not all species observed were reported. Species 
observations consist of a checklist of birds observed and 
how many individuals of each species were counted.  

Challenge 3: Identifying the Synergies  
Between Humans and Machines 

While eBird is extremely successful in engaging a 
large community of volunteers to participate, there are 
many challenges to using eBird data for analysis. A major 
goal has been to employ HCLN processes to eBird to 
improve data quality by addressing 3 major questions:  
 

How can we efficiently filter erroneous data 
before data enter the database? 

eBird has motivated thousands of volunteers to collect 
large amounts of data at relatively little cost. However, the 
public’s ability to identify or classify objects without 
making errors is highly variable. Misidentification of birds 
is the major data quality concern of eBird. To address this 
issue a network of more than 450 volunteers review 
records in eBird. The reviewers are knowledgeable about 
bird occurrence for a region, and contact those individuals 
who submitted questionable (i.e., unusual reports of birds 
not known to occur in a region) records to obtain additional 
information, such as field notes or photographs, in order to 
confirm unusual records. However, our challenge is that 
eBird’s success has generated an enormous volume of 
observations to be reviewed (e.g., more than 23 million 
observations were gathered in 2011). This volume is 
overwhelming the network of volunteer regional reviewer.  

Figure 2. Frequency of occurrence results for Black-billed Cuckoos in 
upstate New York. The Y-axis is the frequency of eBird checklists that 
reported this species, and the X-axis is the date. Cuckoos arrive in early 
May and are detected at high frequencies because they are conspicuous 
and vocal during their mating season. But after they lay eggs, their 
detection probability drops dramatically. Most birds leave by mid-August. 

 
In order to address this issue we have implemented a 

data quality filter and screening process that automates the 
review process, which we now describe. 

One of the most powerful calculations performed on 
citizen-science data is the frequency of reporting a 
particular event or organism (Figure 2). Since each 
observation contains details of where and when a bird was 
detected, we can estimate the “likelihood” of observing a 
specific species at any spatial level (e.g., grid, country, 
state, county, or backyard) and for any date. Frequency 
filters delineate when a species can be reported in a region 
and determines the validity of an observation.  

 The eBird database currently holds more than 75 
million bird observations. These historical records can be 
used to filter unusual observations that require review, but 
allow entry of expected species within the expected times 
when species should occur. These filters automatically 
emerge from historic eBird data. Through experimentation 
we have set the emergent filter at 10% of maximum annual 
frequency of occurrence for every species. This provides a 
consistent limit that allows expected observations through 
the filter but flags for review unusual records. For 
example, if a common species reaches a maximum 
frequency of 68% then the filter would identify the date at 
which the filter first crosses the 6.8% threshold. Any 
record submitted on a date either prior or after the 
threshold limit, it is flagged for review. Similarly, if a rare 
species reaches an annual peak of 6.5% frequency, the 
threshold limit would be .65%. For example, we analyzed 
eBird data and emergent filter results for 2 counties in New 
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York State, Jefferson Co. and Tompkins Co (Table 1). 
These 2 counties were selected because Jefferson Co. has 
relatively sparse year-round data coverage, while 
Tompkins Co. is one of the most active regions in eBird. 
Currently, emergent filters are deployed for all counties in 
the United States.  

The emergent filter process significantly reduces the 
number of records the volunteer observer network had to 
review. When the emergent filter is triggered the submitter 
gets immediate feedback indicating that this was an 
unusual observation (Figure 1). If they confirm they made 
the observation, their record is flagged for review, and one 
of the volunteer experts will review the observation. All 
records, their flags and their review history are retained in 
the eBird database. 

The emergent filter process identifies key periods during 
a bird’s phenology, when their patterns of occurrence 
change. Figure 3 shows those records that are flagged for 
review by the emergent filter for the 2 New York Counties. 
The Chipping Sparrow is a common breeding bird in 
upstate New York, but rarely occurs in winter. The 
emergent filter for each county is different, due to the 
variation in each county’s respective historic data. The 
triangles and circles are all records that are flagged for 
review by the emergent filter. Without the emergent filter it 
would be difficult to accurately identify arrival and 
departure dates of when a bird appears in a county. The 
threshold of occurrence established by the emergent filter 
allows the determination of arrival and departure and then 
accurately flags outlier observation for further processing 
and review.  

 
Tompkins Co.  Jefferson Co. 

Total Observations 704,053 78,745 
Total Flagged 50,743 6,082 

Percent Flagged 7 8 
 

Total Flagged Expert 38,574 3,787 
Total Flagged Novice 12,170 2,295 

Percent Expert 5 5 
Percent Novice 2 3 

 

 
Table 1. Results of the Emergent Filter process applied to 2 

counties in Upstate New York (upper), and the proportion of 
flagged records submitted by experts and novices (lower). 

 
 

 
 
Figure 3. The acceptable date range (dark bars) for the occurrence 
of Chipping Sparrow in 2 counties in New York. All records that 
fall outside of the acceptable date range are plotted either as 
circles (novices) or triangles (experts). 

 

Can we identify observer variability in their 
ability to detect objects? 

eBird data are contributed by observers with a wide range 
of expertise in identifying birds. At one extreme observers 
with high identification skill levels contribute “professional 
grade” observations to eBird, whereas at the other extreme 
less-skilled participants contribute data of more variable 
quality. This inter-observer variation must be taken into 
account during analysis to determine if outlier observations 
(i.e., those observations that are unusual) are true 
occurrences of a rare species, or the misidentification of a 
common species. Since eBird engages a significant number 
of skilled observers who are motivated to detect rare 
species or are skilled in detecting elusive and cryptic 
species, being able to accurately distinguish their 
observations from those of less-skilled observers is crucial. 
This is because skilled observers are more likely to submit 
observations of unusual species that get flagged by the 
regional emergent filters (i.e., skilled birders like to find 
rare birds). An objective measure of observer expertise that 
could classify unusual observations is required.  

To better understand observer variability in eBird we 
have applied a probabilistic approach called the 
Occupancy-Detection-Experience (ODE) model to provide 
an objective measure of expertise for all eBird observers 
[17]. The ODE model extends existing ecological models 
that measure the viability of a site as suitable habitat for a 
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species, by predicting site occupancy by a particular 
species.  

  
 

 
 
A general form for Occupancy Detection models is 

shown in Equation 1, where �� is a set of environmental 
covariates for location � , ��  represents the occupancy of 
location �  and ��������  is the function capturing the 
occupancy model (see Table 1 for notation description). 

 
�� �� � � � �occ

��   (1) 
 

If a species is erroneously reported to be absent at a 
site when it was in fact present at that site, then species 
distribution models built from such data will underestimate 
the true occupancy of that species for that site.  To address 
this issue, Mackenzie et al. [18] proposed an Occupancy-
Detection (OD) model where true occupancy of a site � is 
represented as a latent variable ��. Under the OD model, a 
site is visited multiple times. Each visit �  results in an 
observation ��, where the observation process is influenced 
by the true occupancy of the site and by a function 
�det

�� , where ��  are detection covariates (under the 
notation of Mackenzie et al. [21], � � �occ

��  and 
� � �obs

��  ). Equation 2 summarizes the process: 
 

�� �� � � � �� � � �
obs

��   (2) 
 

 
The OD model makes two key assumptions.  First, it 

assumes population closure in which the true occupancy of 
a site �� remains unchanged over the multiple visits to that 
site.  Second, the OD model assumes that observers do not 

report false positives (i.e., an observer does not mistakenly 
report a species to be present when it is in fact absent).  

The eBird experience level of an observer, which is 
the combination of their ability in identifying birds and 
their level of participation in eBird, can also influence the 
observation process. As a result we extended the OD 
model with an eBird experience component resulting in the 
Occupancy-Detection-Experience (ODE) model. In this 
extension, we add a new latent variable �

����  and 
associated function �exp

�
����  which capture the 

experience level (ie. eBird experience rated as high or low) 
of the observer ���� that recorded observation �. 

As shown in Equation 3, this experience variable is a 
function of a set of covariates �

����  that include 
characteristics of the observer such as the total number of 
checklists submitted and relative to the total number of 
species reported, and the total number of flagged records 
rejected. As shown in Equation 4, the observation process 
is now influenced by the true occupancy of a site and by 
the function  ������� � �� � �, which is now a function of 
the observation covariates. 

�� �
���� � � � �exp

�
����    (3) 
 

�� �� � � � ����� � �
obs

�� � �����      (4) 
 

The ODE model relaxes the assumptions of the OD 
model by allowing false positives by the observers, for 
both levels of expertise. More details about the ODE model 
can be found in [17]. 

We can use the ODE model to distinguish the 
difference between expert observers, who will find more 
birds and are more likely to find them outside of the 
emergent filter limits, and novice birders, who are more 
likely to misidentify common birds. Table 1 (bottom) 
shows the total number of observations by experts and 
novices that are flagged. As expected, expert observers had 
a greater number of flagged records, because of their 
enhanced bird identification skills, and their desire to find 
unusual birds. We can use the ODE model results for 
experts in the data filtering process by automatically 
accepting their expert observations, which dramatically 
reduces the total number of flagged records that need to be 
reviewed. Finally, to test the accuracy of the ODE model 
we analyzed all observations that fell outside of the 
emergent filter for more than a dozen species that easily 
confuse novices, and show results for Chipping Sparrow 
(Figure 2). For all species, reviewers as valid observations 
accepted more than 95% of the expert observations that fell 
outside of the emergent filters. 

We have found that the combination of the emergent 
checklist filters with the ODE model provides the best 

Table 2  
Terms and notations used for the ODE models 
�� � ��� �� The occupancy of location � by the 

species of interest. 
�� � ��� �� The detection/non-detection of the 

species of interest in observation �. 
�� � ����� � ���� � The expertise of the observer  � 

�� A vector of environmental covariates 
for location �. 

�� A vector of covariates describing the 
observation process for observation �. 

�
�
 A vector of expertise covariates for 

observer �. 
���� The location of observation �. 
���� The observer that recorded 

observation � 
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strategy for improving data quality in eBird. This two-step 
approach, where the emergent data filters are used to 
identify outliers, and the ODE model allowed us to identify 
valid outliers, identifies unusual records more accurately 
than previous methods. This approach establishes accurate 
occurrence probabilities and allows the quick identification 
and classification of outliers. 
 

How can we address the spatial bias in  
citizen-science projects? 

An inherent liability with many citizen-science projects is 
that observation locations are highly biased towards 
regions with high human populations.  If this inequity is 
ignored, the spatial bias will produce results in which 
regions with the most data have excessive influence on the 
overall results accuracy and regions with the least data are 
under represented [8].  We address this issue using an AI 
mediated optimization strategy to identify areas that if 
sampled would most improve eBird spatial coverage. 
 

 
Figure 4. Top: locations in New York where submissions were 
made in eBird. Bottom: Results showing areas with sufficient 
data density (colored regions) and those requiring more data 
(white regions). 
 
 

Machine learning algorithms can improve the 
predictive performance of eBird by guiding the sampling 
process. Consider eBird observations for New York 
(Figure 3).  It is clear that spatial sampling biases are 
present as the majority of the observations come from a 

small subset of geographical locations.  Active learning 
applied to eBird improve the resulting predictive models 
by providing a context to advise participants where to 
sample next.  A first strategy, as displayed in figure 3, has 
been to aim for a uniform sampling coverage in 
geographical space, by concentrating data collection efforts 
to the areas of highest model uncertainty and low density.  
This is accomplished through a novel active learning 
approach that combines density information and 
information-theoretic measures [19]. 

Already, our research in offering optimal sampling 
strategies is paying off. We display maps similar to Figure 
4 (bottom) on the eBird website, and provide rewards for 
individuals who report checklists from under sampled 
regions. Eventually, such sampling trajectories will be 
employed within eBird, to enhance the overall birding 
experience.  For example, it is straightforward to propose 
paths that have the highest probability of detecting birds. 
Hence one can envision educating observers by proposing 
appropriate paths that trains their detection capabilities on 
specific species or increases the probability of them 
recording a species they have never observed before.  

Challenge 4: Species Distribution Models 
The motivation for eBird is to explore the continent-wide 
inter-annual patterns of occurrence of North American 
birds. To do this we have developed new Spatial-temporal 
Exploratory Models (STEM) of species distributions, that 
allow us to automatically discover patterns in 
spatiotemporal data [8]. We designed our statistical models 
specifically to discover seasonally- and regionally-varying 
patterns in eBird data. Spatiotemporal variation in habitat 
associations are captured by combining a series of separate 
submodels, each describing the distribution within a 
relatively small area and time window. The approach is 
semiparametric, yielding a highly automated predictive 
methodology that allows an analyst to produce accurate 
predictions without requiring a detailed understanding of 
the underlying dynamic processes. This makes STEMs 
especially well suited for exploring distributional dynamics 
arising from a variety of complex dynamic ecological and 
anthropogenic processes. STEMs can be used to study how 
spatial distributions of populations respond over time to 
broad-scale changes in their environments, for example, 
changes in land-use patterns, pollution patterns, or climate 
change (Figure 5).  

The STEM visualizations are now being employed in a 
number of research and conservation initiatives. For 
example, bird distribution information used in the 2011 
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State of the Birds Report by the U. S. Department of 
Interior, was based on STEM model results. Additionally, 
other federal (i.e., Bureau of Land Management and U.S. 
Forest Service) and non-governmental agencies (i.e., The 
Nature Conservancy) are using STEM distribution 
estimates to study placement of wind farms for sustainable 
energy production, identifying and prioritizing areas for 
avian conservation in the southwestern United States and 
the Pacific Northwest. 

 
 

 
Figure 5. This map 

illustrates a  STEM  distribution  estimate  for  Wood 
Thrush,  a  migratory  songbird  that  winters  in  the  the tropics 
and  breeds  in  the  northeastern  U.S. and  eastern  Canada.  The 
occurrence map shows the probability of encountering 
the species, with darker colors indicating higher probabilities. 
More STEM maps can be viewed on the eBird website 
(http://www.eBird.org).  

 
 
 

Conclusion 
 

In this paper, we have demonstrated the implementation of 
a novel network that links machine learning methods and 
human observational capacity to address several of the 
unique challenges inherent in a broad-scale citizen-science 
project.  By exploring the synergies between mechanical 
computation and human computation, which we call a 
Human/Computer Learning Network we can leverage 
emerging technologies that integrate the speed and 
scalability of AI, with human computation to solve 
computational problems that are currently beyond the 
scope of existing AI algorithms.  
     Although our discussion has focused on one citizen-
science project, eBird, the general HCLN approach are 
more widely applicable. Specifically, implementing an 

uncomplicated protocol and providing appropriate rewards 
for participation can recruit large numbers of participants. 
Then by using adaptive learning techniques for both 
humans and computers we can improve the quality and 
scope of the data that the volunteers provide. Finally, new 
analysis techniques that bridge the gap between parametric 
and non-parametric processes provide extremely accurate 
estimates of species occurrence at continental levels.  
 In conclusion, broad-scale citizen-science projects can 
recruit extensive networks of volunteers, who act as 
intelligent and trainable sensors in the environment to 
gather observations.  However, there is much variability in 
the observations volunteers make. Artificial Intelligence 
processes can dramatically improve the quality of the 
observational data by filtering inputs using emergent filters 
based on aggregated historical data, and on the observers’ 
expertise.  By guiding the observers with immediate 
feedback on observation accuracy, the Artificial 
Intelligence processes contribute to advancing expertise of 
the observers, while simultaneously improving the quality 
of the training data on which the Artificial Intelligence 
processes make their decisions.  The outcome is improved 
data quality that can be used for research and analysis. 
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