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Abstract

One of the key issues for transportation companies is to pro-
duce an optimal plan for the work of crew members. Crew
planning consists of a sequence of phases, the first two corre-
sponding to planning duties (sequences of trips to be done by
crew members from their home base to their home base) and
planning rosters (sequences of duties and rest days to be fol-
lowed by crew members during a certain number of weeks).
Both duty and roster planning are subject to a large number of
constraints. Duty planning is constrained by intra-duty con-
straints and roster planning by inter-duty constraints. Since
inter-duty constraints relate how duties can be combined into
a roster, it is desirable that some of these constraints be trans-
posed into the duty planning phase, as additional constraints,
to guarantee that the duties produced in the first phase are
“rosterable” in the second phase.
Both Artificial Intelligence (AI) and Operations Research
(OR) have addressed duty planning, but for very large scale
problems, OR has been far more successful due to its global
vision of the problem. This paper discusses the use of AI lo-
cal search to improve an OR-based duty planning optimizer
that uses additional constraints.

Introduction
Railroads are going through a golden expansion period. The
pressure for environmental-friendly transportation associ-
ated to the growing needs for mass transport and the pos-
sibility of competing with airlines in medium-range routes
are generating a railroad expansion that had not been seen
for almost one century (UNIFE 2010). Productivity con-
cerns are leading railroad companies to introduce new man-
agement styles to improve the results of the business. This
trend is similar to what was felt in other areas of transporta-
tion where the benefits of IT solutions have been extensively
explored. In particular, tools are being searched to improve
the use of resources. Railroads deal with three types of re-
sources: track, rolling stock, and crew.

Crew planning is fundamental for the smooth operation
and profitability of a railroad company. Crew planning is
subject to global and individual constraints and preferences
that mutually interact, making it a very complex process. In
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order to control its complexity, most railroad companies di-
vide crew planning in different phases, resulting in a set of
smaller, and therefore less complex, subproblems. A full de-
scription of crew planning phases can be found in (Martins
and Morgado 2010).

This paper addresses issues related with the first two
phases: duty planning, where crew duties are generated by
sequencing trips, and roster planning, where rosters are
generated by combining duties into weekly rosters. These
phases are critical for producing efficient global solutions.
Although done separately, it is desired that they work in a
cooperative fashion, i.e., that the duties provided by the first
can be fit in the rosters generated by the second, to reduce
the number of iterations between the two phases. One way
to achieve this is by using in duty planning a transposition of
some of the constraints used in roster planning. In this way,
duties produced are constrained by some roster constraints
and, thus, are more likely to fit in the rosters. Since ros-
ter constraints are not part of duty planning, they are called
additional constraints. This paper addresses duty planning
with additional constraints.

Problem Description
Duty planning consists of distributing a set of trip tasks by a
set of duties, at the lowest possible cost. A duty (Figure 1) is
a sequence of tasks that can be performed by a crew mem-
ber during a working period, beginning and ending at the
home base, and during which a set of operational and labor
constraints (intra-duty constraints) are satisfied. A base is
an administrative center to which the crew members belong
and, usually, is located close to where they live. A labor con-
straint results from the labor rules, agreed by negotiation be-
tween the railroad company and the unions. An operational
constraint results from requirements inherent to the trans-
portation operation itself.

Once duties are built, they are distributed by a set of ros-
ters, also at the lowest possible cost. A roster (Figure 2) is
a week-sequencing pattern that allows crew work variation
over a period of several weeks for a group of crew mem-
bers of a base. Planning duties in a roster, roster planning, is
subjected to inter-duty constraints.

Optimizing crew rosters is important for the global opti-
mization of crew, since rosters are repeated along the whole
calendar period. In the traditional way, the duties produced
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Figure 1: Example of a duty.

Figure 2: Example of a 4-week roster.

in the first phase are planned only taking into account intra-
duty constraints. Therefore, there is no guarantee that they
will fit the roster, due to inter-duty constraints, requiring it-
erations between the two phases. To reduce this limitation,
in duty planning we can use a set of additional constraints
that will increase the probability of the resulting set of du-
ties to fit in the rosters. These constraints result from the
non-exact transposition of some inter-duty constraints into
the crew duty planning phase. By being validated during the
duty planning phase, they reduce, or even avoid, the amount
of iteration required. It is obvious that roster planning still
has to deal with all inter-duty constraints, but, once most of
the additional constraints are satisfied, it is now easier to find
a solution. Additional constraints thus take a central role in
duty planning. Solving them is a real need of transportation
companies and an important contribution to their economy.
There are three types of additional constraints:
• Capacity constraints. The capacity of a base is the number

of crew members available on that base. We cannot allo-
cate more duties to the base than its capacity. A capacity
constraint is formulated as:

∑
j: t j∈Tb

x j ≤ Kb (∀b ∈ B) (1)

where B is the set of bases, Tb is the set of potential duties
of base b, t j is a duty of Tb, x j is 1 or 0 whether t j belongs
or not to the solution, and Kb, a scalar, is the capacity of
base b.
• Average constraints. Average constraints limit the average

duration of duties of a given base. This controls the maxi-
mum amount of working hours assigned to each base and
enables flexibility in creating long and short duties, pro-
vided that the average is respected. An average constraint
is formulated as:

∑
j: t j∈Tb

d jx j

∑
j: t j∈Tb

x j
≤ d (∀b ∈ B) (2)

where B, Tb, x j, and t j are as above, d j is the duration of
duty t j, and d is a duration scalar.

• Percentage constraints. Percentage constraints allow a
fair distribution of duties among bases, according to cer-
tain desirable standards. For example, it is undesirable
that all dangerous or night duties are only assigned to
a base, while other bases have only day duties and safe
duties. Similarly, there may be highly desirable duties,
which will also have to be evenly distributed among bases.
Defining percentage constraints with a lower and an up-
per bound enables a fair distribution of the sweet and
sour (Abbink et al. 2005) among bases. A percentage con-
straint, for a certain duty type p, is formulated as:

pl ≤
∑

j: t j∈Tb

p jx j

∑
j: t j∈Tb

x j
≤ pu (∀b ∈ B) (3)

where B, Tb, x j, and t j are as above, p j is a binary function
that tells whether t j is of type p, and pl , pu ∈ [0,1], are the
lower and upper bounds, respectively.

The starting point of the work reported in this paper was
an OR-based duty optimizer, CREWS IP-solver (Abbink et
al. 2011), that although producing very good results, due
to the existence of additional constraints, sometimes was
“trapped” in local optima. CREWS IP-solver is part of a
software product, CREWS, that addresses all phases of crew
planning and management. CREWS is being used by several
european railroad companies to plan and manage their crew
members. The main focus of CREWS IP-solver is the global
optimization of the solution and this overall goal sometimes
leads the optimizer to fail in handling the additional con-
straints.

CREWS IP-solver was extended with the use of an AI-
based algorithm, called AC-solver, whose main focus is the
satisfaction of the additional constraints. CREWS IP-solver
successively invokes the AC-solver, whenever trapped in a
local optimum.

Application Description
The problem being addressed is NP-hard (Karp 1972) and
the check of additional constraints can only be done in a
complete solution. For these reasons, a constructive search
method cannot be used. We decided to use local search as
a complement to CREWS IP-solver. The local search algo-
rithm receives a complete solution whenever IP-solver gets
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Figure 3: CREWS IP-solver architecture with AC-solver.

stuck in a local optimum and provides IP-solver with a modi-
fied version of the solution that satisfies more additional con-
straints than the solution received (Figure 3). It was decided
that a limited amount of time should be allocated for the AC-
solver to deal with the additional constraints. The reason for
this decision is associated to the fact that the main goal of
CREWS IP-solver is to optimize duties, by itself a computa-
tionally heavy task, and by the fact that it is admissible that
some of the additional constraints be violated.

We used Guided Local Search (GLS) (Voudouris 1997)
(Voudouris and Tsang 2003) for the following reasons: (1) it
can use problem-specific knowledge, focusing on what re-
ally matters; (2) it can escape local optima, directing the
search for promising regions of the solution space; (3) it
traverses the solution space very intelligently, which is im-
portant when the allocated time is short. GLS sits on top of
another local search, the subordinate method. GLS defines
a set of features for candidate solutions, penalizing some
of them whenever the subordinate method, which uses an
objective function augmented through these penalties, gets
stuck in a local optimum. The novelty of GLS comes from
the way it selects features to penalize, allowing to guide
the search effort for more promising regions of the solution
space. CREWS IP-solver already included a local search
strategy, based on first-choice, but it did not satisfactory han-
dle additional constraints.

To apply GLS, we have to define a set of features of a can-
didate solution, each one with an associated cost and penalty.
A feature is a property of a solution that is relevant for its
evaluation, allowing to distinguish the solution from other
solutions with different features. A feature has a direct im-
pact on the objective function. The cost of a feature should
be proportional to its contribution for the objective function,
more important features must have higher cost than less im-
portant ones. The penalty of a feature starts at zero and can
be increased by one unit when a local optimum is achieved.

Instead of using the usual objective function g, GLS in-
vokes successively the subordinate method with an aug-
mented objective function h (Figure 4), which considers the
addition of dynamic penalties to function g while iterating.
The augmented function h is defined as:

hk(s) = g(s)+λ ∑
i∈F

pi,kli(s) (4)

where k is the GLS iteration, s is a candidate solution, λ

is a parameter of GLS, i ranges over features F , pi,k is the

Figure 4: AC-solver architecture with subordinate method.

dynamic penalty for feature i (initially 0) and li is a binary
function that tells whether s exhibits feature i.

When the subordinate method is trapped in a local opti-
mum, some features are penalized, thus changing the objec-
tive function. The features selected are those with the highest
value of the following function:

ui,k(s∗) = li(s∗)
ci

(1+ pi,k)
(5)

where s∗ is a candidate solution that corresponds to a local
optimum, ci is the cost of the feature i, and li(s∗) and pi,k
are as above. The higher the cost of a feature and the less of-
ten it has been penalized, the higher the utility of penalizing
it. The intention is to penalize “unfavorable features” when
the subordinate method settles in a local optimum. Features
with higher cost affect more the overall solution cost. In turn,
features that have been penalized fewer times are those in
which the search has not focused as much as with others
and should gain importance. When a feature is penalized, its
penalty value is increased by one.

We now describe (1) the original objective function g, (2)
the features that enable the objective function g to be trans-
formed in the augmented objective function h, and (3) the
subordinate method.

Objective Function The objective function considers as
a good solution one that minimizes, as much as possible,
the number and cost of duties, the quantity of violation, and
the intensity of violations present in the solution (Morgado
2011).

This function defines a set of violation intensity levels —
qualitative measures of violation — where, the higher the
level, the higher the violation intensity. The objective func-
tion g, for a candidate solution s, is defined as:

g(s) = ∑
j

c j +∑
r

qr(s)+∑
i

n(i)

∑
n=1

pn,r(i)li(s) (6)

The objective function g is composed of three terms:

• Efficiency (∑ j c j, where j varies over the duties in s), fo-
cus on efficiency of the solution. The computed cost of
duty j, c j, consists of a fixed cost (which is identical for
all duties), to minimize the number of duties, and a vari-
able cost (corresponding to the actual cost of duty j), to
minimize the overall cost of the duties.
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• QuantViol (∑r qr(s), where r ranges over the set of addi-
tional constraints), focus on satisfaction of the solution.
Each qr(s) linearly reflects the quantity of violation of
constraint r present in s. The aim is to minimize the global
quantity of violation of solution s.

• FixedPen (∑i ∑
n(i)
n=1 pn,r(i)li(s), where i ranges over the set

of additional constraints and, for each additional con-
straint, over the violation intensity levels), also focus on
satisfaction of the solution. In order to know which con-
straint and violation intensity level corresponds to i, we
define the functions r(i) and n(i) that, respectively, pro-
vide this information. In this term, pn,r(i) is the fixed
penalty corresponding to the intensity level n of violation
of the constraint r(i) and li(s) indicates whether the solu-
tion s violates constraint r(i) with violation intensity n(i).
Each constraint violation has associated an intensity level,
e.g., from 1 (low) to 5 (high). For each type of constraint,
we must specify the limits of violation for all intensity
levels defined. For example, in case of an average con-
straint, we may define a violation until 30 seconds as one
of intensity level 1, from 30 to 60 seconds as one of in-
tensity level 2, and so on. For each constraint violation,
this term adds to g(s) the penalty corresponding to the in-
tensity level of the violation, as well as the penalties cor-
responding to all intensity levels below it. The goal is to
guide the search process for solutions with violations with
lower and lower intensity levels.

The objective function aims at successively reducing the in-
tensity of violations. The idea is to guide the search process
in reaching solutions with violations that are easier and eas-
ier to solve, until eventually will be solved.

Features Definition Since a GLS feature corresponds to
a property that influences the evaluation of a solution, it
makes sense that an additional constraint be associated with
as many features as the number of intensity levels that are
defined. Thus, in Equation 4, i ranges over the set of ad-
ditional constraints and, for each additional constraint, over
the violation intensity levels defined. The variables r(i), n(i),
and li(s) are defined in the same way as in Equation 6, and ci
and pi,k are, respectively, the cost and the dynamic penalty
of the violation intensity level n(i) of the constraint r(i).

In order to highlight the importance of reducing the in-
tensity level of the violations, the costs ci of the features
corresponding to higher violation intensity levels are higher
than those of lower violation intensity levels. Thus, features
corresponding to higher violation intensity levels are more
penalized by GLS and, therefore, GLS puts a bigger effort
in solving these.

GLS augmented objective function h used in this applica-
tion is slightly different from what is defined in Equation 41:

1While GLS iterates, in order to prevent penalties correspond-
ing to features of lower violation intensity levels from exceeding
the value of higher violation intensity levels, instead of adding to
h(s) only the penalty corresponding to the violation intensity level
of a given constraint, we also add the penalties corresponding to
all violation intensity levels of the same constraint below it. This
reasoning is also used in function g, so that it is consistent with h.

hk(s) = g(s)+λ ∑
i∈F

n(i)

∑
n=1

pn,r(i),kli(s) (7)

where pn,r(i),k is the dynamic penalty corresponding to the
violation intensity level n of the constraint r(i).

Subordinate Method The subordinate method is hill-
climbing. To move from solution to solution it is necessary
to define a way of generating the neighborhood of a solution
s. In the context of this problem, it is a set of potential alter-
natives, each one obtained through a change of duties in the
solution s.

Since in this problem the neighborhoods contain a large
number of solutions, it is essential to cut the number of
neighbors, thus not to consider all possible combinations of
exchanges. So, we adopted a two-step generation method:

1. We remove a duty from s that (1) maximizes the value of
the sum of all terms in the objective function h except g’s
Efficiency term and (2) has not been selected for removal
yet;

2. We insert in s as many duties as needed to cover the tasks
that turned out to be uncovered. To limit the combinato-
rial explosion, for each uncovered task, a duty is chosen
that both covers it and minimizes the value of the same
terms of h. These duties are selected from a set of poten-
tial duties (see next section).

In order to minimize the number of duties in the solution,
after this change of duties has taken place, redundant duties,
i.e., duties that cover only tasks that are already covered by
other duties, are removed.

Since, for large problems, the time required to generate
all solutions of the neighborhood is still too long, solutions
are generated one by one, until a given acceptance crite-
rion is satisfied. In this version of hill-climbing, the accep-
tance criterion accepts, for the next current solution, the so-
lution s′, from the first p% solutions in the neighborhood2

of the current solution s, that verifies h(s′) < h(s) but also
lowers the value of h(s′). If such solution does not exist,
the algorithm continues to search beyond the first p% solu-
tions and accepts the first solution that verifies the condition
h(s′)< h(s). When no solution in the neighborhood of s ver-
ifies this condition, the algorithm terminates.

Application Development and Deployment
In order to validate GLS, we compared its results with those
of the IP-solver with its traditional local search (here called
Classic) and other well-known local strategies, namely, sim-
ulated annealing (SA) (Kirkpatrick, C. D. Gelatt, and Vec-
chi 1983), tabu search (TS) (Glover and McMillan 1986),
and hill-climbing (HC). HC is the same as defined as GLS

2Since p% is a percentage and we must guarantee a number of
neighbor solutions greater than zero, then p∈ ]0,100]. In fact, since
the number of neighbors of a solution must be an integer number,
we may not generate exactly p% of solutions in the neighborhood,
but a number of solutions that correspond to the immediately lower
integer number (i.e., bp% of the neighborhoodc).
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Tasks Duties Constraints Potential duties
Average 10,926 1,067 720 73,359
Minimum 9,602 935 487 3,500
Maximum 10,957 1,074 1,249 81,379
Std. dev. 202 20 351 14,226

Table 1: Global analysis of the tested problems features.

subordinate method, except that it uses the objective func-
tion g (Equation 6). SA and TS also use the objective func-
tion g.

A set of 45 problems provided by NS (the Dutch Rail-
ways), was chosen as benchmark. Table 1 shows a global
analysis of their features, number of tasks to be covered
(Tasks), number of duties in the initial solution (Duties),
number of additional constraints (Constraints), and number
of potential duties (Potential duties)3. The potential duties
are a subset of the universe of duties that may be built from
the given tasks and that are considered suitable for building a
solution, out of which a minimal subset that covers the tasks
must be chosen.

The average number of violations in the initial solution is
around 10, reaching a maximum value of 17. These are the
violations that must be solved by GLS. These are also the vi-
olations that could not be solved by IP-solver (before calling
GLS), and so they are the most difficult to solve. It is impor-
tant to stress that along the search process GLS has to deal
with hundreds of different constraints and that it is guaran-
teed that a valid solution exists for each of the 45 problems.

GLS is just one of the many computations performed by
IP-solver and it must take up very little time from the total
time IP-solver has to solve a problem. Each strategy has a
time limit of one hour, although it may terminate sooner.

To compare the strategies, we use the values of their ob-
jective function g and its term Efficiency, as well as the value
of an attribute, called Satisfaction, which corresponds to the
sum of the terms QuantViol and FixedPen of function g. In
addition, we use attribute NumViol that corresponds to the
number of violations in the solution. Since IP-solver only
accepts local search solutions with no violations, we also
use attribute ValidSol that indicates whether the strategy has
produced a valid solution.

The strategy that produces the best results is GLS (Fig-
ure 5) by the average of the following attributes of the solu-
tions obtained for the 45 problems:

• g. GLS is the strategy that produces the best results, fol-
lowed by HC, TS, Classic, and SA. While all strategies
seem to improve satisfaction relatively to the initial solu-
tion, we must not forget that the latest violations are the
most difficult to solve.
A surprise was the fact that HC was better than SA, since
unlike HC that is attracted to the closest local optimum,
SA has the ability to escape from it and find better local

3The number of potential duties shown in Table 1 are those con-
sidered in the benchmark. The number of potential duties conside-
red by IP-solver, during the whole search process, is in the order of
millions.

Figure 5: Comparison of the average of g, divided into its
attributes Efficiency and Satisfaction, for the initial solution
and the solutions obtained by each strategy, in the 45 prob-
lems.

Figure 6: Comparison of strategies for the ability to obtain
valid solutions.

optima, eventually, the global optimum. One possible rea-
son has to do with the scale of the problems tested and the
short time that SA has to do its job. It is known that SA
is better than HC, when given enough time. Since HC, in
this benchmark, takes an average of 22 minutes to get to
the closest local optimum, SA would require much longer
than one hour to perform better.
Another surprise was the fact that HC was better than TS.
The justification is also the limited time allocated to the
search. In just one hour, TS does not have time to properly
use its intensification and diversification mechanisms.

• Efficiency and Satisfaction. GLS is the strategy that
achieves better results for Satisfaction, although at the ex-
pense of a loss in Efficiency (in relation to the two best
strategies on this attribute, HC and TS). This loss is nor-
mal, since it is the objective function g that lets to change
efficiency for satisfaction. By penalizing the violation in-
tensity levels, GLS focus better on the resolution of vio-
lations than other strategies and, thus, it is the one that, in
the short time available, can have greater impact on sat-
isfaction. The search is guided to regions of the solution
space where the cost of Satisfaction is lower.
HC and TS achieve results that are closer to those of GLS.
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Figure 7: Comparison of gains in g and Efficiency of strate-
gies in relation to the initial solution.

They get efficiency results slightly better, although the
satisfaction results are clearly worse. In the case of HC,
it is obvious that GLS is better since, until the first lo-
cal optimum is reached, it behaves as HC, and, then, has
mechanisms to improve the solution. In the case of TS,
although it has intensification and diversification mecha-
nisms to effectively exploit other regions of the solution
space based on the elite (best solutions found so far), it
is not guided to search regions with solutions with better
satisfaction that have not yet been visited. The lack of fo-
cus on what is relevant, does not allow, in the short time
given, to reach these regions. On the contrary, the results
of SA and Classic were clearly worse, both in satisfac-
tion and efficiency. SA has no knowledge of the problem,
and is only guided to escape local optima. For this rea-
son, the time limit is even more critical than in the case of
TS. Classic has an objective function that does not con-
sider violation intensity levels, but just the number of vi-
olations in the solution. So, during the process of solving
violations, the remaining ones are more and more diffi-
cult to solve. Besides, it is a variant of hill-climbing less
capable than HC.

By analyzing ValidSol (Figure 6), we conclude that GLS
is the strategy more capable of obtaining valid solutions. It
does so in 34 out of 45 problems, while the second best strat-
egy, HC, achieves this only in 16 (less than half) and Classic
only in 8. Since IP-solver only accepts valid solutions, GLS
is the best strategy to use, obtaining valid solutions in about
75% of the problems.

Figures 7 and 8 allow to compare the average percentage
gains of different strategies concerning the objective func-
tion g, as well as the attributes Efficiency, Satisfaction, and
NumViol. In relation to Classic, GLS has gains of 0.44% in
the objective function and 10.15% in satisfaction, and yet
still manages to gain 0.21% in efficiency, i.e., loses less effi-
ciency. Concerning NumViol, GLS has gains of 8%.

Besides comparing the strategies regarding the quality of
the solutions produced, it is also important to compare them
regarding the efficiency of the search process. Concerning
average execution time, Classic and HC are the fastest, since
they are both variants of hill-climbing. They used 15 (with a

Figure 8: Comparison of gains in Satisfaction and Num-
Viol of strategies in relation to the initial solution.

maximum of 48) and 22 (with a maximum of 41) minutes,
respectively. Next, GLS uses 41 minutes (with a maximum
of one hour). Finally, the SA and TS strategies used all the
allocated time (one hour).

In face of the results obtained, in 2011, GLS was incor-
porated in CREWS IP-solver, replacing the existing local
search strategy.

Application Use and Payoff
This section addresses the gains obtained by the use of GLS
by the Dutch Railways (NS), so far, the only company where
GLS was used. It should be kept in mind that since GLS was
introduced in a core product used by many other compa-
nies, Norwegian Railways, Danish State Railways, Subur-
ban Trains of Copenhagen, Finnish State Railways, London
Underground, and Lisbon Metro, the gains here described
(regarding the use of about 5,000 crew members) can be
extrapolated to over 25,000 crew members that are daily
planned with the use of CREWS.

NS, Dutch Railways, consists of several divisions, one of
them, NS Reizigers (NSR), responsible for passenger trains,
operates 4,700 trains per day on a network with 1,500 miles,
using 123 electric locomotives, 1,883 EMU cars, 86 DMU
cars, and 833 coaches, together with a rail staff of 5,200
(2,500 engineers and 2,700 conductors). Every day, more
than one million people travel by train in the Netherlands
over the busiest railway transportation network in the world.

CREWS NS, the customization of CREWS to NSR, has
been in continuous use by NSR since 1998. Over the years
several improvements have been introduced, as summarized
by the Head of Logistics Department of NSR (Fabries 2008):
“End users (planners) really appreciate the system. We re-
duced the amount of planners significantly. Next to that we
were able to save millions of Euros by making more efficient
schedules. This is not only the result of the system, but with-
out such a system this would not have been possible”.

The first gains were obtained in the early years of de-
ployment, only using manual mode, i.e., without using an
optimizer (see next section): all tedious work of checking
which trains were covered by duties was handled by the sys-
tem; all labor rules were automatically checked whenever
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duties were constructed or when there was a change in the
timetable; furthermore, since labor rules were in the system,
detailed knowledge of these rules was not required of plan-
ners. Differences in rules and regulations for engineers and
conductors started to be seen as insignificant. As a conse-
quence, the same persons could plan duties for both person-
nel groups and planning units could be integrated.

The initial use of the system originated 10% decrease in
the number of planners. Another interesting aspect of the
start of deployment with the manual mode was that there
was no need for change in the working methods because the
system provided the freedom to use the old working meth-
ods. This was a direct consequence of using AI technology
(see next section). Thus, such a change, that would demand
a lot of managerial attention, was avoided.

In 2009, after ten years of full production, a benchmark
was performed using the 1999 data and rules to measure the
overall improvement that the several versions of the opti-
mizers had introduced. The results of the tests have shown
that the new optimizer gives about 6% efficiency improve-
ment with respect to the manually created plan. In the mean
time, the several changes to rules and constraints that have
been introduced (and were not considered in the benchmark)
give additional efficiency. It is also important to say that the
generation of duties subject to the new rules and constraints
would have been impossible without the use of an optimizer.
The number of planners was reduced by 60% from the initial
count in 1999.

After the development of the AC-solver and of the test-
ing presented in previous section, IP-solver using GLS was
tested against IP Solver using Classic with full NSR data,
starting from an empty initial solution. Both were capable
of producing a solution with no violations, but IP Solver us-
ing GLS produced 0.75% fewer duties (920 against 927). At
first, a gain of 0.75% may seem too low. However, it should
be kept in mind that this gain was obtained over the results of
an OR optimizer that had been fine-tuned over several years.

According to information supplied by NSR for previous
gains achieved by IP-solver, gains of 1% in the solution cor-
respond to 3 million euros savings per year. So, with these
results, IP-solver with GLS produces savings in the crew
plan of NSR in the order of 2.25 million euros (about US$
2.89 million) per year. In face of these results, the 0.75%
gains are quite significant.

We witnessed that local search is called many times by IP
Solver in order to solve violations. The resulting solutions
are then used as “seeds” to find new promising solutions.
By solving the violations slowly, successively reducing the
intensity levels of the violations until they eventually disap-
pear, while keeping the number of duties low, GLS guides
IP Solver to better regions of the solution space, allowing it
to produce better solutions than Classic.

Use of AI Technology
This paper reports recent results of a long-term development
project in crew planning and management involving AI tech-
nology. It is associated with the development of a product,
called CREWS, that plans and manages crew members in
a transportation company. The initial ideas for developing

CREWS started in 1986 with a prototype for TAP/Air Portu-
gal. With this prototype, SISCOG started the development of
CREWS, initially using Explorer LISP Machines and KEE
as the underlying tool. In the late 1990s CREWS was ported
to Windows / Intel, abandoning KEE but keeping LISP as
the main programming language.

Since its inception, CREWS incorporated several AI tech-
niques. The most visible part was state-space search, using a
modified version of beam search (Bisiani 1992). The search
tree was used as the unifying media of different modes of
operation: in manual mode, using drag-and-drop, the user
would tell the system the tasks to be placed in a duty, pro-
ducing a successor of the current node, and the system would
verify all constraints imposed upon the resulting duty, telling
the user the constrains that were violated by the operation;
in semi-automatic mode, the successors of the current node
were generated and shown to the user in a intuitive way, let-
ting the user to choose which one to use; in automatic mode,
the system would carry a state-space search providing the
user with a selected solution. The search tree and its states
could be inspected at any moment during the search process.
Since the user could perceive what was going on, could in-
teract with the system by proposing alternatives or querying
decisions, the term “white box” was coined to characterize
the behavior of the system.

By combining clever heuristics with adequate cost func-
tions, the system could be fine-tuned to optimize the relevant
criteria chosen by the user. Knowledge was represented us-
ing a frame-based formalism. Labor rules were represented
in a mixed declarative and procedural language with a spe-
cific interpreted developed by SISCOG. This enabled the
separation of the rules from the code and the modification
of the labor rules by the customer. Another aspect of AI
that was omnipresent is the use of constraints. These were
used by the automatic and semi-automatic modes to select
the most constrained tasks as preferential tasks to be used in
node expansion. Data dependencies were used in a compo-
nent of CREWS called Data Manager to make sure that the
data in the system, usually coming from different sources,
was both consistent and complete. These dependencies were
influenced by TMS-based systems (Doyle 1979) (Martins
and Shapiro 1988).

The first deployment of CREWS was by the Dutch Rail-
ways, NS (Nederlandse Spoorwegen), the main passenger
railroad operating company in the Netherlands, in a system
called CREWS NS, as reported in (Morgado and Martins
1998). In the version originally deployed, only the manual
mode was used because the solutions provided by the state-
space search were not satisfactory. In the years that followed,
CREWS grew with the development of new modules and
was successfully deployed by Norwegian Railways (Mar-
tins, Morgado, and Haugen 2003), Danish State Railways,
Suburban Trains of Copenhagen, Finnish State Railways,
London Underground, and Lisbon Metro (Martins and Mor-
gado 2010).

Although CREWS NS was appreciated by planners and
the management of NSR could appreciate the flexibility in
the change of labor rules, the state-space search algorithm
remained a problem due to its very local view of the planning

2243



process, producing sub-optimal solutions. SISCOG tried
without success to incorporate other AI techniques to im-
prove the quality of the solutions produced by the automatic
mode (Almeida 2006) (Saldanha and Morgado 2003). NSR
started to look for an external optimizer that could be linked
to the system, ending up with TURNI (Abbink et al. 2005).
So, for a while, CREWS NS was used by NSR together with
an external optimizer.

In 2003, SISCOG completed the development of an OR-
based optimizer, IP-solver, followed an approach inspired
by (Caprara, Fischetti, and Toth 1995). From 2003 to 2008,
this version was successively improved, in order to try to
solve larger problems and increasingly complex additional
constraints, through various mechanisms, including a sim-
ple local search algorithm. Although IP-solver takes into ac-
count additional constraints, solving them in many cases,
it often failed in problems with constraints that were very
difficult to solve. This problem was finally solved with the
AC-solver presented in this paper. In 2009, IP-solver started
operating in the NSR, replacing TURNI. Between 2009 and
2010 a new version of IP-solver (Abbink et al. 2011) was in-
troduced which, according to its authors, solves the largest
crew duty planning problem in the world.

So, from 2003 to 2011, although still using many AI tech-
niques, CREWS lost the AI-based component in its auto-
matic mode. Since the IP-solver produces solutions without
explaining how they were obtained, it was named the “black
box”. Solutions produced by the black box can be imported
into the white box and be manipulated by the user.

The work reported in this paper brought again an impor-
tant AI component to CREWS IP-solver optimizer that fur-
ther improves the quality of the solutions produced.

Maintenance
The maintenance of a CREWS-based system is considered
under two perspectives:
• Maintenance of the product. This corresponds to big fixes

and the supply of new versions of CREWS. Under this
perspective, about once a year, SISCOG announces a new
version of the product and the customers may decide to
migrate to this version. The latest release in CREWS in-
cludes the addition of AC-solver to CREWS optimizer,
IP-solver. In this way all customers of SISCOG will im-
prove the duty planning task with the use of the AI tech-
nology presented in this paper.

• Maintenance of the customization. This corresponds to
changes in rules, in scheduling strategies, and the addi-
tion of small functionality adjustments. Part of this main-
tenance can be performed by the customer, resorting to
the technical person in charge of the system, part of the
changes are done by SISCOG as part of a maintenance
contract.
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