
Mechanix: A Sketch-Based Tutoring System for Statics Courses ∗

Stephanie Valentine†, Francisco Vides†, George Lucchese†, David Turner†,
Hong-hoe Kim†, Wenzhe Li†, Julie Linsey+, Tracy Hammond†

†Department of Computer Science and Engineering, +Department of Mechanical Engineering
Texas A&M University

valentine@cs.tamu.edu, fvides@tamu.edu, george lucchese@tamu.edu, dturner@cs.tamu.edu,
hhkim@cs.tamu.edu, liwenzhe@tamu.edu, jlinsey@tamu.edu, hammond@cs.tamu.edu

Abstract

Introductory engineering courses within large univer-
sities often have annual enrollments which can reach
up to a thousand students. It is very challenging to
achieve differentiated instruction in classrooms with
class sizes and student diversity of such great magni-
tude. Professors can only assess whether students have
mastered a concept by using multiple choice questions,
while detailed homework assignments, such as planar
truss diagrams, are rarely assigned because professors
and teaching assistants would be too overburdened with
grading to return assignments with valuable feedback in
a timely manner. In this paper, we introduce Mechanix,
a sketch-based deployed tutoring system for engineer-
ing students enrolled in statics courses. Our system not
only allows students to enter planar truss and free body
diagrams into the system just as they would with pen-
cil and paper, but our system checks the student’s work
against a hand-drawn answer entered by the instruc-
tor, and then returns immediate and detailed feedback
to the student. Students are allowed to correct any er-
rors in their work and resubmit until the entire con-
tent is correct and thus all of the objectives are learned.
Since Mechanix facilitates the grading and feedback
processes, instructors are now able to assign free re-
sponse questions, increasing teacher’s knowledge of
student comprehension. Furthermore, the iterative cor-
rection process allows students to learn during a test,
rather than simply displaying memorized information.

Introduction
Freshmen, in their first semester as mechanical and civil en-
gineering students, learn the fundamental engineering con-
cepts through a course in statics. Statics problems usually
require the student to draw planar truss and other free-body
diagrams.

In civil and mechanical engineering, visual and spatial
thoughts are essential for the correct absorption of funda-
mental concepts. By relying on visual aids as opposed to

∗The authors would like to thank the many other contributors to
Mechanix, specifically Martin Field. This research is funded in part
by the National Science Foundation under Grant Nos. 0935219 and
0942400.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

only using the verbal channel of acquiring knowledge, the
cognitive load becomes lighter and learning becomes more
effective (Sweller 1994). Furthermore, learners should ac-
tively engage in the process in order to reach the highest
levels of comprehension. The task of freehand sketching en-
courages and demands that learners are actively constructing
their knowledge. In the civil and mechanical engineering do-
main, sketched planar truss and other free-body diagrams are
particularly helpful to the understanding of statics concepts.
This type of “forced active processing” ensures attention to
visual information and helps learners attend to key elements
of the visual system (Kozma 1994).

A planar truss diagram is simply a two-dimensional rep-
resentation of a structure that is constructed from physi-
cal beams and joints. Joints, also referred to as nodes, are
located at the intersection of two or more beams and are
the location where external forces may act upon the object.
Furthermore, these external forces create member forces
within each individual beam by tension or compression of
the beam. Trusses are used as supports in many structures
such as bridges, houses, and other buildings. An excellent
foundation of how to construct a truss is critical for a stu-
dent’s success as an engineer in the future. While a truss is
a type of free-body diagram, other non-truss free-body dia-
grams can be used to analyze all of the internal and external
forces acting on a general object of any shape.

In order to correctly assess the effectiveness of the learn-
ing process the learner must receive appropriate feedback
on what he or she is doing. Feedback helps learners identify
misconceptions and guides the learner to a more accurate
conception of the knowledge (Bangert-Drowns et al. 1991).
It is fundamental that this feedback is both concordant with
the student’s learning stage and also that it is given in a cor-
rectly timed manner. If feedback is delayed for too long, the
overall learning process becomes degraded, which gives us
a preference for immediate feedback.

While immediate feedback is ideal, the large class sizes of
introductory engineering courses (excess of 100 students per
instructor) prevent hand-drawn solutions from being used
often because of the time commitment involved in grad-
ing and providing feedback to the students. To combat these
time constraints, multiple choice questions are the primary
source of testing. In these courses, students are likely to re-
ceive only one or two hand-drawn assignments a semester.

Proceedings of the Twenty-Fourth Innovative Appications of Artificial Intelligence Conference

2253

To stimulate the educational value of these courses, the
need for a better method of grading hand-drawn truss dia-
grams is necessary. Hand-drawn homework problems, such
as truss diagrams, afford themselves the use of sketch recog-
nition as a solution.

Here, we introduce Mechanix, a sketch recognition sys-
tem that can recognize, correct, and provide real-time
feedback on a student’s hand-drawn truss diagram that is
checked against a single instructor-entered key sketch. The
aim of our deployed system is to advance the artificial intel-
ligence of automated mechanical and civil engineering in-
struction, such that the automated instruction emulates the
expertise performance achieved by human instructors.

Prior Work
Specialized educational software packages act as tutors for
students that are learning statics problems. These include
WinTruss (Callahan et al. 1988), McGraw Hill Connect En-
gineering (Hill 2011), and Bridge Architect (Fissi 2011),
which are respectively stand-alone, web-based, and mobile
phone engineering tutoring applications. Similarly to our
deployed system they provide step-by-step-instructions and
provide some form of feedback on the input. However, none
of them offer an opportunity for students to solve the com-
plete problem by themselves; they all provide a partially
completed solution and give overall feedback as to whether
the student solution is correct or not. Additionally, none of
these allow for hand-drawn input.

Two other related systems are the Andes physics tutor-
ing system (Vanlehn et al. 2005) and the Free-Body Dia-
gram Assistant (Roselli et al. 2003), which allow students
to create electronic solutions for homework assignments.
Both systems were designed as alternatives to pen-and-paper
homework assignments to make classroom adoption easy
for professors. Additionally, both consist of a design palette
where users can pick pieces and use a mouse to drag them on
the workspace in order to build their solution. While this is
an improvement to providing partially completed solutions
to the student (as in the methods from the previous para-
graph), the deployed system described in this paper further
improves on this by allowing students to use a stylus to hand-
sketch their input. We provide a unique opportunity to use a
more physical and traditional method of solving the prob-
lems, while assessing the correctness of the free body dia-
gram. In this way, students can acquire important skills that
might prove to be valuable in their future careers even when
they are away from a computer.

Some other systems also tackle the truss and free-body
diagram (FBD) teaching problem, allowing for freehand
sketching as input. Newton’s Pen (Lee et al. 2008) is a pen-
based tutoring system for statics that runs on the FLY pentop
computer (based on the Anoto digital pen and paper technol-
ogy). The recognition capability of Newton’s Pen is limited
by the hardware in the FLY pentop computer. Additionally,
in order to facilitate recognition, Newton’s Pen constrains
the user to draw free-body diagram components in a very
specific order. Unlike Newton’s Pen, Mechanix offers truly
free sketching in that the recognition is not dependant on

Figure 1: Mechanix interface. It can be divided into several
different parts. a) Problem Description b) Drawing Panel. c)
Tool Panel. d) Submit Button e) Check List f) Message g)
Equation Panel h) Note Taking Panel

the order in which the student draws the components of the
solution.

To achieve this eager goal we rely on state-of-the-art-
techniques of sketch recognition. The most prominent re-
search in this field can be categorized into three categories:
gesture recognition (Rubine 1991) (Wobbrock, Wilson, and
Li 2007), vision-based recognition (Kara and Stahovich
2005) (Miller, Matsakis, and Viola 2000), and geomet-
ric recognition (Hammond and Davis 2005). Geometric
recognition has been explored and researched in various dis-
tinct domains. In this kind of recognition there is usually a
bottom-up approach and after preprocessing, there is a low
level recognizer that can identify primitive shapes such as
lines, circles, or arcs. On top of primitive recognition there
is a high-level recognizer that can use a set of constrains to
determine if the basic shapes and the relationship between
them compose a more complex shape. This approach has
been used successfully in domains such as military Course
of Action (Johnston and Hammond 2010) diagrams, and
circuit diagrams (Alvarado and Davis 2004) (Gennari et al.
2005). In all cases a combination of primitive shapes under a
set of known constraints results in the production of higher
level shapes that comply with certain standards, yet allow
free sketching.

In our case we rely on a powerful low-level recognizer
called PaleoSketch (Paulson and Hammond 2008), or Paleo,
which identifies primitive shapes such as lines, arcs, ellipses
or spirals. Paleo integrates several techniques such as corner
finding and geometric perception to perform a series of pre-
recognitions over the supported shapes. It then uses a novel
ranking algorithm to determine which of these shapes has
a better fit. Although the current version of Paleo supports
more than 10 basic shapes, we mostly rely on the recognition
of lines, polylines, and dots. Paleo has a reported accuracy
of more than 98%.

2254

Implementation
A Tour of the Interface
The Mechanix system provides a clean and intuitive inter-
face in which students and instructors can interact. Figure 1
shows the Mechanix interface.
• Problem Description. The text shows the description of

the problem to be solved. The problem can be accompa-
nied by an image that allows clicking to zoom in for more
detail.

• Drawing Panel. This is the panel on which students draw
their diagrams. Each pen-down motion is captured and
processed by our software.

• Tool Panel. This panel contains useful functions to help
edit the sketches. The buttons (from left to right) are undo,
redo, clear, open, save and erase. In addition to the erase
button, the system also provides a scribble erasing func-
tionality.

• Submit Button. Whenever students want to check their
solutions, they can simply click the submit button to see
whether their answers are correct.

• Check List. The checklist provides step-by-step guides to
assist students to finish the problem.

• Message. The system gives feedback by showing a help-
ful and informative message. In Figure 1, the message
shows that we have forgotten to draw an axis, which is
necessary to process the force directions. These messages
are an intuitive guide for students.

• Equation Panel. Students use this panel to enter the re-
quired equations and values of reaction forces. Then the
system compares these inputs with correct answers.

• Note Taking. Students can use this panel to make notes
when they are working any problem

Interface Modes
There are two distinct modes of interaction in Mechanix, the
student mode and instructor mode. Both modes provide a
workspace to draw truss diagrams and enter metadata rele-
vant to the problem. The student mode is the interface that a
student sees when working on a homework assignment and
was described in detail above.

Instructor mode allows instructors to create new assign-
ments and corresponding sets of questions in a simple fash-
ion. Instructors can add the problem statement in the form
of text and explanatory images, and by using a similar in-
terface to the one provided for students, they can sketch a
solution diagram to each problem. This sketched solution
is interpreted by the system and will be used to check the
student-drawn sketches. Instructors are responsible for la-
beling nodes and forces. Mechanix then generates the ap-
propriate system of equations and values for reaction forces.
Certain additional required values can be inputted by the in-
structor, such as the factor of safety. After the instructor has
finished creating a problem he or she can save it to the cen-
tral server so students can access it. This same interface is
also used to review detailed information about each student
submission.

Figure 2: An example round menu and some basic options

Figure 3: Examples of the capabilities of the scribble erasure
feature.

Interaction Methods
One great advantage of a sketch-based system is that it al-
lows users to continually modify or edit their drawings as
they would on pen and paper. The current Mechanix system
provides such functionality through our round menu, but-
tons, and free-hand erasure.

• Round Menu. Figure 2 shows the round menu. When we
hover the mouse or pen on top of a stroke or recognized
shape for a small time interval, the round menu will auto-
matically appear. Using this round menu, we can change
the color of a shape, delete the highlighted shape, or label
the shape.

• Buttons. There are several buttons on the tool panel, as
we’ve shown in Figure 1. Users can use these buttons to
explicitly undo/redo/clear/erase their drawings.

• Gesture Recognition. We allow erasure via scribbling
strokes, which can be faster and more natural for inter-
action than explicitly using buttons or menus. Keeping
this purpose in mind, we integrated scribble gesture into
the Mechanix system. Figure 3 shows how can we use
the scribble gesture to remove either a complete shape or
part of a shape. We recognize scribble shapes as combina-
tions of strokes in which time intervals are within 400 mil-
liseconds. If a scribble stroke intersects most of a shape,
the scribble erases the entire shape. On the other hand, if
the stroke intersects only one line of the shape, then the
scribble deletes that single line. In the case of amorphous
closed shapes, if the scribble is localized on the stroke, it
deletes only that part.

• Pen or mouse interaction. We also allow certain interac-
tions defined by the tapping of the pen or clicking of the
mouse. Users can move the drawn shapes by clicking and
holding until the cursor changes to the move cursor, then
the user can drag the shapes around to the desired posi-
tion. Items such as arrows or nodes can be labeled by the

2255

student either using the round menu as described above or
by double clicking on the shape and entering the text.

• Visual feedback. Primitive recognition is used as not only
the basis for higher level recognition but also for coloring
drawn shapes as a feedback method. For example, a shape
recognized as a force (an arrow) is colored dark green to
indicate to the student that Mechanix recognized the force
and that they may enter relevant metadata for that force.

Geometric Recognition
Building Blocks
The hierarchical building-blocks of our recognition are
points, strokes, and shapes.

• The program generates a point for each movement of the
mouse. It records the x and y coordinates and the current
time.

• Strokes contain the group of points collected in the time
between when the pen touches down on the tablet, and
when it loses contact with it. For example, a ’y’ character
written in cursive will be one stroke, but a printed ’y’ will
likely be two strokes.

• Primitive shapes contain at most a single stroke. Strokes
are segmented using a cusp detector (Wolin 2010) and the
primitive shapes are recognized by PaleoSketch (Paulson
and Hammond 2008). Examples of primitive shapes are
line segments, circles, arcs, curves, polylines (several line
segments drawn in a single stroke), triangles, etc.

• Complex shapes, such as roller supports, are built first of
primitives and composed hierarchically to allow for more
and more complex shapes. Mechanix creates complex
shapes only after the member shapes pass our geometric-
constraint-based recognizers.

Steps to Recognition
Our geometric shape recognition happens in five simple
steps:

1. Record points as the pen traces on the screen and add
points to a new stroke.

2. Send each new stroke to PaleoSketch to find its primitive
shapes (line, circle, arc, polyline, etc.).

3. Add each new shape to the collection of all shapes.
4. Send various groupings of shapes to complex shape rec-

ognizers.
5. Apply a system of geometric constraints to recognize

high-level shapes.
6. Replace low-level shapes with new high-level shape, re-

turn to step 3, and cycle until no more complex shapes can
be found.
As an example of a system of geometric constraints, the

recognizer for the roller support given in Figure 4 requires
a triangle and two circles as components. The roller support
recognizer checks each of the conditions given in Figure 4.

If the component shapes meet all of the constraints for a
specific configuration, the recognizer combines them into a

Figure 4: An example of the geometric constraints on a sim-
ple roller support.

Figure 5: Examples of trusses recognized in Mechanix.

new complex shape. Upon positive recognition, the recog-
nizer assigns the new shape a label that acts as a name tag to
other shapes. The recognizers test new groupings made with
that new shape to ensure the most complete and thorough
recognition possible before the program returns to the first
step (gathering points and making strokes). All recognition
executes in real-time.

Truss Recognition
Trusses are one of the main structures or symbols for the
Mechanix system to recognize. Trusses are basic structures
used in applications such as bridges, airplane wings, and
buildings. Truss diagrams allow students to learn the way
forces react on beams. Rather than attempt to define each
valid truss individually, we use a general definition to iden-
tify any trusses the instructors or students may want to draw.
We collected 517 data sets and achieved an accuracy of 89%.
Figure 5 shows examples of trusses recognized in Mechanix.

We define a truss as a collection of convex polygons, each
of which shares at least one side with another polygon in the
truss. If we can find two polygons that share an edge, then
we have found a truss.

Figure 6 shows two examples of shared edges. Once we
have built the connected graph, we consider each edge AB
as potentially a shared edge. To find out if the edge AB is a
shared edge, we remove the edge from the graph. Then the
system tries to find another path to go from A to B using a
breadth-first algorithm. If we can find another path, then the
edge AB is recognized as a shared edge. As shown in Figure
6, the BFS algorithm will first find the blue path and remove
all of its edges from the graph. At that point, the red path
tries to find its way from A to B. In Figure 6 (a), the red path
can reach from A to B, and our system identifies the edge
AB as a shared edge. However, in Figure 6 (b), the red line
cannot reach from A to B, so our algorithm will not detect
the edge AB as a shared edge. The algorithm can be found
in (Field et al. 2011).

2256

Figure 6: Two examples of shared edge. Only (a) will be
recognized as a shared edge by our algorithm.

Answer Checking

Mechanix automatically checks the students’ assignments
as they are submitted. If students submit incorrect answers,
Mechanix provides beneficial feedback to help students
reach the correct answers. Mechanix initializes the answer
checker whenever a student clicks the green check button
in the upper right-hand corner of the interface. In order to
grade the student’s submission, Mechanix compares the stu-
dent’s sketch with instructor’s sketch. Mechanix checks the
assignments as follows:

• The student’s truss has the correct configuration.

• The student’s sketch contains an axis.

• All forces are present and in the correct direction.

• The student’s force values are equivalent to the instruc-
tor’s force values.

To check if the student’s truss is similar to the instructor’s
hand-drawn truss, we first create a graph data structure com-
prised of connected nodes and beams for both trusses.

Students have different styles of drawing trusses. For ex-
ample, when an assignment requires a truss such as the one
given in Figure 5, some students drew a big triangle first
and draw other small triangles. On the other hand, some
students only drew three small triangles. To make the num-
ber of beams equal between all cases, we implemented a
beam intersect mechanism. If a beam intersects another, both
beams are segmented at the intersection point and a node is
formed between them. After all intersections (nodes) have
been found, we use basic graph isomorphism to determine if
the graphs are similar.

After the answer checker determines that the truss is cor-
rect, the system checks to see if the sketch includes an
axis. Axes are necessary to specify the primary direction of
forces.

To check the force values, we first check the type of force,
which can be either a reaction force or an input force. An in-
put force means that it has a value or constant for its label,
and a reaction force has a label that starts with ’F’ or ’R’
and its direction ’X’ or ’Y’ at the end of label (for example
“Fay”). After Mechanix checks the types of forces, the sys-
tem checks if the forces are attached to appropriate nodes
and have been given the correct values.

Finally, if the submitted sketch has any missing or incor-
rect answers, Mechanix gives beneficial feedback such as
“You are missing an input force at Node ’B’”, or “You have
not drawn an axis”.

Figure 7: Example closed-shape bodies.

Other Problem Types
General Free-Body Diagrams
Free-body diagrams are a second type of problem in the
statics domain. Generalized free-body diagrams depict the
forces acting on an arbitrary physical body, such as a table
or an escalator stair. The body given in the problem state-
ment could be any bubble-like shape, such as those seen in
Figure 7. Because we as programmers cannot predict and
write geometric recognizers for all of the possible bodies, a
generic closed shape comparison technique is necessary. An
instructor simply sketches the desired closed-shape body in
the answer key. All student closed shapes are compared with
the instructor’s and a binary similarity decision is made.

First, we recognize the shape bodies. We take a collec-
tion of primitive line shapes drawn in one or more strokes
and attempt to traverse them and return to the first point of
the first line. Two lines are traversible if their endpoints are
within 9% of the total path length. This gap allowance allows
for bodies to be made of multiple strokes, without excessive
care to perfectly line up endpoints.

To begin comparing the two shapes (the student’s shape
and the instructor’s shape), we first resample the shapes
to ensure they have the same number of points. Using the
method defined by (Wobbrock, Wilson, and Li 2007) we re-
sample both shapes to contain 64 evenly-spaced points. We
then scale the shapes down to a 40x40 window so we can
measure distances accurately.

We use three of the similarity metrics proposed by (Kara
and Stahovich 2005), the Hausdorff distance, a modified
Hausdorff distance, and the Tanimoto Coefficient.

To find the Hausdorff distances between the two “bodies”
A and B, we initialize two distance vectors, each of size 64
(the number of points in each shape) DA and DB such that

DA =

{
min
b∈PB

(|a− b|) , a ∈ PA

}
PA contains minimum distances for points in A, and PB

contains minimum distances for points in B. The values in
DB are similarly found. The maximum value in both DA

and DB is the Hausdorff distance. The modified Hausdorff
distance is the average of the DA and DB values combined.

Because the Hausdorff distance (the maximum minimum
distance between two points in A and B) and the modified
Hausdorff distance (the average minimum distance between

2257

two points in A and B) are distance measures, we convert
them to a similarity measure with

P (match) = 1− H

20

We chose the value 20 because it represents half of the width
of the bounding window. Any two shapes that contain points
whose nearest neighbors are more than half the width of the
bounding window apart cannot be deemed similar. There-
fore, two shapes resulting in a Hausdorff distance of 20 is
considered 0% similar. Any two shapes with a Hausdorff
distance greater than 20 receive a similarity measure of 0.

The final measure used to determine body similarity is
the Tanimoto Coefficent. This is simply the ratio of pixels
that “overlap” (number of points that have distance values
in PA and PB less than or equal to 4.0) to the total number
of pixels.

T (A,B) =
nAB + nBA

nA + nB

Finally, we take the three measures (Hausdorff distance
similarity measure, modified Hausdorff similarity measure,
and Tanimoto Coefficient) and average their values (Kara
and Stahovich 2005). If the resulting average similarity mea-
sure is greater than 0.65. we consider the student’s and the
instructor’s shapes to match. A full description of the algo-
rithm can be found in (Field et al. 2011).

As an indication to the student that a match has been
found, the nodes from the instructor’s sketch are automati-
cally revealed to the student. (Instructors add nodes by draw-
ing small dots and labeling them with the desired letter in
instructor mode.)

Creative Response
A creative response problem is a problem that is left open
ended for the student to solve. Instead of the normal problem
where the student has to draw a truss to match the teacher’s
truss, the student has to draw a truss to meet a certain set of
constraints. A typical problem is:

“A village needs a bridge to connect it to the city market
place across a chasm. The bridge should span between
7 and 8 feet as measured from the end supports and
should be able to carry a load of 56 pounds applied to
the center top of the span. The maximum load for each
member is 70 Newtons.”

This allows the student to design any bridge they desire to
accomplish the task at hand. There is no example truss that is
used for comparison. Instead, the Mechanix system uses ar-
tificial intelligence to solve the student created truss (Figure
8).

It creates a linear system of equations with three parts.
The first part of the system is the summation of all forces
along the x-axis. It uses the arrow recognizer and compares
the slope with the axis to determine the direction, which
gives the equation ∑

Fx = Rax + 10

Figure 8: A Creative Response Truss

After adding all the forces that reside along the x-axis, it
does the same process along the y-axis, which ends up with∑

Fy = Rey +Ray − 10

The forces in the same direction have the same sign. For
the final equation, Mechanix chooses a node with the most
reaction forces around it. Then it iterates through all of the
other forces computing the cross product between the forces
and the distance to the node. In Figure 8, node A is chosen to
compute the cross product and results in the equation below.∑

M = Rey × 2− 10× 1− 10× 1 sin(
π

3
)

=
∑

M = Rey × 2− 18.660

After finding all the external forces, a system of equations
is formed for each beam in the truss. An example of this is
with node A∑

Ax = 1Fac + 0.5Fab − 10.0 = 0

∑
Ay = Fab sin(

π

3
) +Ray = 0

After creating all values from the student-drawn truss,
Mechanix will use the values to compare to a set of con-
straints that the instructor previously entered, such as the
length of the bridge or maximum force. The student will
receive helpful feedback on whether the truss they drew ad-
hered to the constraints.

Distributed Architecture
To prevent the possibility of cheating, the answer sketches
drawn by the instructor are never sent to the student’s
Mechanix client application. This means that all answer
checking must be performed in a secure server application
before feedback can be sent back to the Mechanix client.
Initially this was handled by a single server, but the load of

2258

recognition for one problem submission is non-trivial, and
when 30 plus students would submit sample problems si-
multaneously our server would become inoperable.

To overcome this limitation, we use web application load
balancing techniques. All data is transferred between the
clients and servers as XML over HTTP. We use a HTTPS
proxy server to encrypt all incoming and outgoing data
to protect authentication information and student confiden-
tiality. All incoming HTTP requests are then routed using
an HTTP load balancer, HAProxy1 , to several machines,
each running the Mechanix server software. Each Mechanix
server runs an embedded instance of Jetty2 , which we use to
handle HTTP communication and user session information.
Finally the XML request body is parsed, we perform answer
checking on the resultant sketch object, and return the neces-
sary feedback as an XML HTTP response. This architecture
allows us to use off-the-shelf software to achieve simple and
practical scalability to support larger amounts of students.

Deployed System Results
We have deployed Mechanix in the classroom for three con-
secutive semesters. The participating course, Engineering
111 (Foundations of Engineering), covers basic statics, vi-
sualization and CAD tools, Newton’s laws, unit conversions,
etc. Thus far, a total of 111 students (interesting coincidence
given the course number) have used Mechanix to submit
homework assignments that otherwise would be submitted
on paper.

Mechanix was first deployed in an Honors section of ENG
111. Students in the course were given the option to use
Mechanix or pencil and paper for two homework assign-
ments. For the first assignment, all 33 students chose to use
Mechanix. For the second assignment, 22 students chose to
continue using Mechanix. The first semester, our purpose
was mainly debugging and refinement; we found it promis-
ing that 22 students chose to use the software again.

In the second semester of deployment, 20 of 64 stu-
dent volunteers from a regular section of ENG 111 used
Mechanix, and the remaining 44 used traditional pencil and
paper for comparison. Mechanix was used for three home-
work assignments. The grades for the first assignment were
similar between the experimental and control groups. On
the second and third assignments, however, the experimental
Mechanix group scored an average of 25% higher than the
control group.

For the third semester of deployment, 122 student volun-
teers from both Honors and regular sections participated in
the study. In total, 58 students were assigned randomly to
the Mechanix group, and the remaining 64 used pencil and
paper. Again, three homework assignments were given. Due
to some unforeseen server problems, many students chose
not to continue using Mechanix after the first or second as-
signment.

A force concept inventory quiz was given before and after
the lectures associated with free body diagrams and forces.
The students that used Mechanix for all three assignments

1HAProxy http://haproxy.1wt.eu/
2Jetty HTTP Server http://jetty.codehaus.org/

Figure 9: Assignment Results

Figure 10: Exam Results

showed substantially more improvement than the other stu-
dents, as seen in Figure 9. Students that used Mechanix for
at least two of the three assignments scored higher on the
open-ended question on the exam, as seen in Figure 10.
These findings indicate that Mechanix fosters learning of
statics concepts better than traditional pen and paper.

In post-experiment focus groups each semester, students
offered many constructive comments on Mechanix. Students
found the instant feedback feature very helpful, which en-
couraged them to choose to use Mechanix over pencil and
paper. Students were also impressed that the program could
recognize even badly drawn trusses. This made them think
more about the problem and less on trying to draw a per-
fect truss. One other feature that students mentioned was
the checklist that told them the order in which to solve the
problem. They thought it helped ensure they were doing the
problem the correctly. In the focus groups some students re-
quested the use of Mechanix on exams in addition to home-
work. This implies confidence in the software, and a will-
ingness to continue to use it. Some students also mentioned
that using Mechanix encouraged them to move on to another
problem after finishing the first. Many students expressed
that they thought of Mechanix more as a learning tool that
helps teach the process of solving these problems than just
another way to turn in homework.

Students also offered suggestions on how to improve
Mechanix. Many students expressed the need to create an
eraser that can erase certain parts of the drawing. This has
been created and added to Mechanix, but has not yet been
tested in the classroom. Per the students’ suggestions, we
are working to solidify the client-server interaction so as to
lessen the number of interruptions to the user.

2259

Future Work
Although Mechanix is today a robust system with real class-
room usage, there are several ways of expanding our work.

One goal that we have is to reach a wider audience. The
use of Mechanix in other schools and universities is cur-
rently in the works by our team and at least one other school
has agreed to collaborate in order to get access to this ed-
ucational tool. Because of this, numerous enhancements in
terms of security, portability, and scalability are currently
being developed so we can deploy our system in a wider set
of schools and environments.

Similarly, Mechanix has the potential to be used outside
of the classroom, to do homework assignments or prac-
tice problems. As a web-based tool this is already possible,
but we have the challenge of making the software portable
enough so it can run smoothly across different hardware
platforms and operating systems. This also includes the pos-
sibility of running Mechanix on portable devices such as
phones or tablets.

The software itself has several improvements that can be
made. Many improvements were suggested by the students
in the post-experiment focus groups. These include interac-
tion preferences, a wider set of recognized shapes, more in-
telligent and explicit feedback, powertools to edit the sketch,
and ways of self-assessing assignment progress.

Another side of Mechanix that has been developed but has
a great potential of expansion is the instructor mode Instruc-
tor mode can be expanded by giving the instructor a wide
range of statistics so they can immediately asses the progress
of their students without the need of external tools. Also,
our work in equation generation and solving should provide
them with faster ways to create problems in the future us-
ing a similar feedback interface to let them know potential
inconsistencies with their proposed problems. Another pow-
erful tool we plan to provide instructors is the ability to in-
tegrate Mechanix with standard student platforms such as
BlackBoard, or eLearning.

Conclusion
In this paper we describe Mechanix, a deployed system, and
its use of artificial intelligence to aid teachers and students
with the learning process. Mechanix is built with a number
of recognition techniques that give it many features to help
students become successful in the classroom. It has been
able to interpret students’ answers in real time to provide
instant feedback in a transparent environment. The goal of
Mechanix is to be a fluid system that can can provide instant
feedback while still allowing students to hand draw their so-
lutions.

References
Alvarado, C., and Davis, R. 2004. Sketchread: a multi-domain
sketch recognition engine. In UIST ’04: Proceedings of the 17th
annual ACM symposium on User interface software and technol-
ogy, 23–32.
Bangert-Drowns, R. L.; Kulik, C. L. C.; Kulik, J. A.; and Morgan,
M. 1991. The instructional effect of feedback in test-like events.
Review of Educational Research 61(2):213–238.

Callahan, J.; Hopkins, D.; Weiser, M.; and Shneiderman, B. 1988.
An empirical comparison of pie vs. linear menus. In Proceedings
of the SIGCHI conference on Human factors in computing systems,
95–100. New York, NY, USA: ACM.
Field, M.; Valentine, S.; Linsey, J.; and Hammond, T. 2011. Sketch
recognition algorithms for comparing complex and unpredictable
shapes. In Twenty-Third International Joint Conference on Artifi-
cial Intelligence.
Fissi, L. 2011. Bridge architecht website.
Gennari, L.; Kara, L. B.; Stahovich, T. F.; and Shimada, K. 2005.
Combining geometry and domain knowledge to interpret hand-
drawn diagrams. Computers and Graphics 29(4):547 – 562.
Hammond, T., and Davis, R. 2005. LADDER, a sketching
language for user interface developers. Computers & Graphics
29(4):518–532.
Hill, M. 2011. Mc graw hill connect website.
Johnston, J., and Hammond, T. 2010. Computing confidence val-
ues for geometric constraints for use in sketch recognition. In
Proceedings of the Seventh Sketch-Based Interfaces and Modeling
Symposium, SBIM ’10, 71–78. Aire-la-Ville, Switzerland, Switzer-
land: Eurographics Association.
Kara, L. B., and Stahovich, T. F. 2005. An image-based, trainable
symbol recognizer for hand-drawn sketches. Computers & Graph-
ics 29(4):501–517.
Kozma, R. B. 1994. Kozma - 1994 - will media influence learning
reframing the debate.pdf. Educational Technology 42:7–19.
Lee, W.; de Silva, R.; Peterson, E. J.; Calfee, R. C.; and Stahovich,
T. F. 2008. Newton’s pen: A pen-based tutoring system for statics.
Computers & Graphics 32(5):511–524.
Miller, E. G.; Matsakis, N. E.; and Viola, P. A. 2000. Learning from
one example through shared densities on transforms. In Proceed-
ings of the 2000 IEEE Conference on Computer Vision and Pattern
Recognition, 464–471.
Paulson, B., and Hammond, T. 2008. Paleosketch: accurate primi-
tive sketch recognition and beautification. In Proceedings of the
13th international conference on Intelligent user interfaces, IUI
’08, 1–10. New York, NY, USA: ACM.
Roselli, R. J.; Howard, L.; Cinnamon, B.; Brophy, S.; Norris, P.;
Rothney, M.; and Eggers, D. 2003. Integration of an interactive
free body diagram assistant with a courseware authoring package
and an experimental learning management system. In Proceedings
of the American Society for Engineering Education.
Rubine, D. 1991. Specifying gestures by example. In SIG-
GRAPH ’91: Proceedings of the 18th annual conference on Com-
puter graphics and interactive techniques, 329–337.
Sweller, J. 1994. Cognitive load theory, learning difficulty, and
instructional design. Learning and Instruction 4(4):295–312.
Vanlehn, K.; Lynch, C.; Schulze, K.; Shapiro, J. A.; Shelby, R.;
Taylor, L.; Treacy, D.; Weinstein, A.; and Wintersgill, M. 2005.
The Andes physics tutoring system: Lessons learned. Int. J. Artif.
Intell. Ed. 15(3):147–204.
Wobbrock, J. O.; Wilson, A. D.; and Li, Y. 2007. Gestures with-
out libraries, toolkits, or training: a $1 recognizer for user interface
prototypes. In UIST ’07: Proceedings of the 20th annual ACM
symposium on User Interface Software and Technology, 159–168.
New York, NY, USA: ACM.
Wolin, A. 2010. Segmenting hand-drawn strokes. Master’s thesis,
Texas A&M University.

2260

	AAAI12
	Contents
	Index
	Help
	Terms
	AAAI

