
Applying Constraint Programming to Incorporate Engineering
Methodologies into the Design Process of Complex Systems

Odellia Boni and Fabiana Fournier
and Nir Mashkif and Yehuda Naveh
and Aviad Sela and Uri Shani

IBM Research - Haifa, Israel
odelliab,fabiana,nirm,naveh,sela,shani@il.ibm.com

Zvi Lando and Alon Modai
Israel Aerospace Industries Ltd.

zlando,amodai@iai.co.il

Abstract

When designing a complex system, adhering to a design
methodology is essential to ensure design quality and to
shorten the design phase. Until recently, enforcing this
could be done only partially or manually. This paper
demonstrates how constraint programming technology
can enable automation of the design methodology sup-
port when the design artifacts reside in a central reposi-
tory. At any phase of the design, the proposed constraint
programming application can indicate whether the de-
sign process data complies with the methodology and
point out any violations that may exist. Moreover, the
application can provide recommendations regarding the
design process. The application was successfully used
to check the methodology conformance of an industrial
example and produced the desired outputs within rea-
sonable times.

1 Introduction
The design of complex systems is a complicated process in-
volving many engineers of various disciplines who use nu-
merous tools from different vendors. These tools are used
to describe the system’s decomposition into subsystems and
to manage the design artifacts belonging to each of those
subsystems. Usually, each tool can manage only the design
artifacts belonging to a single discipline. However, there ex-
ist relations between design artifacts belonging to different
disciplines and hence, residing in different tools.

Systems engineering methodologies include guidelines
that constrain the relations between the design artifacts, tak-
ing into account the subsystems decomposition, in order to
maintain traceability in the design data. However, current
methods for checking the conformance to those guidelines
are limited or error-prone. The reasons for that are two-fold.
The first is the difficulty to manage and present the relations
net. Some parts of this net are managed in different tools
while other parts are managed manually. The second reason
is that the current means used for checking could check only
local or simple guidelines, one at a time.

Lately, a new framework which can manage the relations
net between the design artifacts of the modeling phase was
proposed (Gery, Modai, and Mashkif 2010). In this paper

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

we present a novel way to check the conformance of the
relations net managed by this framework to the methodol-
ogy guidelines. We check all the guidelines, complex and
global guidelines as well as local and simple, simultane-
ously. To this end, we develop a concise graphic represen-
tation of the system’s design data and formulate the method-
ology guidelines as rules on this graph structure. This allows
us to describe the problem of enforcing systems engineering
methodology as a rules-checking problem. We built an ap-
plication based on constraint programming, which can check
whether a graph describing partial data of the system con-
tains violations of the rules or contradictions (i.e., cannot be
extended into a graph that satisfies the rules). The applica-
tion also lists the violations or analyzes the source of con-
tradiction. If no violations or contradictions are found, the
application provides information on how the graph can be
extended without violating the rules.

The paper is organized as follows: In Section 2 we pro-
vide some background on systems engineering methodol-
ogy, and explain the desired support using a simple example.
In Section 3 we describe how the problem of checking the
methodology guidelines can be modeled as a constraint pro-
gramming (CP) problem and how a CP solver can be utilized
to achieve the desired methodology support. In Section 4 we
show results of running a CP-based application on a tutorial
example. In Section 5 we discuss the advantages and disad-
vantages of checking the systems engineering methodology
using CP. In Section 6 we summarize and draw conclusions.

2 Background
2.1 Systems Engineering
Complex systems are usually composed of embedded soft-
ware, physical and electric components interacting with
each other. Such systems are common to the automotive,
aerospace and defense, power, and water industries, in which
any errors in the design phases of the system can cause large
costs and delays. To cope with these challenges, projects
in these industries are highly model-oriented. Engineers use
tools to model the different aspects of the product, from in-
ception to parts manufacturing.

Within this wide span of activities, our work concentrates
on the high level model-based design and testing phases,
which involve many disciplines including requirements en-

Proceedings of the Twenty-Fourth Innovative Appications of Artificial Intelligence Conference

2262

gineering, functional analysis, and verification.
Each of these disciplines uses a different modeling

scheme to manage the data and incorporates some com-
monality and similarities in the design artifacts it embraces.
Hence, the design artifacts can be categorized into types
(e.g., requirement, function, test) where artifacts of the same
type belong to the same discipline and share similar at-
tributes. Since the modeling scheme varies from discipline
to discipline, different tools are often used to design and
manage the artifacts belonging to each discipline.

There are, however, relations between the design artifacts
from different disciplines. These relations express the de-
sign logic such as ’this requirement is implemented by this
system function’.

Another feature of complex systems is structural hierar-
chy, which decomposes the system into its building blocks,
with inputs and outputs streaming between them. Each of
these sub-components is regarded as a complex system of
its own having its own design artifacts and is decomposed in
turn.

Hence, the system’s description is complex from two as-
pects. There are many disciplines interacting within a single
system level and each discipline is coherently decomposing
all its information into sub-systems.

2.2 Systems Engineering Methodology
To cope with the challenges in complex systems design, sys-
tems engineering methodologies have been developed (En-
gel 2010). Many of these methodologies provide guidelines
regarding the design process and logic to improve traceabil-
ity and to facilitate information exchange between tools of
different disciplines. The methodologies aim to ensure de-
sign consistency and conformance to the system’s require-
ments. We suggest that the methodologies be represented as
rules to which the structure of the relations between the arti-
facts should adhere.

2.3 Current Methodology Support
As mentioned earlier, the design work in each discipline is
often carried out by a different tool. Many of the tools cannot
cope with the relations to artifacts residing in the other tools.
Hence, today, the process of checking inter-tool relations is
either completely manual or only partially automated.

For the manual checking, the tools produce documents.
These documents are processed manually by engineers to
ensure consistency among the documents. This method in-
volves high costs in manual labor and has a greater probabil-
ity of introducing errors. Often document management tools
are used to monitor this process.

Automated checking utilizes new methods that were de-
veloped to exchange data between tools - especially those
with high inter-dependency (e.g., design and simulation
tools) (Holt and Perry 2008). These methods use a shared
model scheme to enable importing data into the tool in
which the checking takes place. In most industries only peer-
to-peer tool integration is performed, hence only relations
between artifacts residing in at most two tools at a time
can be checked. With today’s systems employing numerous

tools, even within the same company, this peer-to-peer situ-
ation covers only a small portion of the relations net.

Automated checking of the relations structure within a
tool done today is limited also with regard to the rules. It
usually takes place using queries or scripts, which need to
be customized for each rule. Moreover, each rule is checked
separately without considering any mutual impact between
the rules. There are tools which can perform automatic
checking of local methodology rules whenever any data is
refreshed, modified, or added. Continuous checking of such
local rules is performed, for instance, by the Eclipse Model-
ing Framework (Steinberg et al. 2008) toolkit on the Eclipse
platform, on eCore models. Yet, the most valuable rules are
those dealing with the global consistency of the integrated
model, such as the cycle rules described in Section 3.3,
which are beyond the scope of such tools.

2.4 Proposed Methodology Support
Recently, a new approach to tools interoperability evolved,
known as Open Services for Lifecycle Collaboration
(OSLC) 1. OSLC takes the open Internet web experience
into the modeling tools realm. Any artifact managed by a
tool is considered a resource, similar to any other resource
on the Internet. By having its own unique ID, referred to as
a Uniform Resource Identifier (URI), the resource becomes
accessible to external (authorized) tools and users over the
Internet. Tools simply need to provide an interface to access
that artifact.

We use the OSLC idea to create an environment of shared
model data from all the tools involved in a complex project.
This environment, which we call the Link Data and Re-
lations Manager (LDRM), is a repository managed by a
server to which all participating tools publish the URIs of
their managed resources. The LDRM server builds an in-
dex that can reference these resources via their URIs. The
LDRM can associate some attributes to the indices. In ad-
dition, the LDRM is used to manage the relations between
the resources. This ability to model and reference inter-tool
relations is a unique and valuable feature, which would be
very expensive to implement separately in each tool. The
conceptual model of LDRM is illustrated in Figure 1.

Figure 1: LDRM conceptual model

The LDRM indices and the relations net between them
1http://open-services.net

2263

represent the state of the project at a given point in time.
Now, it is possible to analyze whether the (possibly par-
tial) relations net complies with the methodology rules, ap-
ply corrective measures if needed, refresh the shared model
data, and repeat the analysis.

An Illustrative Example Let us demonstrate our pro-
posed approach with a simple example. First, let us consider
the following set of methodology rules regarding design ar-
tifacts of the types: requirement, system function, and test:

1. Each test covers at least one requirement
2. Each requirement is implemented by a single function
3. Each test is derived from a single function
4. If a test covers a requirement, the test must be derived

from a function which is linked to the same requirement.
Such rules may seem arbitrary or even wasteful, but expe-
rience shows that obeying these rules saves time and pre-
vents potential errors. For instance, assume that rule 2 is not
applied and a certain requirement is implemented by more
than one function. If the requirement is changed, as often
happens, it is cumbersome and error-prone to detect which
functions and interactions between the functions need to be
changed in order to accommodate the change in the require-
ment. Rule 2 ensures that in case of a requirement change, it
is clear which is the only function that needs to be changed.

Next, let us consider a toy example of a modern vehicle.
The vehicle is a complex system consisting of mechanical,
electronic, computer hardware, and software components.
At the first stage of the design, the engineers constructed
two functions, and three test cases to satisfy three given re-
quirements. Let us further assume that these design artifacts
and the relations net between them, which is illustrated in
Figure 2, are all held in the LDRM.

Figure 2: Simple example of relations net

Now, a rules checker based on the above methodology
rules (rules 1-4), which receives the LDRM information will
produce an error message indicating that the links between
the rear-collision test-case (T2) and the electric-motor re-
quirement (R1) and activate airbag function (F1) are erro-
neous since they violate the combination of rules 2,3, and

4: the test-case should cover a requirement that is related to
the function from which the test is derived. Note that adding
a link between F1 and R1, or between T2 and F2 is illegal
according to rules 2 and 3, respectively. Hence, the given
relations net holds indeed a contradiction.

Next, assume that the engineer corrected this error by can-
celing the link from T2 to F1. Now, the rules checker will
produce a warning saying that according to the rules, the
rear-collision test-case T2 must be linked to the control elec-
tric motor function F2. Note that this is not an error, since
the relations net is not yet final, and links can be added.
The rules checker provides further information regarding the
linkage between the front-collision test-case (T1) and the re-
quirements, saying that linking this test-case to R1 is forbid-
den, and that the system engineer should choose at least one
of the two other requirements (R2 or R3) to link to this test-
case.

2.5 Constraints Programming (CP)
Formally a CP problem is defined as a triple (V,D,C) where
V is a set of variables,D their respective finite domains, and
C is a set of constraints (or relations) over the variables. A
solution to a CP problem is an assignment to each variable
out of its domain such that all constraints are satisfied.

The most common algorithms used for solving CP prob-
lems involve repeated steps of search and propagation. A
variable is defined arc-consistent with another variable if
each of its admissible values is consistent with at least one
admissible value of the second variable. Algorithms gen-
erally use repeating constraint propagations to make all
pairs of variables of the problem arc-consistent (Brailsford,
Potts, and Smith 1999). Most engines use those ”reach arc-
consistency” procedures between search steps.

In recent years, some extensions to the formal definition
of CP problems were introduced. Among them is the in-
corporation of preferences and priorities to the problem ex-
pressed in the form of soft constraints or an optimization
function (Dechter 2003).

An interesting issue in CP is finding the explanation for
the unsatisfiability of a problem if no solution can be found.
One of the ways of presenting this explanation is called an
unsatisfiable core. This is a subproblem of the original prob-
lem, UC = (VU , D,CU), where VU ⊆ V and CU ⊆ C,
which is minimally unsatisfiable. It is minimal in the sense
that removing any of the constraints of CU from UC re-
sults in a satisfiable subproblem. Meaning, (VU , D,CU \ c)
is satisfiable for every c ∈ CU . Note that the domains of the
variables in VU are the same as in the original problem. Of
course, an unsatisfiable problem can include several unsatis-
fiable cores. The one with the least number of constraints is
called a minimum unsatisfiable core (Hemery et al. 2006).

CP variables can be defined over various domain types
such as integers, floating-point numbers, or strings. In this
paper we make use of the slightly more complex domain
of set variables. Set variables are variables who’s singleton
value is a set (in our case, a set of strings). Thus the do-
main of each set variable is a set of sets. A solution to a CP
with set variables includes an assignment of a set to each

2264

such variable. During the course of the solution process, do-
mains need to be represented efficiently. Here we choose
the bounds-cardinality representation of set-variables do-
mains (Gervet 1997), which consists of three parameters for
each set- variable domain: Lower bound (LB), Upper bound
(UB), and Cardinality (card). Each of these parameters is a
set. A domain represented by LB, UB, card contains all the
sets S such that LB ⊆ S ⊆ UB, and |S| ∈ card.

3 CP Model for Rules Checking
3.1 Translating System Design Data into a Graph
As described above, the system’s design data includes the
design artifacts and their context, meaning the system’s de-
composition. We propose describing this data as a double
layered graph. The lower layer graph, G(V1, E1), represents
the relations net between the design artifacts. In this graph,
the vertices are the design artifacts and the edges represent
the relations between them. In most methodologies, these
edges are undirected. The top level graph, G(V2, E2) is the
system decomposition graph. The vertices represent subsys-
tems and the edges in this graph have the meaning of de-
composition. This upper layer graph in most methodologies
is a directed acyclic graph with a single source.

The top level graph provides the context information of
the design artifacts in the following manner. Each vertex in
V2 acts as a container for all design artifacts (vertices in V1)
that belong to the subsystem it represents. This graphic rep-
resentation is described schematically in Figure 3.

Figure 3: A double layered graph representing the system’s
data. The small rectangles represent design artifacts V1, and
the large ellipses stand for subsystems V2.The bold arrows
are E2, and the thin lines are E1.

These two graphs G(V1, E1) and G(V2, E2) serve as in-
put for the rules checker along with some additional data on
the design artifacts: for each design artifact, we provide its
ascription to a subsystem (denoted by isys), its type (denoted
by itype), and perhaps some additional attributes (iattribute).

3.2 CP Variables
For each design artifact i, we define a set of CP variables
Vi,t,s, t ∈ T s ∈ S. T is the set of artifact types, while S
is the set of subsystems (V2). Each variable is a set variable
containing the artifacts of type t in subsystem s linked to
artifact i. So, j ∈ Vi,jtype,jsys

means that artifact j is linked
to artifact i.

The initial domain of each variable Vi,t,s is set by:

LB = L (1)
UB = U (2)
card = [|L| , |U |] (3)

where L is the set of artifacts of type t in subsystem s linked
to artifact i in the given relations net, and U is the set of all
artifacts of type t in subsystem s. For example, the initial
domain of the variable describing T2 links to requirements
in our toy example 2.4, VT2,requirement,vehicle is:

LB = {R1}
UB = {R1, R2, R3}
card = {1, 2, 3}

3.3 CP Constraints
Analyzing systems engineering methodology rules revealed
that all the rules refer to relations between types. Differ-
ent rules may apply to the linkage between the same types
within a subsystem or across subsystems.

We identified three main classes of rules regarding rela-
tions between types, taking into account the context infor-
mation. The first are connectivity rules, which define those
types that cannot be linked to each other (eq. 4). The second
are cardinality rules, which constrain the number of allowed
relations (eq. 5-7), like rules 1,2,3 in the example 2.4. The
third class of rules are called cyclic rules since they enforce
three-edge cycles in the relations net (see rule 4 in 2.4). The
cyclic rules ensure that if two artifacts of predefined types
are linked, they both link to the same artifact of a third type
(eq. 8). This latter type usually aims to prevent design pro-
cess errors.

In addition to the design methodology rules, we need to
add constraints which ensure that if artifact i is connected to
artifact j, then artifact j is connected to artifact i (eq. 9).

card(Vi,B,s) = 0, ∀i : (itype = A and cond(iattribute)) (4)
card(Vi,B,s) = n, ∀i : (itype = A and cond(iattribute)) (5)
card(Vi,B,s) ≤ n, ∀i : (itype = A and cond(iattribute)) (6)
card(Vi,B,s) ≥ n, ∀i : (itype = A and cond(iattribute)) (7)

(j ∈ Vi,B,jsys
&k ∈ Vi,C,ksys

)⇒ k ∈ Vj,C,ksys
,

∀i, j, k : itype = A,jtype = B,ktype = C (8)
j ∈ Vi,jtype,jsys

⇔ i ∈ Vj,itype,isys
, ∀i, j (9)

cond(iattribute) stands for an additional optional boolean
condition on an attribute associated with artifact i and n
stands for a natural number.
A,B,C ∈ T can be subsets of the types’ set and not nec-

essarily denote a single type. The same is true for s ∈ S. IfA
is a subset, we need to duplicate the constraint for all mem-
bers of the subset. If B,C or s are subsets, we need to use
an auxiliary variable to hold a union between the relevant
set variables. For example, for a rule determining that an ar-
tifact of type A must be connected to at least one artifact of
types B or C, we use an auxiliary variable holding the union
of artifacts of type B and C for each subsystem, and define

2265

the cardinality constraint on this auxiliary variable. Namely:
card(Vi,BUC,s) ≥ 1⇔ card(Vi,B,s

⋃
Vi,C,s) ≥ 1.

Given a specific system data, these methodology rules
are automatically translated into specific constraints corre-
sponding to this data. For example, the first methodology
rule in our toy example 2.4 is of the form of eq. 7 where
n = 1, A = test, B = requirement. Given the design
artifacts data, it is translated into the constraints:

card(VT1,requirement,vehicle) ≥ 1

card(VT2,requirement,vehicle) ≥ 1

card(VT3,requirement,vehicle) ≥ 1

The connectivity and cardinality constraints (eq. 4-7) are
unary constraints (involve a single variable). As such, they
need to be activated only once and hence were included as
part of the problem’s preprocessing to speed performance.
Therefore, some of the violations of the rules could already
be detected in this early stage.

3.4 Output Production Algorithms
A solution of the above described CP problem is an exten-
sion of the given initial relations net into a net that satisfies
all the methodology rules. The extension is done by adding
relations. The design artifacts and subsystems themselves
cannot be altered using this formulation.

Algorithm 1 CSP application for checking rules
Input methodology rules, G(V1, E1), G(V2, E2),
∀i : isys, itype, iattribute
Output messages to the user
Build CP problem (variables and constraints) from input
Apply connectivity and cardinality rules
if violations exist then

Produce violations list
Return

end if
if problem satisfiable then

Restart problem
Reach arc-consistency
Produce information (Algorithm 2)

else
Extract unsatisfiable core (Algorithm 3)

end if

The work flow of the CP application which materializes
the methodology support described in Section 2.4, is sum-
marized in Algorithm 1. As explained in section 3.3, some
of the violations of local rules can be discovered in the pre-
processing stage, before solving the CP formulation. Next,
if given the existing relations, there is a solution to the CP
problem, the system engineer can proceed in designing the
system. To produce a list of warnings and information that
may assist the engineer, we rerun the problem only until
arc-consistency is reached. We then use the initial and cur-
rent (after first arc-consistency) domains of the variables to
extract this output, as detailed in Algorithm 2 and demon-
strated in Table 1.

Algorithm 2 Produce information
Input initial LB(Vi,t,s), initial UB(Vi,t,s),
current LB(Vi,t,s), current UB(Vi,t,s),
current card(Vi,t,s) ∀i, t ∈ T, s ∈ S
Output messages to the user
for all i, t ∈ T, s ∈ S do
impliedi,t,s ← currentLB(Vi,t,s)\initialLB(Vi,t,s)
if impliedi,t,s 6= ∅ then

Produce warning: ”item i must link to impliedi,t,s”
end if
illegali,t,s ← initial UB(Vi,t,s)) \
current UB(Vi,t,s)
if illegali,t,s 6= φ then

Produce info: ”item i cannot link to illegali,t,s”
end if
maybei,t,s ← current UB(Vi,t,s) \
current LB(Vi,t,s)
n maybei,t,s ← current card(Vi,t,s)− |LB(Vi,t,s)|
if 0 ∈ n maybei,t,s then

Produce info: ”item i can link to (n maybei,t,s) ar-
tifacts from maybei,t,s”

else
Produce warning:”item i must link to
(n maybei,t,s) artifacts from maybei,t,s”

end if
end for

If the CP problem is unsatisfiable, the given relations net
contains contradictions. We run an algorithm that finds an
unsatisfiable core to identify the part of the relations net and
the set of methodology rules that hold the contradiction (Al-
gorithm 3). For our toy example 2.4 and the relation net de-
scribed in figure 2, the result of Algorithm 3 is:

Contradiction in: requirement ’Electric motor shall stop
at rear collision’ must be associated with a single func-
tion, and test-case ’Rear collision’ must be derived
from a single function, and if test case ’Rear collision’
and requirement ’Electric motor shall stop at rear colli-
sion’ are linked, they should link to the same function.

4 Results
The CP application described in section 3 was used to check
the rules of a methodology called Embedded Computer-
Based System Analysis (ECSAM) (Lavi and Kudish 2005).
In the ECSAM methodology, the subsystems structure is
a tree and there cannot be relations between artifacts re-
siding in remote subsystems. Hence, there are only three
types of viable relations between artifacts with respect to
the subsystem they belong to. This allowed us to reduce
the set of variables for each design artifact i, to Vi,t,s, t ∈
T, s ∈ S where T is the set of artifacts types, and S =
in same system, in parent system, in child systems.

The relations nets we checked belong to a systems engi-
neering tutorial project called Search And Rescue Air Vehi-
cle (SARAH) designed by Israel AeroSpace Industries Ltd.
This project includes design artifacts of 7 types residing in

2266

initial domain domain after 1st AC output message
LB ∅ ∅
UB R1,R2,R3 R2,R3 info: T1 cannot link to R1
card 0,1,2,3 1,2 warning: T1 must link to 1,2 artifacts from R2,R3

Table 1: Information extracted from the domains of variable VT1,requirement,vehicle by utilizing Algorithm 2

Algorithm 3 Extract unsatisfiable core
Input an unsatisfiable problem: C - set of constraints,
V,D - set of variables and their initial domains
Output messages to the user
unsat ← {} (unsat - set of constraints that comprise an
unsatisfiable core (CU))
notInUnsat← {}
for all c ∈ C do

if (V,D,C/c) satisfiable then
unsat← unsat ∪ c
if (V,D,unsat) unsatisfiable then

return
end if

else
notInUnsat← notInUnsat ∪ c
C ← C/c

end if
end for
Produce contradictions list from (V,D, unsat)

up to 31 subsystems. The context tree has a depth of 4. We
have enforced 76 methodology rules on this system’s data.

Our rules checker operated on different instances (given
relations nets). The size of the instances determined the size
of the generated CP problems which ranged from 750 to
33,794 variables and from 115 to 10,600 constraints. We
solved these generated CP problems using an IBM CP solver
called GenerationCore 2 running on an Intel 2.4GHz proces-
sor with 2.4GB memory.

The performance results of the application are summa-
rized in figure 4 for the different output types: information
production utilizing Algorithm 2, or contradiction analysis
utilizing Algorithm 3.

5 Discussion
The CP application described is unique in the sense that it
must determine if a certain instance is satisfiable, but there
is no use for the explicit solution. This may change if prefer-
ences are added to the model in the form of soft constraints
or an optimization function; in this case the solution could
be used to direct the engineer towards a better design. As
shown earlier, the CP application can also give indications to
the engineer whether links are implied, optional, or forbid-
den, and hence provide decision support. If preferences are
considered, this decision support can be greatly enhanced.

Modeling the rule checking problem through set vari-
ables, and using the representation of the set that has a cardi-

2http://www.research.ibm.com/haifa/dept/vst/csp gec.shtml

Figure 4: Total runtime (in seconds) for different instances.
The rectangles represent instances requiring contradiction
analysis (Algorithm 3), and the circles represent instances
in which information was produced (Algorithm 2).

nality ingredient proved very helpful. We found that in order
to ease the search steps for finding the problem’s solution,
it is better to use many variables with smaller domains, than
a small number of variables with larger domains. Therefore,
we recommend using many types of design artifacts. This
contributes to the precision of the methodology rules and
improves the application performance.

The novel representation of the system design data as
a two layers graph, not only facilitated formulation of the
methodology rules, but also proved to be useful for other
uses of the LDRM. Since this graph contributes for manag-
ing and presenting large amounts of design artifacts and re-
lations in a user friendly way, it eases traceability and allows
for a comprehensive impact analysis.

The fact that the rules checker can point out contradic-
tions in a partially linked system model and not only when
the model is fully linked was found very practical in find-
ing errors in the design process. Therefore, providing expla-
nations in case of unsatisfiability is a crucial feature of the
application. However, the straightforward algorithm we use
for providing these explanations can be insufficient in some
cases. This algorithm finds only a single unsatisfiable core
at a time and not necessarily the minimum one but the one
whose first member appears last in the constraints order. In
addition, the CP formulation assumes the existence of all of
relevant design artifacts, hence its information and explana-
tions regarding a contradiction source may be ill-phrased.
For example: let us look at a methodology that dictates that

2267

any artifact of type A is linked to exactly one artifact of type
B and vice versa. In a system having three artifacts of type
A and two artifacts of type B, the application would indeed
indicate a contradiction. But, it would point out its source as
the five constraints regarding the five existing artifacts, while
a more concise explanation is a missing artifact of type B.

Figure 4 demonstrates that the application performance
for a compliant relations net (where information is pro-
duced) is much better than for non compliant relations net
(where contradictions are analyzed) of the same size. There-
fore, we suspect that we would encounter a scalability prob-
lem when dealing with large non-compliant relations net. It
should be noted that determining whether the relations net is
in compliance with the rules and providing a violations list
(if exist) is almost immediate. It is the process of analyzing
contradictions by extracting an unsatisfiable core which is
time-consuming, since many subproblems can be solved un-
til an answer is reached. One way to overcome this obstacle
is through smart ordering of variables and constraints, such
that those most likely to participate in an unsatisfiable core
will be checked first. Another way is by setting a timeout for
the application and printing a partial unsatisfiable core.

Figure 4 also demonstrates that the application’s runtime
(for both possible outputs) is roughly polynomial in the
number of design artifacts of the given relations net. The
tutorial engineering project we used to test the application
is equivalent to a small to medium sized real project. For
real-life projects, running the application over-night would
be sufficient. Hence, we believe the application performance
may be suitable for real projects.

In companies using ECSAM methodology and having a
partially automated rules checking procedure, the applica-
tion is estimated to save 10 hours of the engineers’ workload
per subsystem. For companies where the process is com-
pletely manual, the workload savings are even larger. Yet,
the largest benefit of the application is increasing the num-
ber of detected errors during the design phase.

The use of CP technology provides a declarative language
for describing the rules. This results in a much simpler way
to define the rules and to understand them. It also saves the
effort needed to write scripts that check data compliance to
the rules. Hence, checking even complicated rules is easily
enabled. A large variety of additional types of rules can be
supported by CP technology. The inherent flexibility in the
rules definition allows us also to easily test and update the
methodology itself.

It is worth mentioning that most companies use the
same methodology for all projects. In such companies, the
methodology rules should be formulated as CP constraints
only once, and the application will automatically generate
for every design the corresponding CP problems for check-
ing the design conformance to the methodology rules. To
this end, a way to introduce the design artifacts data and the
relations net between them to the application is needed. Note
that the described application can also be used to check only
part of the methodology rules and can be applied within any
tool which holds a (partial) relations net, not necessarily the
LDRM. If our formulation of the CP problem is to be used,
a CP solver supporting set variables is also needed.

6 Summary and Conclusions
We make use of a newly proposed framework for designing
complex systems. This framework involves a central repos-
itory called LDRM, which holds indexed references to the
design artifacts residing in the design tools, and the relations
between those artifacts.

Using a CP-based application and a novel representation
of the system’s data combined with the LDRM capabilities,
allowed us to simultaneously check a set of possibly com-
plex methodology rules involving design artifacts from sev-
eral different tools. We show that the application can check
the conformance to complex global rules as well as simple
local ones. Using CP technology in a novel way allows the
rules checker to alert the system engineer in case of viola-
tions or contradictions even when given a partial relations
net between the design artifacts. It can also provide the sys-
tem engineer with information that may assist in the sub-
sequent stages of the design process. These capabilities can
help improve productivity and enforce process methodology.

The CP application also offers a means for the process
engineer to easily define, alter, and check the methodology
thanks to the flexibility in the rules definition.

There is room for improvement in the performance and
scalability of the application, especially in the case of con-
tradictions. This improvement can be achieved by using bet-
ter algorithms for extracting unsatisfiable cores.

Acknowledgments. We thank Hisashi Miyashita, Hiroaki
Nakamura, Kohei Suenaga, Futoshi Iwama and Kohichi
Kamijoh from the Model Driven Systems Engineering group
in IBM Research-Tokyo for initiating this research and for
contributing to the LDRM realization.

References
Brailsford, S.; Potts, C.; and Smith, B. 1999. Constraint satisfac-
tion problems: Algorithms and applications. European Journal of
Operational Research 119(3):557–581.
Dechter, R. 2003. Constraint Processing. Elsevier.
Engel, A. 2010. Verification, Validation and Testing of Engineered
Systems. John Wiley & Sons.
Gervet, C. 1997. Interval propagation to reason about sets: def-
inition and implementation of a practical language. Constraints
1(3):191–244.
Gery, E.; Modai, A.; and Mashkif, N. 2010. Building a smarter
systems engineering environment. In Innovate’10.
Hemery, F.; Lecoutre, C.; Sais, L.; and Boussemart, F. 2006.
Extracting mucs from constraint network. In Brewka, G., ed.,
ECAI’06, Proceedings of the 17th European Conference on Arti-
ficial Intelligence, 113–117.
Holt, J., and Perry, S. 2008. SysML for Systems Engineering. The
Institution of Engineering and Technology, London, UK.
Lavi, J. Z., and Kudish, J. 2005. Systems Modeling & Requirements
Specification Using ECSAM: A Method for Embedded Computer-
Based Systems Analysis. Dorset House.
Steinberg, D.; Budinsky, F.; Paternostro, M.; and Merks, E. 2008.
EMF: Eclipse Modeling Framework. Addison-Wesly Professional.

2268

	AAAI12
	Contents
	Index
	Help
	Terms
	AAAI

