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Abstract 
Qualitative representations are suitable for sketch 
understanding systems because they highlight important 
relationships while leaving out details that are not essential 
for conceptual understanding.  These representations can be 
used to perform spatial analogies between sketches, which 
determine qualitative similarities and differences.  However, 
there are cases where including quantitative information is 
necessary for accurately representing a sketch.  We describe 
a method for using quantitative information to constrain 
qualitative spatial analogies.  The utility of this method is 
demonstrated in the context of a sketch based educational 
software system.  Importantly, using quantitative 
information to improve analogical matches is not domain
specific.  It can be used in any situation where qualitative 
and quantitative spatial information must be combined to 
accurately interpret a sketch.  This approach has the 
potential to improve sketch understanding in educational 
software applications for highly spatial domains.   

 Introduction   
Sketching is an excellent tool for communicating spatial 
ideas.  When we externalize spatial concepts into a sketch 
or diagram, spatial inferences become easier and working 
memory demands decrease (Larkin and Simon 1987).  
Sketching is pervasive in design settings and in 
classrooms.  For highly spatial domains, like science, 
technology, engineering and mathematics (STEM fields), 
sketching is useful for teaching spatial concepts and for 
assessing a student’s knowledge (Ainsworth, Prain and 
Tytler 2011, Jee et al. 2009, Kindfield 1992).   
 One of the benefits of sketching is its flexibility.  
Sketches can be rough, inexact, and not drawn to scale.  
For this reason, qualitative representations are well-suited 
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for sketch understanding because they break continuous 
quantities into discrete units that can be reasoned about 
more easily, eliminating irrelevant quantitative details.  
Consider, for example, a sketch of the solar system.  
Qualitative relations that describe containment are 
sufficient to determine if the order of the planets is correct.  
Mercury and its orbit must contain the Sun, Venus and its 
orbit must contain Mercury and so on.  Quantitative 
information (e.g. the location of the ink in a 2D coordinate 
plane or the raw distance between the planets) is not 
necessary for understanding this particular sketch. 
 Qualitative representations can also be used to create 
spatial analogies, which are used to detect similarities and 
differences between spatial representations.  Spatial 
analogies that are based on qualitative representations are 
stable because they highlight important relationships while 
leaving out details that are not needed for a meaningful, 
human-like comparison. This provides a powerful tool for 
applications.  For example, in sketch worksheets (Yin et al. 
2010), a student’s sketch is compared with an instructor’s 
sketch, and the differences between them, which are found 
via analogical comparison, are used to generate feedback. 
 However, there are cases where purely qualitative 
representations are not enough.  When annotating a 
photograph, for example, the annotation of a feature must 
actually be at the location of that feature in the photograph, 
and be of roughly the correct size and shape. As Yin et al. 
(2010) outlines, this can be done by prescribing an optional 
tolerance associated with entities in the instructor’s sketch.  
We refer to these quantitative criteria as quantitative ink 
constraints.  In Figure 1a (left), for example, the instructor 
has specified a tolerance around the glyph for the right 
ventricle.  When the student sketch in Figure 1a (right) is 
compared with this sketch, the student’s drawing of the 
right ventricle is within the tolerance region, and hence the 
quantitative ink constraint is satisfied.  As Figure 1b 
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illustrates, a student may draw the right ventricle in the 
wrong location or without sufficient overlap with the 
instructor’s drawing, In this case, the quantitative ink 
constraint is violated and the system would provide 
feedback to the student. 

This method relies on the accuracy of the analogical 
match, which in turn relies on the qualitative structure 
found for a student sketch being close to that of the 
teacher’s sketch.  Because students are still learning the 
domain, this is often not the case, and mismatches can lead 
to students getting inaccurate advice from the tutor.   
 This paper describes a general technique for using 
quantitative information to repair mismatches in analogies 
between sketches. We begin with an overview of 
CogSketch, our open-domain sketch understanding system.  
We then describe how we use quantitative information to 
improve matches. Using a corpus of student sketches from 
a classroom experiment, we show that it yields significant 
improvements in matching accuracy.  We conclude with 
related and future work.  

CogSketch 
CogSketch is an open-domain sketch understanding system 
that incorporates models of human spatial and analogical 
reasoning to understand sketches in human-like ways 
(Forbus et al. 2011). The basic building blocks of a sketch 
are called glyphs.  Glyphs can be used to represent entities, 
relationships and annotations.  The chambers of the heart 
in Figures 1a and 1b are examples of entities.  
Relationships conceptually connect entities.  For example, 
relationship arrows are used in Figure 1a (left) to indicate 
flows between chambers of the heart. Attributes can be 
represented with annotations, e.g. the rate of a flow. 

What a glyph represents is specified explicitly by the 
user, using interfaces that provide student-friendly access 
to a subset of concepts in CogSketch’s knowledge base1. 
No recognition is required.  This is what we mean by open-
domain sketch understanding, and it is an important design 
decision: today’s statistical recognizers require training, 
typically on a per-user basis, and work best when there is a 
small vocabulary of pre-determined symbols. The 
conceptual labeling interface that CogSketch provides 
enables users to pick concepts easily.  As Figure 1 
illustrates, many STEM domains do not use a fixed library 
of visual symbols: the geometry of the parts in a sketch 
often matters.   

Qualitative Representations 
CogSketch uses visual processing techniques to construct 
qualitative spatial representations of the ink.  Topological 
relations are automatically computed (Cohn et al. 1997).  
Positional relations (e.g. above, rightOf) are automatically 
computed between adjacent glyphs and can be computed 
on demand between non-adjacent glyphs.  These 
relationships capture the essence of the spatial properties of 
the sketch, without relying on quantitative measures that 
humans would typically ignore (Huttenlocher et al 1991). 
 To compare sketches, CogSketch uses the Structure-
Mapping Engine (SME) (Falkenhainer et al 1989), which 
is based on Gentner’s Structure-Mapping theory of analogy 
(Gentner 1983).  Structure-mapping takes as input two 
descriptions (a base and a target), which are structured, 
relational representations. It produces one or more 
mappings, consisting of correspondences that describe 
what entities and statements are aligned within that 
mapping, a (possibly empty) set of candidate inferences 
that describe differences between the inputs, and a 
structural evaluation score (SES) that provides a 
numerical estimate of match quality.   
 Another optional input to SME consists of match 
constraints.  Two kinds of match constraints are used here: 
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Figure 1A: An example of a quantitative ink constraint in a 
heart anatomy exercise.  The sketch on the left has the 
chambers labeled along with blood flow arrows.  The buffer 
region around the right ventricle is the tolerance region for the 
quantitative ink constraint.  The sketch of the right shows an 
acceptable drawing of the right ventricle.  
 

        
 
Figure 1B: Two drawings for the right ventricle that violate 
the quantitative ink constraint. 
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partition constraints on concepts indicate that only 
instances of that concept can match with each other, e.g. 
ventricles can only match with ventricles.  Required 
correspondences indicate that any mapping must include a 
correspondence involving the given pair of items (both 
entities or both statements).  Here required 
correspondences are generated using our new algorithm, 
described below.  SME uses a “middle-out” matching 
process, i.e. an early stage finds a large set of candidate 
correspondences, proposing them based on local matches 
between statements and their arguments.  This forest of 
possible matches is winnowed down via psychologically 
motivated constraints2, and combined via a greedy merge 
algorithm into one or more structurally consistent global 
mappings (Forbus & Oblinger, 1990).  The approximate 
nature of this process is the main source of mismatches, 
but such approximations are essential for tractability.   

Sketch Worksheets 
The qualitative and quantitative representations described 
above are used heavily in sketch worksheets, a sketch-
based educational software system built within CogSketch 
(Yin et al. 2010).  Sketch worksheets are inspired by 
traditional paper and pencil worksheets, which are 
common tools for teaching and learning in domains that 
require spatial skills (i.e. the STEM fields).  Unlike 
traditional worksheets, sketch worksheets use spatial and 
conceptual reasoning to provide on-demand feedback so 
the student can iteratively revise his or her sketch until 
either the system has no more suggestions or the student is 
satisfied with their sketch.  Sketch worksheets are not tied 
to any particular domain.  The main knowledge 
representation requirement is that the problem solution can 
be represented with a sketch.   
 Each sketch worksheet contains a solution sketch, which 
is hidden from the student. Authoring a worksheet includes 
drawing that solution sketch and providing conceptual 
labels for all of the glyphs in it.  The relationships 
automatically computed by CogSketch can be flagged as 
important, i.e. they must hold for any student sketch to be 
correct.  Quantitative ink constraints are also specified 
when relevant for glyphs in the solution.  Advice to be 
given if a constraint is violated is provided via text strings 
associated with that constraint.   
 An example worksheet solution from an undergraduate 
structural geology class is shown in Figure 2A.  The task 
for this worksheet is to identify the main fault line, the 
hanging wall and foot wall, the direction of movement 
along the fault line and the four prominent marker beds 

                                                 
2 The psychological constraints used by SME are based on evidence that 
people prefer analogies with structurally consistent systems of relations 
(where matching relations have matching arguments) and with greater 
systems of nested relations, i.e. deep relational structure.   

(indicated by numbers 1-4).  Quantitative ink constraints 
are defined for the marker beds and the main fault line 
because their location relative to the background image is 
important.   
 When the worksheet is distributed to students, they 
sketch their candidate solution.  At any time, they can 
request feedback to get advice from the system. Sketch 
worksheets have been used in several in-class experiments 
at Northwestern, plus an experiment at Carleton College.  
These experiments are providing the data that we need to 
refine the system in order to better support student 
learning. 
On-Demand Feedback 
Feedback is generated by comparing the student’s sketch to 
the pre-defined solution sketch, using an analogical 
mapping computed by SME.  The base and target consist 
of the qualitative spatial representations that CogSketch 
computes, along with the attributes specified for each 
glyph via conceptual labeling (e.g. that a glyph represents a 
fault or a marker bed) and any conceptual relations 
provided by relationship and annotation glyphs.   
 One of the challenges of using analogy in this task is 
that the sketches being compared are often very different.  
This arises both due to lack of knowledge on the students’ 
part, but also because they can ask for feedback at any 
time, even during the early stages of sketching their 
solution.  To improve mapping accuracy, the tutor includes 
partition constraints for each concept in the sketch.  This 
exploits the fact that the matches are all within-domain, i.e. 
it makes no sense to have a fault correspond with a marker 
bed.  If there is only one instance of a concept per sketch, 
partition constraints suffice to eliminate mismatches.  
However, as Figure 2 illustrates, this is often not the case 
when there are multiple instances of a concept. 
 The analogy is used to find differences between the 
teacher’s sketch and the student’s sketch.  If the student’s 
sketch is missing an important attribute or relationship, it 
will show up as a candidate inference.  All candidate 
inferences are scanned to see if there is advice associated 
with the base statement that generated them, and if so, the 
advice is added to the pool of feedback provided to the 
student.  Quantitative constraints are handled by finding 
the corresponding entity in the student’s sketch, and seeing 
if that entity’s ink lies entirely within the tolerance region 
for the corresponding solution glyph.  In other words, the 
qualitative structure tells us what quantitative tests to do. 
 Sometimes the qualitative and conceptual relationships 
and attributes are not enough to create an accurate 
mapping. Consider the sketch in Figure 2B, which only has 
the main fault line and 4 marker beds.  The qualitative 
spatial representations capture the relative location of the 
marker beds, leading SME to map the upper left marker 
bed to the upper left marker bed in the solution, the upper 
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right marker bed to the upper right marker bed in the 
solution, and so on. Since the locations of these glyphs 
matter, they each have a quantitative ink constraint, and the 
tutor advises the student that all four are incorrect.  This is 
bad advice on the tutor’s part: human instructors recognize 
that two of the glyphs are in the correct positions, while the 
other two are not.  This is an example of the kind of 
mismatch our technique addresses. 

Quantitative Constraints on Analogy 
To improve the accuracy of analogical mappings between 
sketches, we developed a strategy for using quantitative 
constraints to improve mappings.  It works as follows: 

1. Run SME to compare the teacher’s (base) and 
student’s (target) sketches. 

2. For each base glyph Gb that has a quantitative ink 
constraint Q, 

a. If the corresponding target glyph Gt 
satisfies Q, do nothing. 

b. Otherwise, for each competing 
correspondence, test its target glyph Ga to 
see if it satisfies Q.  If so, extend the set of 
match constraints to require that Gb 
correspond to Ga. 

c. If no quantitative match is found, then Q is 
violated. 

3. Repeat until the set of match constraints stops 
growing. 

Step 2b is efficient because SME automatically computes 
all of the potential competing matches in its initial phase of 
operation. This step also assumes that no two glyphs in the 
sketch have exactly the same ink, which is reasonable 
given the nature of sketches.  CogSketch uses a truth-
maintenance system, so that when glyphs are moved or 
edited, their spatial properties are automatically 
recomputed.  The required correspondence in Step 2b is 
justified via assertions about spatial properties of the ink, 
hence they will automatically be retracted if the student 
improves their sketch. 

Given the pair of sketches in Figure 2, this algorithm 
first runs SME to compare the base (teacher’s sketch, 
Figure 2A) to the target (student’s solution, Figure 2B).  
Recall that SME uses qualitative spatial relations to put 
entities into correspondence.  For instance, the following 
two statements are true in the base and target, respectively: 
(above B1 B3) 
(above T1 T3) 

These facts (and others) can be used as support for putting 
B1 into correspondence with T1 and B3 into 
correspondence with T3.  Using qualitative relationships 
like these, SME arrives at the following set of entity 

correspondences for marker beds (other entities omitted for 
brevity): 
 

Base Item Target Item 
B1 T1 
B2 T2 
B3 T3 
B4 T4 

    
 Next, the algorithm checks the quantitative ink 
constraints on each base glyph with respect to its 
corresponding target glyph (step 2).  Using the third 
correspondence as an example, we see that T3 does not 
satisfy the quantitative ink constraint for B3 because it is 
lower than it should be.  The algorithm checks competing 
correspondences T1, T2 and T4 for potential matches.  It 
finds that T1 satisfies the quantitative ink constraint for B3 
and thus asserts a required correspondence between B3 and 
T1.  The required correspondences that result from this 

 
Figure 2A: An example teacher’s solution from a worksheet 
for an undergraduate structural geology class. The marker 
bed outlines are indicated by numbers 1 4. 
 

 
Figure 2B: An example candidate solution with only marker 
beds and a fault line. Without using quantitative constraints 
to improve the analogy, the system would determine that all 
four marker beds were incorrect. 
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step are added to the set of match constraints for this 
analogy.  

Steps 1 and 2 are repeated until no new match 
constraints are found.  After using these quantitative ink 
constraints to restrict the analogical mapping, the system 
arrives at the following set of marker bed correspondences: 

Base Item Target Item 
B1 T3 
B2 T4 
B3 T1 
B4 T2 

 
In the new mapping, only two target items violate the 

quantitative ink constraints: T3 and T4.  Indeed, these are 
the only two incorrect marker beds in the student’s sketch.  
As a result, the tutoring system provides feedback to the 
student, indicating that these two marker beds are drawn 
incorrectly. 

Evaluation 
To evaluate the utility of our technique, we tested it on a 
corpus of sketch worksheets on fault identification (e.g. 
Figure 2A,2B).  All sketches were drawn by undergraduate 
students at Northwestern University as part of a structural 
geology homework assignment. 

A total of 120 sketches were submitted by students. 
Over the 120 sketches, students requested feedback a total 
of 834 times.  Each sketch comes with a history, which 
saves what action students did when.  The history data was 
used to reconstruct each sketch as it was when a feedback 
request was initiated by the student.  This provided us with 
834 sketches that represent the scenarios where students 
requested feedback.  Each of these sketches was visually 

inspected to determine the suggestions that should have 
been given by the tutor. These gold standard suggestions 
were then compared to the feedback that the student 
actually received.  There were several types of mismatches, 
the most common being a large number of false positives 
for quantitative ink constraint violations (Figure 3).  The 
original number of false positives was 751 out of 3,360 
possible, or a 22% error rate.  Further visual inspection 
revealed that a slight increase in quantitative tolerance 
could yield a substantial improvement, dropping the 
number of false positives to 340 (10%).  Doing so 
increased the number of false negatives slightly, i.e., by 58, 
but the total number of errors dropped from 756 to 398.  
 By using the algorithm above, the number of false 
positives drops from 340 to 197 (5.8%). This is statistically 
significant: the average number of quantitative ink false 
positives per feedback request decreased from 0.41 to 0.24 
(t(833) = 9.76, p < 0.001).  

Related Work 
Several sketch understanding systems have been developed 
but they rely on ink recognition to understand the contents 
of the sketch (Lee et al. 2007, de Silva et al. 2007).  Ink 
recognition can make sense when the domain is tightly 
limited to a small number of visual symbols, and users are 
either experts who are willing to invest in training the 
system (and themselves) on that vocabulary, or they are 
trying to learn how to draw those symbols, e.g. Kanji or 
Mandarin phonetic symbols (Taele and Hammond 2009, 
Taele and Hammond 2010). 
 Most computational models of analogical processing 
today focus on connectionist modeling (e.g. Hummel & 
Holyoak 2003; Larkey & Love 2003), and have capacity 
limits which make them incapable of matching sketches of 
the complexity needed for STEM education problems.  Our 
algorithm can be viewed as a variation of Falkenhainer’s 
(1987) map analyze cycle, where a partial mapping is 
analyzed to provide constraints to improve the mapping.  
Falkenhainer’s work concerned modeling the learning of 
qualitative domain theories via analogy, and did not handle 
spatial representations nor quantitative constraints, nor was 
it ever applied to an application such as education. 

Discussion and Future Work 
These results demonstrate that using quantitative 
information to constrain qualitative analogical mappings 
can improve the interpretation of sketches.  The evaluation 
we used is specific to Sketch Worksheets but the approach 
is not.  This approach may be used in any situation where a 
combination of qualitative and quantitative information is 
necessary for understanding a sketch. 

 
Figure 3: Quantitative ink false positives.  Errors were greatly 
reduced by using increased quantitative ink comparison 
tolerances and by using quantitative information to constrain 
analogical mappings. 
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 Using both qualitative and quantitative information 
increases the flexibility of sketch understanding and allows 
the system to harness the benefits of both types of 
representations.  Qualitative representations are needed to 
describe sketches at a level of detail that makes analogical 
mappings stable and robust.  However, for cases where 
qualitative representations are not enough, quantitative 
representations provide just enough extra information 
needed to get the mapping right.  This essentially allows 
the system to fine tune the analogical mapping to come up 
with the optimal interpretation.  This approach is inspired 
by the way people incrementally interpret a sketch.  In 
educational settings, instructors will often give students the 
“benefit of the doubt” by reinterpreting the sketch based on 
multiple sources of information. 
 The current approach only uses one type of quantitative 
information to constrain the analogical mapping.  Other 
types of quantitative information include those specified by 
annotations entered by the user, and lengths of segments 
when a shape is decomposed into edges.  Understanding 
how this information could be used to improve analogical 
mappings could be helpful as well.  
 Our future goals include making sketch worksheets 
widely available across STEM domains, by enabling 
domain experts and educators to create their own 
worksheets.  This requires extremely robust matching, 
which also needs to be human-like in order to support 
applying instructor-provided grading rubrics.  
Consequently, we plan to evaluate this method in sketch 
worksheets for other domains. This may help reveal other 
potential strategies for finding optimal spatial analogies, 
which might be used for improving sketch understanding 
more generally.  
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