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Abstract 

This paper describes the development and empirical testing 
of an intelligent tutoring system (ITS) with two emerging 
methodologies: (1) a partially observable Markov decision 
process (POMDP) for representing the learner model and 
(2) inquiry modeling, which informs the learner model with 
questions learners ask during instruction. POMDPs have 
been successfully applied to non-ITS domains but, until re-
cently, have seemed intractable for large-scale intelligent tu-
toring challenges. New, ITS-specific representations lever-
age common regularities in intelligent tutoring to make a 
POMDP practical as a learner model. Inquiry modeling is a 
novel paradigm for informing learner models by observing 
rich features of learners’ help requests such as categorical 
content, context, and timing. The experiment described in 
this paper demonstrates that inquiry modeling and planning 
with POMDPs can yield significant and substantive learning 
improvements in a realistic, scenario-based training task. 

Introduction   

Trainers and teachers become more effective when they 

can tailor their instruction to the needs of individual learn-

ers, rather than trying to find one lesson that can reach a 

large group of learners. Because adapting instruction 

makes it more effective, people who learn in a one-on-one 

setting can greatly outperform those who spend the same 

amount of time studying the same material in a classroom 

setting (e.g., Bloom 1984; Koedinger et al. 1997). 

Adaptive trainers and other intelligent tutoring systems 

(ITSs) are computer programs that train or teach individual 

learners in personalized ways. The goal of adapting in-

struction with an ITS is to act more like effective, one-on-

one tutors than like classroom lecturers. 

One of several ways in which current ITSs still differ 

from human tutors lies in the questions learners ask during 

instruction. When interacting with a human tutor, learners 

ask many times more questions than they do in a classroom 
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setting (Graesser and Person 1994). Intuitively, an effec-

tive ITS should empower learners to ask questions as well. 

Learners who ask questions during instruction can enjoy 

benefits such as improved recall and deeper understanding 

(e.g., Harper, Etkina, and Lin 2003). Additionally in the 

ITS field, inquiry modeling describes the idea that learners’ 

questions can provide valuable new input to an ITS’s 

learner model (Folsom-Kovarik et al. 2010a). Questions 

can reveal an individual’s knowledge, affect, and other 

states or traits that can help an ITS adapt its instruction. 

The more freedom to ask for help a learner has, the more 

information an ITS could draw from each help request.  

The present paper describes an evaluation of an inquiry 

modeling ITS, along with a second emerging method: the 

ITS implements inquiry modeling with a partially observa-

ble Markov decision process (POMDP) learner model.  

POMDPs are a mathematical representation of sequen-

tial decision-making under uncertainty (Kaelbling, 

Littman, and Cassandra 1998). With a POMDP model, an 

ITS can interpret uncertain inputs, plan a course of action, 

and modify its plan whenever new information appears.  

Planning might improve instruction in any domain when 

a greedy policy is not best. For example an ITS could plan 

ahead and improve long-term learning by deciding not to 

correct a learner’s mistake immediately, or it might spend 

early instruction time helping a learner feel less frustrated 

in order to make later instruction more effective. 

However, POMDPs’ powerful planning requires great 

complexity. POMDP solvers’ search space grows exponen-

tially with the number of modeled states. An ITS might 

model over 100 orthogonal facts about each learner (e.g., 

Payne and Squibb 1990), making general problem repre-

sentations intractable. This paper presents an evaluation of 

new, specialized representations for the ITS domain that let 

POMDPs model and reason about these large problems. 

This paper also describes the implementation and evalu-

ation of an ITS in a military training scenario. It contrib-

utes empirical support for the intuition that inquiry model-

ing and planning with POMDPs can improve an ITS’s in-
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structional effectiveness in a realistic training domain. The 

experimental findings demonstrate that inquiry modeling 

and POMDP ITSs are promising emerging applications. 

The IMP Adaptive Trainer 

The Inquiry Modeling POMDP (IMP) adaptive trainer was 

created to evaluate inquiry modeling and planning with 

POMDPs in human studies. IMP’s learner model leverages 

certain properties common to intelligent tutoring problems 

to make its problem representation tractable. While the 

contents of its model target a specific instructional domain, 

described below, the IMP architecture has the potential to 

train or teach in a range of realistic instructional scenarios. 

One important property of ITS work, in general, is that 

instructional material often has a natural presentation or-

der. For example, it is difficult to teach multiplication be-

fore addition, or exponentiation before multiplication. Alt-

hough the order is not always absolute and a tutor can of-

ten skip material or backtrack as needed, it is possible to 

assign dependencies between knowledge units the ITS 

teaches. An intervention is more likely to be effective if the 

learner understands its prerequisites, and less likely if not. 

The fact that content has an order lets IMP adapt its be-

havior despite the large number of knowledge gaps that an 

ITS must model. To do this, IMP uses a state queue repre-

sentation (Folsom-Kovarik et al. 2010b). Rather than track-

ing each knowledge feature individually, IMP arranges the 

features in a queue and models only a learner’s current 

position in the queue. Observations from the real world let 

IMP move up and down or skip over items in the queue, 

rather than teaching every item in a fixed order. 

A second property of the intelligent tutoring domain is 

that learner performance can give evidence about multiple 

knowledge and cognitive states. For example, different 

answers to the problem “2 × (5 + 3)” could give infor-

mation about a learner’s ability to apply addition, multipli-

cation, and order of operations. This is especially true in an 

open-ended domain such as a training simulation, where 

actions are not easily broken into subtasks and every learn-

er action requires the learner to apply several skills at once.  

In order to make these highly informative observations 

tractable in a POMDP learner model, IMP uses an observa-

tion chain representation (Folsom-Kovarik et al. 2010b). 

This representation breaks each high-information observa-

tion into orthogonal features and transmits them to the 

POMDP over multiple action-observation cycles. 

Finally, a property of many ITS domains is that one 

learner mistake can have several possible root causes. In 

order to target its interventions an ITS must decide which 

knowledge is actually missing or which misconception is 

present. Inquiry modeling is integral to IMP’s accomplish-

ing this common ITS task. 

Functionally, IMP runs on a standard laptop concurrent-

ly with an existing simulator and overlays the simulator 

screen with two additional windows: IMP can choose to 

display text or graphic messages over the screen center, 

and it always displays a menu of questions the learner can 

ask at the bottom of the screen. This question user interface 

(QUI) presents up to 28 questions learners might want to 

ask during training. In addition to supporting inquiry mod-

eling, the menu contents scaffold effective help seeking 

(Nelson-Le Gall 1981) in terms of help request content and 

construction, and IMP can also choose to scaffold help 

request timing by highlighting a particular QUI item when 

its model believes the learner should ask that question. 

The timing and categorical content of each QUI help re-

quest are integrated into IMP’s model as a POMDP obser-

vation. Other observation types include trainee perfor-

mance in the simulator and the passage of time with no 

performance. Since many performance events contain in-

formation about multiple model states, these events have 

over 100,000 different possible values. However, IMP’s 

observation chain representation needs only 48 unique ob-

servations to transmit the same information to the POMDP. 

The states IMP models represent missing or incorrect 

learner knowledge and transient cognitive states that affect 

learning. IMP’s knowledge model includes 17 domain-

specific gaps that IMP needs to tutor, represented with a 

state queue. For cognitive states, IMP models four affec-

tive states that can make instruction more or less effective 

(Craig et al. 2004). Boredom, confusion, frustration, and 

flow are orthogonal to the state queue in a fully enumerat-

ed representation, with transitions between states based on 

prior research (Baker, Rodrigo, and Xolocotzin 2007). The 

state queue representation lets IMP model all of a learner’s 

knowledge and cognitive features with only 144 POMDP 

states, well below the current practical maximum. 

Finally, IMP has the ability to carry out 30 instructional 

actions: 17 actions presenting hints, 12 actions highlighting 

QUI items, and a no-op. Each hint lets IMP target a differ-

ent knowledge gap. Hint actions and most question an-

swers remind trainees about information they learned be-

fore practice, rather than teaching new material. 

After defining a POMDP to model the observations, 

states, and actions in IMP’s instructional domain, a policy 

was found to choose an approximately optimal action giv-

en any instructional situation. Because IMP’s ITS-specific 

representations can work with standard POMDP algo-

rithms, an existing algorithm called SARSOP was chosen 

to search for a policy (Kurniawati, Hsu, and Lee 2008). 

Policy searches were run for approximately 48 hours on a 

single core of a 3-GHz processor with 8 GB of RAM be-

fore reaching an arbitrary time limit. The resulting policies, 

one for each experimental condition, were fairly substan-

tial. Each contained between 2,000 and 2,500 α-vectors 

partitioning belief space into potentially different courses 
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of action depending on the instructional situation, but the 

policies still executed in real time on the target laptops. 

IMP’s utility and practicality is not specific to one do-

main. Inquiry modeling and the structures outlined here 

could also model other ITS domains such as algebra or 

computer programming, as long as they display common 

characteristics such as some order of material presentation 

and some ability to observe learner performance. 

Related Work 

Although there is previous work on question-answering in 

tutoring systems, the utility of incorporating user questions 

into the learner model has not been well explored. Many 

ITSs let learners request help with an interface like a hint 

button (e.g., Koedinger and Aleven 2007). Others update a 

learner model based on the timing or existence of hint but-

ton clicks (e.g., Ainsworth and Grimshaw 2004). However, 

a single button gives limited information, so these ITSs do 

not draw evidence from help request content.  

Three ITSs give learners more freedom to ask different 

questions. STEVE (Rickel and Johnson 1999) is an adap-

tive trainer for machine maintenance that can answer train-

ee questions about what to do next, how, and why. Autotu-

tor (Graesser et al. 1999) teaches physics with natural-

language dialogue. When learners ask Autotutor questions, 

it searches a text for keywords and presents a list of sec-

tions that might be related. Quantum Simulations, Inc. is a 

commercial enterprise building ITSs that teach subjects 

like math, chemistry, and accounting (Johnson, Phillips, 

and Chase 2009). Learners can choose from a question 

menu while they practice, but the ITS does not attempt to 

trace learner knowledge. Though these systems give learn-

ers more freedom to ask for help, none completely inte-

grates information from help requests into a learner model. 

Three existing systems employ POMDPs for tutoring 

and training applications. Two use POMDP representations 

that are not specific to ITSs, and they model few facts 

about learners in order to remain tractable. A coin tutor for 

elementary students models three binary knowledge fea-

tures with eight states (Theocharous et al. 2009). A second 

POMDP that controls lesson selection in a military training 

setting contains an unknown number of features, but only 

11 states (Levchuk, Shebilske, and Freeman in press). 

A third system, the Reachable Anytime Planner for Im-

precisely sensed Domains (RAPID), uses a domain-

specific search algorithm to leverage some of the same 

features of the ITS problem as IMP (Brunskill and Russell 

2010). In simulations, RAPID was able to encompass prob-

lems with about as many learner features. However, 

RAPID assumes stricter restrictions on learner state transi-

tions and observation information. These restrictions make 

it difficult to apply RAPID in some realistic domains such 

as the practice scenarios of the present paper, where pre-

requisite relations between knowledge features are not de-

terministic and each observation relates to many features. 

Finally, there are several approaches to making 

POMDPs tractable that are not tied to the ITS domain. 

Some domain-agnostic approaches include state aggrega-

tion (Boutilier and Poole 1996), macro-actions (Hauskrecht 

et al. 1998), hierarchical POMDPs (Theocharous and Ma-

hadevan 2002), and observation factorization (Hoey and 

Poupart 2005). In the future, such approaches can poten-

tially be combined with ITS-specific representations to 

achieve even greater efficiency. However, there still re-

mains a need for domain-specific enhancements to take 

advantage of regularities in real-world ITS problems. 

The Call for Fire Training Domain 

IMP was evaluated in a realistic military training domain. 

The task to be trained, known as call for fire (CFF), is per-

formed by Forward Observers (FOs). FOs work on the 

front lines of battle to observe enemy positions and direct 

attacks from allied units. When FOs call for fire, they 

transmit an enemy’s location and description so that distant 

artillery and other units can target that enemy with precise 

fire while avoiding harm to friendly units or civilians. 

Performance in the CFF domain requires target selection 

and target engagement. First, an FO must identify enemy 

units and prioritize them based on the threat they pose. 

Second, each CFF the trainee transmits must contain accu-

rate information about the FO’s location, one target’s rela-

tive position, the type of ammunition to use, and the firing 

pattern to use. The training domain is interesting because 

errors in a CFF transmission can have different underlying 

causes, such as incorrectly identifying a unit’s type or mis-

remembering the prescribed method to attack that unit. 

Besides the domain tasks to be trained, the practice envi-

ronment used to evaluate IMP also presents interesting 

technical challenges to a traditional ITS approach. In the 

United States Marine Corps, FOs currently practice CFF 

tasks with a laptop-based simulator called the Combined 

Arms Network (CAN) (Bailey and Armstrong 2002). The 

CAN does not output fine-grained information that could 

help diagnose trainees’ needs, such as their mouse clicks or 

progress on partial tasks that contribute to a CFF. Instead, 

the only times IMP can observe trainee performance are 

after a successful CFF and the resulting fire. CFFs that are 

unsuccessful because of malformation are rejected by the 

CAN with no report to IMP. As a result, IMP’s learner 

model must estimate trainees’ needs based on limited per-

formance observations. In such an environment, questions 

learners may ask during training give valuable extra input. 

Finally, because there are only a few moments when 

IMP receives new information about training progress, 
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there are similarly few opportunities for IMP to attempt 

new training interventions. IMP needs to use every oppor-

tunity wisely and select its interventions effectively. 

For these reasons, training personnel to call for fire is a 

realistic task with implications for current military needs. 

The CFF domain also presents interesting instructional and 

technical challenges to making training truly adaptive. 

Method 

An experiment was conducted to evaluate IMP’s ability to 

train adaptively in the CFF domain. The experiment lasted 

up to two hours. Participants learned CFF procedures and 

practiced in the CAN simulator twice. Each practice sce-

nario was preceded by a three-minute video introducing the 

material the trainees needed to practice. Participants were 

given pen and paper and instructed to take notes. After 

practicing, the participants performed in two graded sce-

narios and answered written questions to test their skill 

proficiency and declarative knowledge. 

The IMP evaluation used a between-subjects design in 

order to avoid carryover effects. Participants were random-

ly assigned to one of three experimental conditions. The 

three groups received the same introductory material and 

simulator scenarios but differed in the kind of support par-

ticipants received during practice. Participants in group O, 

the control condition, trained with expository videos only 

and received no support during practice. Condition O rep-

resented the status quo for U.S. Marine Corps trainees’ use 

of the CAN for practice. Participants in group Q received 

support from IMP during the 26 minutes of the two simula-

tor practice sessions. Finally, participants in group P re-

ceived practice support from an ablated version of IMP. 

The ablated IMP maintained a POMDP learner model and 

provided adaptive practice support, but did not display a 

QUI and had no inquiry modeling functionality. 

Participants (N = 106) were recruited from Craig’s List 

and were paid $10 per hour. All participants were United 

States citizens at least 18 years old (μ = 24.2, σ = 6.6); 64% 

were male and 87% had at least some college education. 

No participants had military training or experience. 

A statistical power analysis projected that 33 participants 

were required for each experimental condition. Based on 

experience of a previous study using similar training tasks 

in the CAN, a prerequisite criterion was established for 

inclusion in data analysis. Participants were not included if 

they failed to take any measurable action during both prac-

tice sessions. Participants who displayed any measurable 

performance in either practice session were retained in the 

analysis, even if they did not perform in the test sessions. 

Data analysis finally included 106 participants: 35 in the 

control condition (O), 37 in the +POMDP condition (P), 

and 34 in the +POMDP +QUI condition (Q). 

Results and Discussion 

Two test scenarios measured how well participants demon-

strated target skills in a performance environment. The first 

test evaluated proficiency in the same scenario as the par-

ticipants had practiced, while the second test evaluated 

proficiency in a new scenario that required participants to 

adapt the behaviors they had been practicing. The novel 

scenario challenged participants to try to measure deeper 

understanding of the skills they had learned and practiced. 

First, if IMP’s actions interfered with trainees’ ability to 

practice, the experimental conditions would have differed 

in number of calls for fire transmitted or enemy targets 

destroyed. However, no significant differences appeared in 

these measures. Therefore, IMP’s interventions did not 

significantly interrupt practice or otherwise decrease train-

ees’ automaticity and speed in calling for fire. 

Next, for both test scenarios, participants’ target selec-

tion and target engagement were scored. Shapiro-Wilk 

tests for normality showed these scores were not normally 

distributed, so they were analyzed with non-parametric 

Kruskal-Wallis one-way ANOVAs. Both target selection 

and target engagement differed significantly in the recall 

proficiency test (Figure 1), although scores did not differ 

on the test requiring participants to create new behaviors. 

On the recall proficiency test, significant differences 

were found between conditions in target engagement 

scores (H = 22.93, d.f. = 2, p < 0.001). Post-hoc tests for 

least significant difference of mean ranks showed signifi-

cant differences between all conditions. Participants in the 

P condition outperformed control participants by 0.64 σ, 

and in turn participants in the Q condition outperformed P 

participants by 0.82 σ. Participants in the Q condition also 

outperformed control participants by 1.77 σ. This measure 

represented a particularly large difference between condi-

tions: IMP’s trainees scored 4.5 times higher than control 

Figure 1. Four learning outcomes showing significant improve-

ment. Each column of three results compares control (□), 

POMDP (◊), and full IMP (×) conditions. Bars show 95% CI. 
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participants and twice as high as those who used ablated 

IMP with no inquiry modeling functionality. 

Differences were also found between conditions in target 

selection scores (H = 12.91, d f. = 2, p < 0.01). Post-hoc 

tests showed that participants in the P and Q conditions 

performed significantly better than the control condition. 

Trainees who used ablated IMP outscored the control par-

ticipants on average by 0.64 σ, and with full IMP, the im-

provement was 0.94 σ. 

After the test scenarios, a written test of declarative 

knowledge measured how well participants were able to 

recall and apply knowledge outside of a simulator setting. 

Outcome differences were checked with parametric linear 

regression. Participants in different conditions accom-

plished significantly different outcomes on the written test 

(F = 9.494, d.f. = (2, 103), p < 0.001). Post hoc tests using 

Tukey’s honestly significant difference method showed 

that IMP’s trainees significantly outscored control partici-

pants by 0.83 σ and trainees using ablated IMP by 0.85 σ. 

Like the proficiency tests, the written measure showed a 

trend that practice with IMP produced large learning im-

provements on the material it could choose to tutor, alt-

hough not on new material that IMP’s hints did not directly 

cover. Support during practice strongly affected direct re-

call test items (F = 17.586, d f. = (2, 103), p < 0.001), but 

not extension items that required knowledge application in 

new situations (F = 1.439, d f. = (2, 103), n.s.). 

Next, in order to give insight into how IMP produced its 

positive effects on participants’ learning, IMP’s interven-

tions for participants in the P and Q conditions were exam-

ined for patterns. If IMP repeated the same sequences for 

many participants, it would indicate IMP did not adapt to 

individuals’ needs. Instead, IMP’s intervention choices 

branched quickly. After its initial action, IMP successfully 

moved on to more remedial or more advanced interven-

tions based on its observations of individual trainees. As 

Figure 2 shows, the intervention sequences IMP chose 

were unique for almost 90% of participants after only five 

turns. IMP’s adaptive behaviors were responsive to the 

performance and the training needs of each participant.  

Finally, 60% of actions IMP recommended during prac-

tice did not directly address the estimated most-probable 

gap. Considering recommendations IMP made immediate-

ly after observing one or more trainee errors, 51% did not 

directly address any of the errors just observed. These two 

patterns support the assertion that IMP chose interventions 

to effect a longer-term teaching plan, rather than applying a 

more obvious reactive or greedy intervention strategy. 

In summary, the analysis and outcomes suggest that 

IMP’s POMDP learner model successfully interpreted 

sparse simulator performance observations and then, rather 

than reacting to the latest observation or helping everyone 

the same way, used planning to intervene in ways that 

helped each individual practice effectively and learn more. 

Conclusions and Future Work 

This experiment demonstrated that inquiry modeling and 

planning with POMDPs can yield significant and substan-

tive learning improvements in a realistic training task.  

The new, ITS-specific representations in IMP produced 

these learning improvements despite discarding some in-

formation to remain tractable. Going forward, the im-

proved scaling of the state queue and observation chain 

representations will let POMDP ITSs model more infor-

mation or more detailed information about each learner. 

Inquiry modeling let IMP produce its best learning out-

comes. The question of how best to integrate information 

from learner help requests remains a topic for ongoing re-

search. For example, questions learners asked usually let 

IMP present advanced material earlier. However, there 

were also cases when IMP incorrectly assumed learners 

knew material after they had asked about it, leading it to 

skip basic corrections the learners needed. In particular, 

one pattern of asking many questions seemed to indicate 

floundering and not evidence of improved knowledge. 

One path for future work might include updating IMP’s 

POMDP evidence interpretation based on the actual learn-

ers’ experiences gathered in this experiment. The ability to 

improve a model with general machine-learning algorithms 

is an advantage of parametric models such as POMDPs. 

The ITS-specific representations IMP uses also suggest 

another interesting possibility. The representations’ simpli-

fying independence assumptions have the potential to 

make the POMDP’s decisions and design more transparent 

than might otherwise be true. There seems to be an oppor-

tunity to open up the model to instructors and other end-
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users for their input and understanding. One could imagine 

individual instructors without programming skills might be 

able to correct IMP’s wrong belief, or tweak IMP’s instruc-

tion to focus on a specific learner population, or ask IMP 

for model information about particular learners so as to 

help them better with other training. Such changes would 

continue to enhance the inquiry modeling POMDP ITS and 

make it more usable in practical teaching domains. 
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