
Intelligent Computation of Reachability Sets for Space Missions

Erik Komendera1 and Daniel Scheeres2 and Elizabeth Bradley1

1 Department of Computer Science
2 Department of Aerospace Engineering

University of Colorado at Boulder

Abstract

This paper introduces a new technique for intelligently
exploring the reachability set of a spacecraft: the set of
trajectories from a given initial condition that are pos-
sible under a specified range of control actions. The
high dimension of this problem and the nonlinear na-
ture of gravitational interactions make the geometry of
these sets complicated, hard to compute, and all but im-
possible to visualize. Currently, exploration of a prob-
lem’s state space is done heuristically, based on previ-
ously identified solutions. This potentially misses out
on improved mission design solutions that are not close
to previous approaches. The goal of the work described
here is to map out reachability sets automatically. This
would not only aid human mission planners, but also
allow a spacecraft to determine its own course with-
out input from Earth-based controllers. Brute-force ap-
proaches to this are computationally prohibitive, so one
must focus the effort on regions that are of interest:
where neighboring trajectories diverge quickly, for in-
stance, or come close to a body that the spacecraft is
orbiting. In this paper, we focus on the first of those two
criteria; the goal is to identify regions in the system’s
state space where small changes have large effects—
or vice versa—and concentrate the computational mesh
accordingly.

Introduction
Trajectories for space missions require extensive and

careful planning due to limited fuel budgets and the com-
plexity of gravitational dynamics. For many applications,
planners decompose the problem into smaller segments and
solve each one using a simplified version of the dynam-
ics. This works reasonably well for maneuvers such as
gravity assists, but it fails in systems with highly irregu-
lar bodies, such as the 243 Ida-Dactyl system, which have
rapid timescales and strong nonlinearities. To plan trajecto-
ries in systems like this, one must model the full nonlinear
dynamics—and do so ’on the fly,’ in order to handle unpre-
dictable effects like perturbations.

An important concept in space mission planning is the
reachability set: the set of all states ~x that can be reached

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in some prescribed time interval ∆t from a given initial con-
dition ~x0(t0), under the operational constraints of the space-
craft. Accurate reachability sets are incredibly important, not
only for planning orbits, but also in determining impact and
escape scenarios. They are, however, very complicated ob-
jects. A spacecraft’s state space has six dimensions—three
positions and three velocities—and as the craft moves un-
der the gravitational influence of the surrounding bodies,
the state evolves nonlinearly (and often chaotically) through
that space. An impulse from the craft’s engine, called ∆V ,
can be treated as an instantaneous jump in the velocity
subset of this space. If the engine can fire in any direc-
tion, the space of possible results of such an action is a
solid three-dimensional sphere—the “∆V sphere”—around
the state-space point where the burn was applied. (If the en-
gine is limited to burns in the orbital plane, the space of
possible results is a two-dimensional “∆V disk”.) To com-
pute the reachability set, one must track the evolution of
that ∆V sphere over time. That is, the ∆t reachability set
for a single burn of magnitude ∆V from an initial condition
~x0(t0) is the three-dimensional volume embedded in six-
dimensional state space that is traced out by the ∆V sphere
as it dynamically evolves over the period ∆t .

In space missions, ∆t might represent a mission require-
ment: an arrival deadline, for instance, or the lifetime of the
spacecraft. Even if ∆t is small, reachability sets are hard
to compute because the nonlinear dynamics of gravitation
quickly cause the 3D ∆V sphere to deform into a compli-
cated volume in the 6D state space. The dimension and com-
plexity make it all but impossible for humans to visualize
these sets, which has become a serious hurdle in mission
planning. In the absence of systematic and computationally
tractable approaches to perform full mappings of the state
space, usual practice is to rely on intuition, simplified mod-
els for motion, and modification of previous results. Auto-
mated techniques for mapping out and exploring these com-
plicated structures would be very helpful in moving beyond
these limitations. This would not only aid human experts in
space-mission planning. Automatic computation of reach-
ability sets would also be useful in long-range space ex-
ploration, where the craft has a small window of opportu-
nity in which to plan ahead—e.g., avoiding an impact—and
Earth may be too far for fast communication. An onboard
computer that could automatically calculate the reachabil-

Proceedings of the Twenty-Fourth Innovative Appications of Artificial Intelligence Conference

2299



ity set from the craft’s current location, given its available
∆V budget, could make intelligent decisions autonomously
in such situations.

The challenge here is to model the complex geometry of
a 3D set as it evolves nonlinearly in 6D space, and to do so
in a way that balances accuracy and efficiency. To accom-
plish this, we begin by choosing a set of state-space points
in the volume of the ∆V sphere, then use those points to gen-
erate a mesh of 3D simplices that form an approximation of
that volume. We then compute the forward trajectories of the
points, monitoring the evolving geometry of the mesh and
adjusting it based on the degree of state-space divergence
that manifests via the deformation of the simplices. If a sim-
plex grows quickly or becomes skewed, for instance, we add
points in that region We then rebuild the mesh and iterate
the process until a specified stopping condition (resolution,
number of simplices, etc.) is reached. This stopping condi-
tion is one of several parameters that can be used to tune the
algorithm along the accuracy-runtime spectrum. All of this
has the desired effect of focusing the computational effort on
the dynamically complex regions, which allows us to track
the evolving reachability set effectively and efficiently.

Problem
The dynamical problem we choose to study is the Circular
Restricted 3-Body Problem (CRTBP), which is a canonical
model for chaotic space systems. The study of this problem,
which dates back to Euler and Lagrange, led to the initial
identification of chaotic and unstable systems by Poincaré.
The CRTBP equations are a good model for satellite mo-
tions in the Earth-Moon system, the solar system, and about
binary asteroids, among others. When fully normalized, the
problem only has a single free parameter (µ), which de-
scribes how the mass is distributed between the two major
bodies. See (Roy 2005) for more discussion of this problem.

The CRTBP consists of two bodies with mass that orbit
each other in a circular orbit and a massless spacecraft that
travels subject to the gravitational attraction of the major
bodies The problem is posed in a rotating frame of reference,
in which the two major bodies do not move. In this system,
a spacecraft can have one of four fates, depending on its ini-
tial condition: it can orbit stably, it can escape, or it can im-
pact either of the two major bodies. We represent the state
of the craft using positions and velocities in three dimen-
sions, model its dynamics using Newton’s law of universal
gravitation, and solve the associated differential equations
using Mathematica’s NDSolve method. All units—masses,
gravitational constant, time, distance—are normalized, as is
customary in problems like this, meaning that one solution
can be scaled to different physical situations.

The reachability set for a single fuel burn at time t0 be-
gins life as a three-dimensional object—the ∆V sphere in-
troduced in the previous section—embedded in the space-
craft’s six-dimensional state space. The three dimensions of
the sphere are the azimuth and elevation of the burn vec-
tor, and the magnitude (∆V ) of the impulse. Note that these
are not the same as the spacecraft’s velocity state variables.
This is a hint at one of the subtle issues here: working with
6D geometry (let alone topology!) is very hard, but luckily

Figure 1: The geometry of a uniformly distributed random
mesh on a ∆V disk. The black lines are the boundaries of
the 2D simplices that tile this disk; the color scale represents
the size of the corresponding 6D state-space volumes of each
simplex ∆t time units later, ranging from large (red) to small
(blue). A grayscale version appears in (Komendera 2012).

the object that we are tracking is 3D, so we can extract those
dimensions, work with them separately, and then perform a
vector addition to move back to the full 6D state space. The
first step in which this separation of dimensions becomes an
issue is the initial model of the ∆V sphere. We fill the vol-
ume of this object with a uniform distribution of points, then
use Delaunay triangulation (Watson 1981) to construct a
mesh of non-overlapping tetrahedra—3D simplices—whose
vertices are those points. We then evolve that volume for-
ward in time by computing the forward trajectory from the
6D point that corresponds to each of those vertices, while
keeping track of its topology via the relationships of those
3D simplices. This complex geometric information is obvi-
ously hard to visualize. Figure 1 shows a small patch of the
surface of a ∆V disk with the simplex boundaries shown in
black and the sizes of the corresponding 6D-embedded sur-
faces depicted with a color scale.

Done naı̈vely—working only with the original points and
retaining all of the original edge relationships—this ap-
proach is suboptimal. Some trajectories with close starting
conditions in the ∆V sphere (the red regions in Figure 1) di-
verge quickly, while others—the blue ones—diverge slowly.
As time progresses, the fixed initial uniform distribution of
vertices will thus come to overcharacterize the latter regions
while not providing enough detail in the former. This can
be seen in Figure 1, where there is no obvious relationship
between the size of the simplices and the color scale

To avoid this, an intelligent reachability set tracking algo-
rithm must be able to (a) distinguish between these regions

2300



and (b) adapt the mesh accordingly. We have evaluated sev-
eral heuristics for putting step (a) into practice, all of which
trigger the addition of mesh points based on important as-
pects of simplex geometry: area, perimeter length, skew, and
so on. Again, the dimensions of the problem make all of this
more subtle that it initially appears; the heuristics work with
the full 6D geometry, but the actions that they trigger affect
the 3D ∆V sphere. There are other subtleties involved in the
process of adding points to a reachability-set mesh: an algo-
rithm that does so only along the boundaries of a simplex,
for instance, will never explore its interior. To address this,
we add points in a spatial distribution centered on the sim-
plex center. This raises another important and subtle issue.
If the evolving ‘front’ of the reachability set has an unseen
fold that is straddled by the endpoints of two sample trajec-
tories, then the associated simplex will straddle the boundary
of the reachability set, and one cannot assume that all of its
interior points are in that set. In a complex nonlinear sys-
tem, where state-space volumes can be folded in arbitrarily
complex ways, there is no effective way to work around this
problem post facto. For this reason, our algorithm goes back
to the original ∆V sphere before performing that operation:
if a simplex on the ∆t reachability set is chosen for divi-
sion, we add the new points to the corresponding simplex
on the original ∆V sphere, then compute their ∆t forward
trajectories. That is, our algorithm does not stop, adapt the
mesh, and then move on; rather, it tracks the mesh out to
the specified ending time (∆t ), examines it to decide where
points need to be added, then rewinds to the initial time, adds
them, and evolves them forwards by ∆t . It then loops until
the stopping condition is reached.

The next section outlines the steps of this algorithm; the
following one evaluates its results in the context of the
CRTBP, using a heuristic that increases the mesh resolu-
tion when simplices are large and a point-placement strat-
egy called the simplex shell method. As is implicit in the
previous paragraphs, there are a number of free parameters
in this algorithm: how the volume of a simplex affects re-
sampling, the width of the distribution used to add points,
and so on. These parameters, their roles in each step of the
algorithm, and the process by which we chose their values
are discussed briefly below; for more detail, please consult
(Komendera 2012).

Algorithm
The algorithm for computing the ∆t reachability set from
an initial condition ~x0(t0), given a single impulse burn of
magnitude ∈ [0, ∆V ], has the following steps:

1. Create an initial mesh from points in the ∆V sphere

2. Compute the forward trajectory from each of those points

3. Remove any trajectories that blow up

4. Apply the chosen heuristic to the resulting mesh; sort the
simplices according to the resulting values

5. Choose a set of simplices from that sorted list; add one
point to the interior of each of the corresponding simplices
in the initial ∆V sphere

6. Compute the forward trajectories from those new points,
again removing any that blow up

7. Rebuild the mesh

8. Iterate steps 4–7 until the specified stopping condition is
reached

Working in the 3D ∆V -sphere space, the algorithm seeds
the initial mesh with a random uniform Euclidean distribu-
tion of points on and in that sphere, then uses Delaunay tri-
angulation to fill the ∆V sphere with a set of simplices (the
black lines in Figure 1) whose vertices are those points. The
topology of this mesh is recorded and the 3D geometric in-
formation is mapped back to the full 6D state space via vec-
tor addition to ~x0. Next, a ∆t -long trajectory from each of
the resulting 6D points is generated using NDSolve.

The operative heuristic is then applied to the 6D geomet-
ric information associated with every simplex. Perhaps the
simplest way to identify regions of the mesh where neigh-
boring trajectories diverge quickly is to measure the size of
each simplex—what we call the simplex volume heuristic.
This is the calculation that produced the color scale val-
ues for Figure 1. Our implementation of this heuristic cal-
culates the volume using the Cayley-Menger Determinant
(Sommerville 1929); in order to avoid numerical issues, it
skips simplices that are smaller than a specified minimum
size. Simplex volume is not the only effective diagnostic,
of course; we have also evaluated heuristics that measure
perimeter growth, skew, and so on. Because of space limi-
tations, we only discuss the volume heuristic in this paper.
We also describe a control case, where no heuristic is ap-
plied and the evolving mesh is defined by the endpoints of
the forward trajectories from the original points.

The algorithm then sorts the simplices according to the
value returned by the heuristic, selects a specified number of
simplices from this list—choosing those with higher weights
more frequently—and places a new point within each of the
corresponding simplices on the initial ∆V sphere. Since a
given simplex may be chosen more than once during this
process—indeed, that is part of the intent of the weighted
sort—placing that new point at the exact center could cre-
ate degeneracies. Instead, we use the simplex shell method,
which randomly distributes vertices in a simplex using a
variant of the normal distribution. First, a positive value is
chosen from a normal distribution with a mean of 0 and a
specified standard deviation σ. The σ parameter dictates the
size of the simplex shell on whose surface the new vertex
will appear. If σ = 1, for instance, the new point will appear
inside that simplex 68.3% of the time; if σ = 0.5, that prob-
ability rises to 95.5%. This parameter allows one to control
how close to the simplex center the added points will fall.

Finally, the added points are transformed to 6D state space
and forward trajectories are computed from each one using
the same solver and parameters, bringing them into tempo-
ral synchronization with the rest of the vertices on the ∆t
reachability set. The mesh that approximates that set is then
rebuilt, incorporating the endpoints of these trajectories.

The steps described in the previous three paragraphs com-
pose one “round” of the reachability set algorithm. Note
that the adjustment to the mesh that is performed in a sin-

2301



gle round not only improves the accuracy of the approxima-
tion to the reachability set, but may also expose new areas
of concern. For this reason, we provide an outer loop to it-
erate multiple rounds. Note that this serves a very different
function than simply selecting more points in a single round.
Successive rounds build upon one another in a manner that
iteratively refines the exploration.

Performance
We evaluated the performance of this reachability set algo-
rithm using the CRTBP introduced earlier. The two major
bodies had masses of 0.8 and 0.2 and were located on the
x axis of the rotating frame, at x = −0.2 and x = 0.8.
We explored reachability sets for spacecraft starting from
three different initial conditions, all with ∆V= 2.5, and var-
ied the time horizon ∆t from 1.0 to 5.0. The initial condi-
tions were chosen to be representative of the different kinds
of behavior that can occur in the CRTBP: one location be-
tween the two major bodies, where the dynamics are very
complex, and two others (one outside the major bodies and
one above them) where the behavior is somewhat simpler.
The ∆V value was also chosen so as to tap into the compli-
cated and interesting dynamics of the CRTBP. In all cases,
we tested two versions of the algorithm: one with the sim-
plex area heuristic and one with no simplex division (as a
control case). In order to make the comparison fair, we fixed
the number of vertices in the mesh of the final versions of all
of the resulting reachability sets to be 5000.

We defined the error of an approximation to a ∆t reach-
ability set as the average of the Euclidean distance in state
space between the predicted location of its trajectories (cal-
culated using interpolation on the reachability set mesh)
and the actual location of those trajectories (calculated us-
ing NDSolve). To estimate this, we used a Monte Carlo
approach, placing a number of uniformly distributed ran-
dom points on and in the ∆V sphere, determining which
simplices contain those points, and computing their forward
trajectories. We used barycentric coordinates to interpolate
each point’s predicted state in a simplex at a time ∆t , cal-
culated the 6D Euclidean distance between the point’s pre-
dicted state and its actual state, and then averaged across the
points. For each run of the reachability set algorithm, we re-
peated this Monte Carlo error calculation five times and av-
eraged the results. We repeated the entire process over three
runs, for a total of 15 error measurements over three differ-
ent calculations of each reachability set.

Our first series of tests involved a common situation in
space mission planning: a planar orbit. In this situation, the
∆V sphere is actually a disk, since the spacecraft only moves
(and thrusts) in the orbital plane of the two major bodies.
The image in Figure 1 came from this example, with 5000
points distributed on a ∆V disk in the x− y plane, centered
at x0 = 0.5—i.e., a spacecraft positioned directly between
the two major bodies, with thrust allowed only in the orbital
plane. When the reachability set at ∆t = 5.0 is calculated
from this initial mesh without any subdivision, the average
error is 0.46 in normalized units. When the simplex volume
heuristic is used to tailor the mesh to the evolving dynamics,
that error falls to 0.39—a 14.9% improvement without any

Figure 2: The same setup as Figure 1, but with the sim-
plex volume heuristic used to focus the resolution of the
reachability set mesh. The color scale, as before, represents
the volume of the 6D state-space volumes corresponding to
each simplex. The success of the algorithm is evident from
the fine distribution of the simplices in the redder regions,
where the system trajectories diverge, and the comparatively
coarser mesh in the blue regions, where the dynamics are
less complicated and the reachability set is smoother.

increase in the size of the computational mesh. The effects
of the heuristic-driven subdivision are clearly visible in Fig-
ure 2, where—in contrast to the fixed mesh of Figure 1—the
red regions are covered by much finer simplices. This pro-
duces a better approximation to the true reachability set and
thereby reduces the error. The reachability set shown in Fig-
ure 2 was computed using an initial mesh of 1000 vertices,
with 80 rounds of 50 vertex additions and a simplex factor
σ = 1. If we add the same number of vertices, but in more
rounds, the error is slightly better. This is the power of it-
erative improvement. If we decrease σ, thereby biasing the
positioning of new points towards the center of the simplex
that is being subdivided, the error steadily improves. This is
because smaller σs force a more-even division of space. Be-
yond a certain point, however, this improvement ceases, as
tiny σ can create degeneracy. Tiny simplices can also cause
problems, but for a different reason: without a lower bound
on the minimum simplex size, the subdivision could overem-
phasize some regions at the expense of the rest of the mesh.
This bound must be chosen carefully, however: setting it too
high will spread out the mesh and negate the effects of the
subdivision. An appropriate way to do this is to fix all other
variables and find the bound that minimizes the error. In Fig-
ure 2, for instance, this lower bound was set to 0.0001 square
units; lowering it to 0.000001 increased the error back to
(and beyond) that of the fixed mesh.

2302



In dynamically simpler regions, the errors were uniformly
better: 0.254 and 0.339 for the fixed-mesh ∆t = 5.0 reach-
ability sets starting at (x0, y0) = (1.3, 0) and (x0, y0) =
(0, 1.0), respectively—compared to 0.460 for the (x0, y0) =
(0.5, 0) case described in the previous paragraph. The sim-
plex volume heuristic also got more traction in runs from
these initial conditions, yielding 38.2% and 60.0% improve-
ments over the corresponding fixed-mesh error values, re-
spectively, with σ = 0.1. The reason for this is that the cur-
vature of the spacecraft’s trajectories is smaller in both of
these regions—and even more so in the latter—which plays
directly to the strengths of the heuristic.

In a second series of tests, we relaxed the planar restric-
tion and worked with a true ∆V sphere from the same ini-
tial conditions. The errors here were generally larger than
in the disk case: 0.556 in the (x0, y0, z0) = (0.5, 0, 0)
case, for instance, versus the 0.460 average error for the
∆V disk computed from the same starting point with the
same parameter values. This makes complete sense because
we are using the same fixed number of vertices (5000) to
cover a higher-dimensional object. Subdividing the sim-
plices yielded mixed results in the spherical-thrust case.
In the dynamically complex region, it was only slightly
advantageous and sometimes even made the error slightly
worse. Matters were better for the reachability sets from the
other two initial conditions, where the errors for the fixed
mesh cases were actually better than the corresponding pla-
nar cases (0.246 and 0.240) and subdivision was helpful
in both situations (15.6% and 15.9% improvement over the
fixed-mesh control case, respectively). As in the planar case,
smaller σ values generally improved the results of the sub-
division, and setting the lower bound for simplex division at
too low a value negated all of that process’s good effects.

For all initial conditions, parameter values, and geome-
tries, the average error was smaller at ∆t = 1.0 than ∆t
= 5.0. That too makes sense, since the complexity of a
reachability set grows over time.

The results of these experiments, which are tabulated in
Table 1, indicate that this reachability set calculation strat-
egy appears to work quite well. Adaptively adding vertices
to simplices that grow allows the algorithm to focus the com-
putational effort in an intelligent fashion, producing meshes
that were more accurate than static meshes with the same
number of vertices. The algorithm’s free parameters, which
are designed to allow a user to balance accuracy against
computational effort, are straightforward and easy to tune.
The closer new vertices are to the centers of their parent sim-
plices, for instance, the better the result. This improvement is
more pronounced over shorter time spans, before the chaotic
nature of the trajectories overwhelms the heuristic. Limiting
the number of subdivisions that can occur in a small region
of the ∆V sphere also has a profound effect on the result, as
it allows the algorithm to focus its effort elsewhere after a
certain region has been adequately explored.

Future Work
The reachability set mapping algorithm presented here will
be ready for deployment when it can run fast enough, on de-
ployable hardware, to handle the small margins for error that

2D ∆V disk
∆t IC R V σ Min Improvement
5.0 (0.5, 0) 80 50 1.0 10−4 14.9 ± 5.5%
5.0 (0.5, 0) 800 5 1.0 10−4 15.5 ± 3.6%
5.0 (0.5, 0) 800 5 0.5 10−4 16.9 ± 6.5%
5.0 (0.5, 0) 800 5 0.2 10−4 22.1 ± 7.1%
5.0 (0.5, 0) 800 5 0.1 10−4 24.2 ± 4.0%
5.0 (0.5, 0) 800 5 1.0 10−6 −6.3 ± 6.3%
5.0 (1.3, 0) 800 5 0.1 10−4 38.2 ± 5.6%
5.0 (0, 0.5) 800 5 0.1 10−4 60.1 ± 6.3%
1.0 (0.5, 0) 800 5 0.1 10−4 60.1 ± 9.1%
3D ∆V sphere
5.0 (0.5, 0) 800 5 1.0 10−4 1.3 ± 5.4%
5.0 (0.5, 0) 800 5 0.2 10−4 3.4 ± 5.3%
5.0 (0.5, 0) 800 5 0.1 10−4 4.9 ± 5.2%
5.0 (0.5, 0) 800 5 1.0 10−6 −6.9 ± 4.6%
5.0 (1.3, 0) 800 5 0.1 10−4 15.6 ± 8.9%
5.0 (0, 0.5) 800 5 0.1 10−4 15.9 ± 5.0%
1.0 (0.5, 0) 800 5 0.1 10−4 28.7 ± 8.0%

Table 1: Table of errors for the simplex volume heuristic for
different initial conditions (IC), numbers of rounds (R) and
vertices added per round (V), simplex shell factor (σ), and
minimum simplex size (Min). All errors are expressed as %
improvement over the error of the corresponding fixed-mesh
control case.

this problem poses. The solutions in this paper represent sig-
nificant progress towards that goal, but a variety of issues re-
main. The heuristic-driven subdivision is better than a fixed
mesh, but there are several obvious avenues for further im-
provement. One could, for instance, apply a “flatness” mea-
sure to the simplex in order to measure its distortion over
time. Also, the algorithm presented here never deletes ver-
tices from the mesh, which would make sense in dynami-
cally simple regions. In a situation with limited computa-
tional power—viz., a fixed number of vertices—this could
further shift the effort to the areas where it is warranted.

It would also make sense to automatically identify impact
and escape scenarios—regions that lead to mission failure—
in reachability sets, and perhaps increase the resolution on
their boundaries. This would not only map out a particularly
critical set of regions; again, it would focus the mesh ge-
ometry in a highly appropriate way. And since there would
be no need to explore the state-space volume inside a zone
of impact scenarios, one could shift the associated compu-
tational effort to regions that do not lead to mission failure.
A heuristic that combined some measure of simplex geom-
etry (to measure dynamical complexity) and an assessment
of impact/escape fate would work very well, since trajec-
tories that pass close to a center of gravity tend to be highly
curved. For example, in Figure 2, the long and narrow region
at the bottom of the image would be considered an impact
if that body had a radius of 0.1. Working alone, the simplex
volume heuristic will force a fine-grained mesh refinement
in these regions; if it were combined with an ‘end result’
heuristic that identified near-impacts, that (largely wasted)
effort could be saved.

Single impulse burns are only one kind of thrust. Multiple

2303



∆V burns—a fixture of space missions—are another logical
step, but they add to the already complex geometry of this
problem (viz., seven new variables for each burn). The high-
dimensional meshes in problems like this will require many
more trajectories to properly characterize, but they represent
a far richer set of maneuvers. Finally, the burns performed
by low-thrust, high-specific-impulse ion thrusters, which are
becoming increasingly common, cannot be treated as instan-
taneous ∆V changes. It would be ideal to compute reachabil-
ity sets automatically for spacecraft with this capability, but
continuous burns make this an infinite-dimensional planning
problem. An effective approximate solution to that would be
a real challenge, but of potentially enormous value to space
mission designers.

Related Work
The field of artificial intelligence (AI) has grappled with spa-
tial reasoning problems for years, but none of the resulting
solutions has been applied to space mission design. AI tech-
niques have been used to plan the operations of spacecraft—
e.g., the Casper planner on the 3CS and ACS missions
(Knight et al. 2001)—but have not been used to plan the
paths of the craft through space. An efficient and automatic
approach to this important envisioning problem could rev-
olutionize the practice of orbit design, with additional im-
plications for space situational awareness (Holzinger and
Scheeres 2010). There has been some recent progress in this
area; (Coffee, Anderson, and Lo 2011) introduced a compu-
tational method for extracting and using dynamical ”chan-
nels” through the state space of the CRTBP, and adaptive
space partitioning algorithms are frequently used for real-
time collision detection (Ericson 2005).

While the three-body problem has been the subject of ex-
tensive research, techniques for representing a finite, evolv-
ing state-space volume in gravitational systems have not
been explored as completely. In the aerospace literature,
techniques for this involve either higher-order expansions
about the nominal trajectory (Park and Scheeres 2006;
Guibout and Scheeres 2006), multiple nonlinear propaga-
tions of a distribution of state-space points, or some hybrid
of the two approaches (Fujimoto, Scheeres, and Alfriend
2011). The AI literature includes some work on the repre-
sentation of evolving state-space volumes—notably the flow
pipes of Zhao (Zhao 1992) and the more-general Spatial
Aggregation Language that grew out of that work (Bailey-
Kellogg, Zhao, and Yip 1994), as well as the work of Nishida
and collaborators (Nishida et al. 1991)—but very little of
that is ongoing.

Conclusion
Space mission design involves complex, high-dimensional
spatial reasoning. Currently, experts approach that task by
working incrementally from previously identified solutions,
which greatly limits their exploration of the design space.
The goal of the work described here is to map out solu-
tions to this complex, high-dimensional problem automat-
ically. The key to our solutions is a careful treatment of
time, space, and sensitivity. Our algorithm tracks evolving

reachability sets effectively and efficiently by relying on a
heuristic to identify regions where neighboring trajectories
diverge quickly, and then focusing the computational mesh
accordingly. The results are promising: for the same num-
ber of vertices, the mesh produced by this intelligent sub-
division approach was a significantly better approximation
to the true geometry of the reachability set. This could not
only aid human mission planners, but also potentially enable
autonomous onboard mission planning for spacecraft whose
communication with Earth is limited.

References
Bailey-Kellogg, C.; Zhao, F.; and Yip, K. 1994. Spatial
aggregation: Language and applications. In Proceedings
AAAI-94, 517–522.
Coffee, T.; Anderson, R.; and Lo, M. 2011. Multiobjective
optimization of low-energy trajectories using optimal con-
trol on dynamical channels. In AAS/AIAA Space Flight Me-
chanics Meeting.
Ericson C. 2005. Real-Time Collision Detection. Morgan-
Kaufman, San Francisco, CA.
Fujimoto, K.; Scheeres, D.; and Alfriend, K. 2011. Analyt-
ical non-linear propagation of uncertainty in the two-body
problem. In AAS/AIAA Spaceflight Mechanics Meeting.
Guibout, V., and Scheeres, D. 2006. Spacecraft formation
dynamics and design. Journal of Guidance, Control, and
Dynamics 29(1):121–133.
Holzinger, M., and Scheeres, D. 2010. Object correlation,
maneuver detection, and maneuver characterization using
control effort metrics with uncertain boundary conditions
and measurements. In Proceedings of the 2010 AIAA GNC
Conference.
Knight, S.; Rabideau, G.; Chien, S.; Engelhardt, B.; and
Sherwood, R. 2001. Casper: space exploration through con-
tinuous planning. Intelligent Systems, IEEE 16(5):70 – 75.
Komendera, E. 2012. Description of the reachability set
adaptive mesh algorithm. Technical Report CU-CS-1090-
12, University of Colorado at Boulder.
Nishida, T.; Mizutani, K.; Kubota, A.; and Doshita, S. 1991.
Automated phase portrait analysis by integrating qualitative
and quantitative analysis. In Proceedings of the ninth Na-
tional conference on Artificial intelligence, volume 2.
Park, R., and Scheeres, D. 2006. Nonlinear mapping
of gaussian state uncertainties: Theory and applications to
spacecraft control and navigation. Journal of Guidance,
Control, and Dynamics 29(6):1367–1375.
Roy, A. 2005. Orbital motion, 4th Ed. Institute of Physics.
Sommerville, D. M. Y. 1929. An Introduction to the Geom-
etry of n Dimensions. New York: Dover.
Watson, D. F. 1981. Computing the n-dimensional Delau-
nay tessellation with application to Voronoi polytopes. The
Computer Journal 24(2):167–172.
Zhao, F. 1992. Automatic analysis and synthesis of con-
trollers for dynamical systems based on phase-space knowl-
edge. PhD Thesis.

2304


	AAAI12
	Contents
	Index
	Help
	Terms
	AAAI




