
QuickPup: A Heuristic Backtracking Algorithm
for the Partner Units Configuration Problem

Erich C. Teppan
Universität Klagenfurt
Universitätsstr. 65-67

9020 Klagenfurt, Austria

Gerhard Friedrich
Universität Klagenfurt
Universitätsstr. 65-67

9020 Klagenfurt, Austria

Andreas A. Falkner
Siemens Austria
Siemensstraße 90

1210 Wien, Austria

Abstract

The Partner Units Problem (PUP) constitutes a chal-
lenging real-world configuration problem with diverse
application domains such as railway safety, security
monitoring, electrical engineering, or distributed sys-
tems. Although using the latest problem-solving meth-
ods including Constraint Programming, SAT Solving,
Integer Programming, and Answer Set Programming,
current methods fail to generate solutions for mid-
sized real-world problems in acceptable time. This pa-
per presents the QuickPup algorithm based on back-
track search combined with smart variable orderings
and restarts. QuickPup outperforms the available meth-
ods by orders of magnitude and thus makes it possible to
automatically solve problems which couldn’t be solved
without human expertise before. Furthermore, the run-
times of QuickPup are typically below one second for
real-world problem instances.

1 Introduction
Knowledge-based configuration systems (Stumptner 1997;
Felfernig, Friedrich, and Jannach 2001) are among the most
successful applications of Artificial Intelligence (AI).

In the area of configuration problems, the recently defined
Partner Units Problem (PUP) represents a new challenge for
industrial configuration systems in particular and for AI in
general. The PUP was first described in 2010 (Falkner et al.
2011) and has gained more and more attention. Since 2011
the PUP has been taking part in the ASP competition1 and
hence is recognized as an important benchmark problem for
logic programming.

The problem originates in the railway domain. In order to
ensure safety of train movements, various equipment is re-
sponsible for detecting whether a track section (also called
zone) is occupied by a train or a wagon. Figure 1 shows a
small railway station with a through track consisting of three
track sections (A, B, and C) and another two sections (D
and E) for the sidings. The sections are separated by wheel
sensors (1 - 8) which communicate the number of wheels
entering and exiting the adjacent sections to occupancy in-
dicators responsible for those sections. Thus, each indicator

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.mat.unical.it/aspcomp2011

Figure 1: Example of a railway station layout

knows how many wheels are in its sections, i.e. whether the
section/zone is occupied or not.

Due to stringent temporal and fail-safe requirements, spe-
cial hardware is needed. Wheel sensors and occupancy in-
dicators are connected via communication units. The com-
munication units are limited therein that only a certain num-
ber (called unit capacity and abbreviated to UCAP) of el-
ements of each type can be installed on a communication
unit. For example only two sensors and only two occupancy
indicators can be placed on a communication unit, hence
UCAP=22. Every element must be placed on exactly one
unit. Furthermore, a unit can be connected to only a limited
number (called inter-unit capacity and abbreviated to IU-
CAP) of other communication units. These connected units
are called the partner units of the unit. Communication be-
tween a certain wheel sensor and a certain occupancy indi-
cator (responsible for a certain track zone) is ensured either
by installing them on the same unit or by connecting the
corresponding communication units. The input is given in
the form of a relation (i.e. the input relation, also called the
input graph) defining which sensors are relevant for which
zones. The PUP is about placing the elements on communi-
cation units and connecting the corresponding communica-
tion units so that all communication requirements given by
the input relation are fulfilled.

Figure 2 shows the input relation and a corresponding so-
lution for the example in Figure 1 when employing units
with a UCAP = 2 and IUCAP = 2 (i.e. only two partner unit
connections allowed per unit). Placing the indicator of zone
A on unit 1 instead of unit 4 does not result in a valid so-
lution. In this case, unit 1 and unit 3 should be connected
partner units which would exceed the IUCAP of unit 3. An

2Without any loss of generality and for the ease of presenta-
tion, we will keep unit capacity equal for both the sensors and the
indicators.

Proceedings of the Twenty-Fourth Innovative Appications of Artificial Intelligence Conference

2329



Figure 2: Input relation and solution for the example de-
picted in Figure 1

additional indicator for the whole through track (F), which
subsumes zones A, B, C and needs information from sensors
1, 4, 5, 6, could be placed on unit 2 without exceeding the
limits.

Apart from railway safety, the PUP has a broad range of
further application domains. In the context of security moni-
toring, it is possible to think of zones which have to be mon-
itored by a certain number of swiveling CCTV cameras. In
the context of electrical engineering, any problems where
two distinct types of elements (e.g. INs and OUTs) have to
be placed on electrical units are in fact instances of the PUP.
An application domain for the PUP in the area of distributed
computing is bootstrapping in peer-to-peer networks with
server and client processes. The challenge here is to con-
troll the communication and computing load for each host
by the number of client and server processes (UCAP) and
the number of connected peers (IUCAP).

Based on the railway domain, we refer to the two types of
elements to be installed on communication units as zones
and sensors and to the communication units as units for
the rest of the paper.

Formally, the PUP constitutes a partitioning problem on a
bipartite input graph G = (Z, S, IR)3 into a set U of bags,
with Z and S being disjunct sets of nodes connected by a set
of edges IR = {(z, s)|z ∈ Z, s ∈ S}4, such that:

• Every z ∈ Z and s ∈ S is contained in exactly one bag
u ∈ U .
• Every u ∈ U contains at most UCAP z ∈ Z and s ∈ S

each.
• Every bag u ∈ U is connected to at most IUCAP other

bags.
• Let u1 and u2 be bags, whenever z ∈ u1, s ∈ u2 and

(z, s) ∈ IR then either u1 and u2 are connected or u1 =
u2.

The PUP is indeed a hard problem. In the general case,
that is when UCAP and IUCAP are part of the input and

3Without limiting generality, we consider only connected input
graphs. Non-connected input graphs can be partitioned into inde-
pendent problems.

4Z represents the Zones, S the sensors, U the units and IR is the
input relation.

thus are not fixed, the PUP is NP-complete (Aschinger et
al. 2011b; Garey and Johnson 1990). With IUCAP = 0
or IUCAP = 1 the PUP even mutates to classical bin-
packing (Koiliaris 2011). When UCAP and IUCAP are not
part of the input and thus are limited by some fixed natu-
ral number, the situation is two-sided. Whereas for the spe-
cial case where IUCAP = 2 a polynomial-time algorithm
could be found, algorithmic complexity remains unclear for
the problem classes where IUCAP ≥ 3 (Aschinger et al.
2011b) and as a consequence no polynomial-time algorithm
is known. Industrial applications of our project partner from
Siemens Austria employ units with a IUCAP = 4 and a
UCAP = 2 (Falkner et al. 2011). As we will show in our
test cases even the current polynomial time algorithm does
not scale for mid-sized problems where IUCAP = 2. In
order to deal with IUCAP = 4, the latest general prob-
lem solving methods have been explored such as Integer
Programming, Constraint Programming, SAT Solving, and
Answer Set Programming (Aschinger et al. 2011a). How-
ever, none of these methods have been able to compute so-
lutions for all problem instances, given a time out after 600
seconds. Consequently, interactive configurations or large-
sized problems are clearly out of reach for current methods.
In this paper, we propose the novel algorithm QuickPup for
solving PUPs. We present results which clearly show that
QuickPup outperforms all state-of-the-art approaches by or-
ders of magnitude. In particular, all the test cases published
in (Aschinger et al. 2011b) are solved within at most a few
seconds (usually a fraction of a second is required). The low
runtimes of QuickPup even allow for interactive settings,
which facilitate immediate system response when adapting
input graphs in order to produce alternative solutions. More-
over, we present a first prototype web-application together
with all employed test cases. These test cases were devel-
oped by our industrial partner representing realistic scenar-
ios.

The remainder of this paper is structured as follows: In
the next section we present the QuickPup algorithm. In Sec-
tion 3 we discuss runtime results of QuickPup and compare
them with state-of-the-art results produced by DecidePup,
SAT Solving, Integer-, Constraint-, and Answer Set Pro-
gramming. Furthermore, we present the Simple Pup Solver,
which constitutes the very first web application dedicated
to the PUP. The Simple Pup Solver uses QuickPup as low-
runtime back-end. We conclude by summarizing the most
important aspects and by addressing future work.

2 QuickPup Algorithm
QuickPup (QP) is a novel algorithm for tackling the PUP. QP
basically follows a backtracking search approach but com-
bines it with a static heuristic ordering of the zones and sen-
sors (elements). Based on this fixed ordering, QP tries to
assign each element to a unit and backtracks in case of un-
satisfiability.

Listing 1 depicts the main procedure of QP. The input con-
sists of a set of zones, a set of sensors, the input relation
specifying which zones have to communicate with which
sensors, and a maximal time limit (maxTime) for solution

2330



Listing 1 QuickPup: Main
INPUT: zones, sensors, inputRelation, maxTime

timeslice← maxTime DIV numberOf(zones)

for all startZone IN zones do
elements← GetBreadthFirstOrder(startZone, zones, sensors, inputRelation)
index← firstIndexOf(elements)
model←{}
stopTime← SystemTime + timeslice
status← Assign(elements, inputRelation, model, index, stopTime)

if status = TRUE then
Minimize(model)
return model

else if status = FALSE then
return FALSE

else if status = TIMEOUT then
Continue

end if
end for
return TIMEOUT

Figure 3: Reordered input relation and corresponding order-
ing for startZone ’A’ for example given in Figures 1 and 2

calculation. The first important extension to simple back-
tracking is to restart the backtracking process from a dif-
ferent entry point if no solution can be found within a cer-
tain time slice. If unsatisfiability is proven, no further en-
rtry points are investigated. In QP each zone constitutes a
possible entry point (startZone). For each entry point there
is a maximal timeslice of maxTime DIV number of zones.
Furthermore, the algorithm produces a different breadth-first
ordering of the zones and sensors (elements) for each entry
point.

For ordering the elements, QP uses a breadth-first strat-
egy (see Figure 3). Starting from a certain zone (startZone)
the next elements to be considered are all connected sensors
based on the given input relation. Then, all zones connected
to these sensors are considered, and so forth, until there are
no more elements. This way of traversing a graph (i.e. the in-
put relation) is known as breadth-first or also as topological
order, as the graph is traversed from level to level. Listing
2 shows how this is realized. The ⊕l operation stands for
inserting an element into a vector of elements at the last po-
sition.

Once an element ordering is fixed, QP creates an empty
model and calls a recursive sub-procedure (Assign, see
Listing 4) creating and connecting the units and trying to
assign the elements. Thus, the model (also called the so-
lution graph or simply solution) consists of the units, their
partner unit connections, and the element assignments to the
units. If Assign runs into a timeout (SystemTime > stop-
Time), QP continues with the next entry point (i.e. startZone
is reassigned). If all iterations produced timeouts maxTime

Listing 2 QuickPup: GetBreadthFirstOrder
INPUT: startZone, zones, sensors, inputRelation

elements←{startZone}
while sizeOf(zones) + sizeOf(sensors) < sizeOf(elements) do

connectedElems← getConnectedElems(elements, zones, sensors, inputRelation)
for all elem IN connectedElems do

if elem NOT IN elements then
elements← elements⊕l elem

end if
end for

end while
return elements

is reached and QP stops with no decision. If Assign can
prove the unsatisfiability of the given input relation QP re-
turns FALSE. Please note that the combination of multiple
start zones and breadth-first ordering focuses on the early
detection of unsatisfiable instances. The idea is that if an
instance is unsatisfiable then there is also at least one zone
which is part of the conflict. Iterating through all zones guar-
antees that the subsequent backtracking procedure encoun-
ters the conflict in the beginning at least once.

Listing 3 QuickPup: Minimize
INPUT: model

for all unitA IN model AND unitB IN model AND unitA 6= unitB do
if NOT tooManyZones(unitA, unitB) then

if NOT tooManySensors(unitA⊕m unitB) then
if NOT tooManyPartners(unitA⊕m unitB) then

unitA← unitA⊕m unitB
remove(unitB, model)

end if
end if

end if
end for

If Assign is successful, i.e. a consistent assignment for
all elements has been found, such that the input relation is
fulfilled, QP minimizes the model and returns it. Minimizing
the model in this context means merging units when possi-
ble. This step is important for reducing the number of units
in the model. Listing 3 depicts the idea. For pairs of units in
the (consistent) model, merging is executed if possible. The
⊕m operator stands for unit merging. Units are limited in
their number of possible zone/sensor assignments (UCAP)
and their maximal number of partner unit connections (IU-
CAP). If merging is successful, the obsolete unit will be re-
moved from the model.

Actual model checking by backtracking is done by
Assign. Listing 4 shows the procedure. The input consists
of the (ordered) elements, the input relation, the intermediate
model, an index pointing to the next element to be assigned,
and a time limit (stopTime). First, Assign checks whether
the index is greater than the last possible index. In this case
all elements have already been assigned successfully and
Assign returns TRUE. If this is not the case, Assign checks
whether there is still some time left for further calculations,
otherwise Assign returns TIMEOUT.

If there is at least one element and some time left
Assign proceeds with the assignment of the next element
(currElem). To this end QP first creates a new unit of the
model and checks whether the assignment to the new unit
leads to a consistent intermediate model, i.e. all relevant
partner unit connections can be established. Please note that

2331



Listing 4 QuickPup: Assign
INPUT: elements[], inputRelation, model, index, stopTime

if index > lastIndexOf(elements) then
return TRUE

else if SystemTime > stopTime then
return TIMEOUT

end if

currElem← elements[index]

unit← createNewUnit(model)
if AssignAndConnect(currElem, unit, model) = TRUE then

consistent← Assign(elements, model, index + 1, stopTime)

if consistent = TRUE then
return TRUE

else if consistent = FALSE then
UndoAssignAndConnect(currElem, unit, model)
remove(unit,model)

else if consistent = TIMEOUT then
return TIMEOUT

end if
end if

for all oldUnit IN model do
if AssignAndConnect(currElem, oldUnit, model) = TRUE then

consistent← Assign(elements, model, index + 1, stopTime)
if consistent = TRUE then

return TRUE
else if consistent = FALSE then

UndoAssignAndConnect(currElem, oldUnit, model)
else if consistent = TIMEOUT then

return TIMEOUT
end if

end if
end for
return FALSE

a unit is limited in its maximal number of zones/sensors
(UCAP) and its maximal number of partner unit connections
(IUCAP).

Consistency checking, the establishment of new part-
ner unit connections and element assignment are car-
ried out in AssignAndConnect, see Listing 5. Basically,
AssignAndConnect checks two preconditions before an
element is assigned to a unit. First, there must be at least
one free place left on the unit for picking up a further zone
or sensor, respectively. In the case of a new unit, this precon-
dition is always given. Second, AssignAndConnect veri-
fies that all additional partner unit connections can be estab-
lished, this being limited by means of IUCAP5.

Listing 5 QuickPup: AssignAndConnect
INPUT: currElem, unit, model, inputRelation

if hasFreePlace(unit, currElem) = FALSE then
return FALSE

else if relevantUnitsCanBeConnected(currElem, unit, model, inputRelation) = FALSE then
return FALSE

else
add(currElem, unit)
establishConnections(currElem, unit, model)
return TRUE

end if

If the assignment is successful, Assign calls itself recur-
sively with the updated intermediate model and incremented
index pointing to the next element. In case the subsequent
Assign returns TRUE, all remaining elements have been as-
signed consistently, and the current instance of Assign also
returns TRUE. If a timeout has been triggered, and hence the

5Note, that the partner unit connections are uniquely deter-
mined, i.e. no search needed.

return value of the called Assign instance is TIMEOUT, the
current Assign back-propagates TIMEOUT.

If the called Assign instance returns FALSE, this means
that no assignment for the remaining elements could be
found which is consistent with assignment of the current el-
ement (currElem) to the newly created unit. In this case, all
changes which have been done by AssignAndConnect are
revoked and the new unit is removed from the model.

In a second step, QP tries to assign currElem to one of
the old units already existing in the model. The procedure
for any old unit is similar to the case where new units are
exploited, except that it is well possible that the unit could
be ’full’, i.e. there is no free place for the current element on
that unit. If no consistent assignment could be found both
for both the old units and a newly generated unit, Assign
returns FALSE (i.e. backtracks).

It is obvious, that preferring the creation of new units typ-
ically results in non-minimal models, regarding the number
of units. For optimization of the model, the Minimize pro-
cedure is necessary. If the problem is only to decide whether
for a given input relation a configuration exists, the opti-
mization step can be skipped. Optimization (i.e. minimiz-
ing the model) can also be skipped when using a variant
of Assign. By changing Assign such that assigning the
current element (currElem) to an old unit is preferred and
new units are only generated if the assignment to an old
unit is impossible or does not lead to a consistent model,
the resulting algorithm already produces optimized models
by construction. We will designate the optimizing version of
QuickPup as QuickPup* (QP*).

Both variants of QuickPup, i.e. QP and QP*, have differ-
ent strengths and weaknesses. On the one hand, QP* pro-
duces models which are typically smaller than those pro-
duced by QP, also when QP uses the Minimize procedure.
On the other hand, producing a non-optimal model with QP
may be much easier for many problems than producing an
optimized model with QP*. Note, that neither QP* nor ap-
plying a minimization of the model guarantees minimality
in the number of units. However, our experimental results
show that the optimum is found in many cases. As a matter
of fact, QP* has always produced optimal models so far.

3 Experimental Results
In order to test the performance of QP (QP*) we refer to the
results and the benchmark instances presented in (Aschinger
et al. 2011a). All experiments in (Aschinger et al. 2011a)
were carried out on a 3 GHz dual-core system with 4 GByte
of RAM, running Fedora Linux. The new results for QP
(with model minimizing) and QP* were produced by an In-
tel Centrino dual-core notebook with 2 GHz and 2 GByte of
RAM, running Windows XP. QP and QP* are implemented
in Java 1.5.

In (Aschinger et al. 2011a) five different implementations
were tested6:
• DecidePup (DP, polynomial time algorithm only for IU-

CAP = 2 (Aschinger et al. 2011b))
6Detailed information about the implementations can be found

in (Aschinger et al. 2011a)

2332



Figure 4: Real problem instance of Siemens Austria in the
railway station domain and benchmark instance grid8

• Constraint Programming (CP, implementation with
Eclipse-Prolog (www.eclipseclp.org))

• SAT Solving (SAT, MiniSat (www.minisat.se))

• Integer Programming (IP, two different systems were
tested: CBC from the COIN-OR project (www.coin-
or.org) and IBM’s Cplex (www.ibm.com))

• Answer Set Programming (ASP, Clingo from
the Potsdam Answer Set Solving Collection
(potassco.sourceforge.net))

The benchmark7 consists of two parts. In part one the cor-
responding instances are to be solved with a unit capacity
of 2 (UCAP=2) and an inter unit capacity of 2 (IUCAP=2).
The instances of part two are to be solved with the same
UCAP but with an IUCAP = 4. There are four different types
of instances: double (dbl) double-variant (dblv), triple (tri),
and grid8. The instances differ in their number of zones and
sensors and the number of sensors per zone. Furthermore,
the instances have different structural characteristics, as they
are patterned on real problem instances which have already
been successfully configured by our project partners from
Siemens Austria9.

For example, the grid instances are based on real problem
instances in the domain of railway stations. Figure 4 shows
two input graphs of partner unit problem instances. On the
left, a real railway station problem instance provided by our
project partners is shown. As opposed to this, the right hand
side depicts the graph of the grid8 benchmark instance. As it
can be recognized easily, the structures of the instances are
similar. Figure 5 shows the corresponding solution graph for
the real instance shown in Figure 4.

Runtimes of QP/QP* for real cases provided by Siemens
Austria are significantly below one second, whereas ASP

7Benchmark instances can be downloaded at http://demo2-
iwas.uni-klu.ac.at/pupsolver/

8Instances grid-90, ..., grid-99 were removed from the bench-
mark as the corresponding input graphs were not connected such
that those instances can be seen as a collection of trivial non-
relevant instances.

9More details about the instance structure can be found in
(Aschinger et al. 2011a).

Figure 5: Solution graph for the real problem instance shown
in Figure 4 produced by Simple Pup Solver

(which performs best among the other approaches) needs up
to 17 minutes. Although, the runtimes for real cases already
show the potential of QP, more insights can be gained when
looking at the scaled benchmark instances.

Table 1 and Table 2 summarize the experimental runtimes
(seconds) on the described benchmark instances10. The units
column lists the minimal number of units required for a con-
sistent solution. A minimal number of ’0’ means that no
solution exists (instances tri-34 and tri-64 for IUCAP = 2).
In these cases, the results refer to the time needed in order
to prove unsatisfiability. A ’/’ means that the correspond-
ing approach could not solve an instance within a certain
time frame. For the experiments in (Aschinger et al. 2011a)
the time frame was limited to 600 seconds. Although using
a weaker hardware, a time limit of 100 seconds was more
than enough for QP and QP*. Except for QP, all approaches
produced only minimal solutions. The number of additional
units needed by QP is listed in the +units column.

Only QP and QP* were able to solve all instances. Even
DP, which is a polynomial time algorithm capable of only
solving problem instances with IUCAP = 2, was not able to
solve all instances (with IUCAP = 2). In the cases where the
other approaches were able to calculate a solution, QP was
always much faster. In fact, the time needed for the calcula-
tion of most solutions was significantly below one second.
In terms of runtime, only QP* was better than QP in a few
cases. The overhead of additional units used by QP is very
small in most cases. As a matter of fact, for many instances
QP produced minimal solutions, i.e. +units = 0. QP* always
produced minimal solutions.

Based on the algorithms presented in this paper, we im-
plemented the first online web application for solving the
partner units problem. Figure 6 shows a screen shot of the
interface of the Simple Pup Solver (SPS). The SPS uses units
where UCAP = 2 (i.e. max. two sensors and two zones per
unit). The timeout can be set to 1 second or 10 seconds. The
IUCAP can be set to 2 and to 4, whereby the default is 4
as this reflects the realistic settings of our industrial partner.
Furthermore, an optimizing option is given such that it is

10For IP the better result produced by the two different ap-
proaches is listed.

2333



INSTANCEUNITS DP SAT CP ASP IP QP* QP +UNITS

dbl-20 14 0.01 0.48 0.02 0.16 1.53 0.000.02 1
dbl-40 29 0.05 2.36 0.28 3.93 13.58 0.000.03 1
dbl-60 44 0.08 29.74 0.42 / 213.580.000.03 1
dbl-80 59 0.16 / 1.14 / 522.5 0.010.04 1
dbl-100 74 0.41 / 1.89 / / 0.030.08 1
dbl-120 89 0.39 / 3.21 / / 0.020.08 1
dbl-140 104 0.59 / 5.01 / / 0.020.09 1
dbl-160 119 0.71 / 13.94 / / 0.030.10 1
dbl-180 134 0.87 / 20.07 / / 0.040.13 1
dbl-200 149 1.08 / 14.40 / / 0.040.15 1
dblv-30 15 65.49 0.42 0.09 0.26 2.93 0.000.00 0
dblv-60 30 / 3.15 0.26 1.94 / 0.010.00 0
dblv-90 45 / 12.54 0.82 27.35 / 0.010.01 0

dblv-120 60 / 41.65 1.85 13.92 / 0.020.01 0
dblv-150 75 / 20.97 3.48 29.54 / 0.020.02 0
dblv-180 90 / 44.28 6.20 54.50 / 0.030.03 0

tri-30 21 0.50 0.79 1.07 0.41 45.17 2.330.08 0
tri-32 20 / 0.74 0.64 0.26 4.66 0.020.04 1
tri-34 0 / 22.77 21.10 0.89 5.06 0.030.03 0
tri-60 40 114.08315.42158.49 4.40 108.012.081.61 0
tri-64 0 / 379.36 / 43.88 76.26 0.200.21 0

Table 1: Results UCAP=2

Figure 6: The web interface of the Simple Pup Solver,
http://demo2-iwas.uni-klu.ac.at/pupsolver

possible to use either QP or QP*.
In order to make the structure of a problem and its so-

lution visible and, as a consequence, more comprehensible,
we have also included the feature of a smart graph represen-
tation of the input relation and the solution graph11.

4 Conclusions
In this paper, we have presented the QuickPup algorithm
(QP) for tackling the Partner Units Problem (PUP). The PUP
constitutes a configuration problem with many industrial ap-
plication domains such as railway safety, electrical engineer-
ing, or distributed computing. Beside its practical relevance,
the PUP is employed as a benchmark problem for the ASP
competition. By comparing the runtimes of QP with previ-
ous results for the state-of-the-art approaches SAT Solving,
Constraint Programming, Answer Set Programming , Inte-
ger Programming, and DecidePup, we could clearly show

11In fact, Figure 4 and Figure 5 were produced by this feature.

INSTANCEUNITS SAT CP ASP IP QP* QP +UNITS

tri-30 20 2.40 0.12 0.40 24.790.000.00 0
tri-32 20 1.91 0.14 0.66 20.840.000.00 2
tri-34 20 1.98 / 0.60 / 0.000.00 5
tri-60 40 / 0.52 11.07 / 0.000.01 0
tri-64 40 / / 7.61 / 0.010.01 6
tri-90 60 401.441.50332.34 / 2.330.01 0

tri-120 79 / 3.37 / / 8.230.02 0
grid1 50 78.19 / 31.45 / 0.180.02 0
grid2 50 90.89 / 18.91 / 0.690.01 0
grid3 50 88.87 / 25.72 / 0.100.01 1
grid4 50 95.12 / 24.66 / 0.000.01 0
grid5 50 454.42 / 48.88 / 0.010.01 2
grid6 50 204.85 / 9.15 / 0.010.01 1
grid7 50 112.36 / 12.89 / 0.050.01 2
grid8 50 / / 11.89 / 1.540.01 0
grid9 50 91.62 / 19.71 / 0.010.01 0

grid10 50 545.16 / 13.54 / 4.150.02 0

Table 2: Results UCAP=4

the superiority of the proposed algorithm. The high perfor-
mance of QP also enables automatic problem solving for
real instances where other AI approaches fail to find a so-
lution within reasonable time. Future work will mainly con-
sist of two things. First, we will create a more challeng-
ing benchmark in order to further investigate the strengths,
weaknesses and limits of QP. Second, we will apply QP to
reconfiguration tasks, where the algorithm starts with a par-
tial solution which must not be altered any more.

5 Acknowledgments
Work has been performed in the scope of FFG-FIT-IT
Grant 825071 in cooperation between Universität Klagen-
furt, Siemens Austria, and the University of Oxford.

References
Aschinger, M.; Drescher, C.; Friedrich, G.; Gottlob, G.;
Jeavons, P.; Ryabokon, A.; and Thorstensen, E. 2011a.
Optimization methods for the partner units problem. In
CPAIOR’11, 4–19. Berlin, Heidelberg: Springer-Verlag.
Aschinger, M.; Drescher, C.; Gottlob, G.; Jeavons, P.; and
Thorstensen, E. 2011b. Tackling the partner units configu-
ration problem. In IJCAI’11, 497–503.
Falkner, A.; Haselboeck, A.; Schenner, G.; and Schreiner, H.
2011. Modeling and solving technical product configuration
problems. AI EDAM 115–129.
Felfernig, A.; Friedrich, G.; and Jannach, D. 2001. Concep-
tual modeling for configuration of mass-customizable prod-
ucts. Artificial Intelligence in Engineering 15(2):165 – 176.
Garey, M. R., and Johnson, D. S. 1990. Computers and
Intractability; A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Koiliaris, K. 2011. Complexity of constraint satisfaction
and automated configuration. United Kingdom: University
of Oxford.
Stumptner, M. 1997. An overview of knowledgebased con-
figuration. AI Commun. 10:111–125.

2334


	AAAI12
	Contents
	Index
	Help
	Terms
	AAAI




