
The Deployment of a Constraint- ased Dental School Timetabling System

Hadrien Cambazard
G-SCOP

Université de Grenoble, France
hadrien.cambazard@grenoble-inp.fr

Barry O’Sullivan
Cork Constraint Computation Centre

University College Cork, Ireland
b.osullivan@4c.ucc.ie

Helmut Simonis
Cork Constraint Computation Centre

University College Cork, Ireland
h.simonis@4c.ucc.ie

Abstract

We describe a constraint-based timetabling system that was
developed for the dental school based at Cork University Hos-
pital in Ireland. This system has been deployed since 2010.
Dental school timetabling differs from other university course
scheduling in that certain clinic sessions can be used by mul-
tiple courses at the same time, provided a limit on room ca-
pacity is satisfied. Starting from a constraint programming
solution using a web interface, we have moved to a mixed in-
teger programming-based solver to deal with multiple objec-
tive functions, along with a dedicated Java application, which
provides a rich user interface. Solutions for the years 2010,
2011 and 2012 have been used in the dental school, replacing
a manual timetabling process, which could no longer cope
with increasing student numbers and resulting resource bot-
tlenecks. The use of the automated system allowed the dental
school to increase student numbers to the maximum possible
given the available resources. It also provides the school with
a valuable “what-if” analysis tool.

Introduction
Universities and hospitals are under considerable pressure
to reduce costs while improving service delivery. A cen-
tral component to this effort is the availability of timetabling
systems that can find practical solutions to maximizing the
utilization of teaching resources, such as facilities and staff,
while not compromising on education quality.

Traditional university timetabling is often concerned with
the task of assigning a number of events, such as lectures,
exams, meetings, and so on, to a limited set of times-
lots (and perhaps rooms), in accordance with a set of con-
straints (Cambazard et al. 2004). Three main classes of
the university timetabling problem have been identified:
school (Kingston 2012), course (Cambazard et al. 2012) and
examination timetabling (Burke et al. 2012). A fundamen-
tal constraint appearing in all the problems is the “event-
clash” constraint. This states that if a student is required to
be present for a pair of events (for example courses), then
these must not be assigned to the same timeslot, as such an
assignment will result in this student having to be in two
places at the same time. This particular constraint can be
found in almost all university timetabling problems (Bonutti

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2012; McCollum et al. 2010). The problem restricted
to these constraints alone can be viewed as a graph col-
oring problem. This is a pure and difficult combinato-
rial problem in its own right and can often become more
challenging when combined with the many side constraints
occurring in the context of timetabling. Most university
timetabling involve a hard graph coloring sub-problem and
current timetabling systems are tailored to address this re-
current and common pattern. However, this pattern is not the
main source of difficulty in many medical and dental school
timetabling settings.

While the dental school problem also involves a color-
ing sub-problem, this sub-problem is unlikely to be the most
challenging feature of the problem because the number of
students and events is much smaller than in traditional uni-
versity timetabling problems. The difficulty in dental school
timetabling arises as a consequence of resource availability,
such as specialist equipment and seating, which are very ex-
pensive. Most universities cannot afford to relax these con-
straints by increasing resource capacity, so they rely heavily
on good quality timetables. This resource utilization defines
a bin packing problem. The packing comes from the fact
that, in medical/dental school timetabling, we are trying to
find a timetable where the resources, e.g. dental chairs, are
not left idle. Commercially available timetabling systems
do not deal with dental school timetabling very well primar-
ily because such systems are designed to exploit hard color-
ing subproblems rather than bin packing. Despite its unique
challenges, the timetabling community has not focused ef-
fort in this direction, so the work presented in this paper is
novel from both scientific and applications perspectives.
The Deployed Application. In this paper we present a
constraint-based dental school timetabling system that has
been in use at the dental school at the Cork University Hos-
pital since 2010. The system was developed at the Cork
Constraint Computation Centre (4C) in close collaboration
with the management and staff of the dental school. In 2010
the dental school was facing a significant increase in its stu-
dent intake from approximately 40 to 50 students across all
years of its programe. While the timetable up to that point
was created by hand, the dental school could not find a sat-
isfactory timetable due to the increased resource restrictions
imposed by the increase in student numbers. In the years
2010 to 2012 the first class of increased student numbers

Proceedings of the Twenty-Fifth Innovative Applications of Artificial Intelligence Conference

1459

B



had a growing impact on the school’s timetable; this pro-
cess will conclude in 2013 when all classes will run with the
increased student numbers. The impact of this was that dur-
ing the transition period the timetable of each previous year
was of limited use, precluding the normal process of updat-
ing the existing schedule slightly from year to year. A new
approach was needed. This paper presents the timetabling
system that was developed and discusses the experiences of
its deployment over the past three years.

The remainder of this paper is organized as follows. We
first informally describe the problem and introduce the re-
quired notation. We then describe the solution process and
alternative choices for solvers and interfaces. A constraint-
based model of the problem will then be presented, along
with an example of its output. Finally we will discuss the
evolution and maintenance of the system over the three year
deployment period to-date.

Problem Statement
We describe the problem solved by the application in an in-
formal way, while introducing some notation for the formal
presentation which comes later in the paper.

Time Slots
The timetable is generated for each term, and all weeks in
the term run with the same schedule. We, therefore, deal
with generic days (set D) from Monday to Friday, with three
time periods (AM, midday, PM) scheduled for each day. We,
thus, assign 15 time slots (set T ) in a week. For each time
slot, we have a period weight ptcost, which indicates possi-
ble preferences to using the time period. At the moment,
all midday time slots have a cost of 1000 (strong preference
against using these periods), and Monday morning and Fri-
day afternoon have a cost of 1 (weak preference against us-
ing them). All other time slots have a cost of 0. The function
onDayt indicates the day to which time slot t belongs.

Student Groups
The students of each year are organised into groups com-
prising 7-10 persons (set G), which are allocated as a unit
in the timetable. Naturally, each group can only follow one
course at a time. When we started in 2010, there were four
groups in each year, this has been increased progressively to
five to increase student numbers. Note that the groups do
not all have the same size, and the group sizes change from
year to year, as students repeating a year disappear from one
group, and are assigned to another group in another year. Ta-
ble 1 shows the group sizes for the year 2012, note that Year
5 is still using the lower student numbers of the old system,
while Years 3 and 4 already use the increased numbers. Also
note that it is difficult to increase group size beyond 10, as
several labs have a capacity limit of 10.

It is possible to have multiple groupings for the students,
e.g. to have smaller groups for clinics, and larger groups for
lectures or seminars. Two such groups that share students
cannot be allocated to the same time slot; this is expressed
by Incompatibility Time Slot constraints, described below.
At the moment, this feature, while implemented, is not used
in the actual timetable.

Table 1: Classes and Group Sizes
Class Group Sizes
Hyg 16
Y3 10 10 10 10 9
Y4 9 10 10 10 10
Y5 8 8 8 9 9

Subjects
The subjects that are allocated in the timetabling system are
all related to labs and clinics. Unlike most other courses
at universities, the location for these labs and clinics is auto-
matically given, as only one room for each has the necessary
equipment. Therefore, we are not concerned about room al-
location. Also unlike labs in other disciplines, it is possi-
ble to have groups from different years in the same clinic at
the same time, provided the room capacity is not exceeded.
The room capacity may be defined by physical constraints
(e.g. treatment chairs), or by the availability of teaching as-
sistants, when maintaining a required student/teacher ratio.
Table 2 shows the list of subjects (set S) and the capacity
of the labs (function capacitys) as the first two columns. In
2012, two seats were added to the Restorative Clinic room,
bringing the capacity from 34 to 36. This clinic also con-
tains four additional chairs (in general described by the func-
tion extras) normally reserved for private practice and post-
doctoral work, which can be used if required. As they are
located outside the main clinic area, this creates problems
with supervision, and should only be done if this extra ca-
pacity is really needed. For every use of some extra capacity,
a cost ecost must be paid.

Especially in the first three years, students also follow the-
oretical courses in lectures and seminars. These courses are
easy to assign manually and use other rooms, and are there-
fore not handled by the system.

Curriculum
The curriculum defines how many sessions per week in each
subject must be scheduled for groups of each year. In our
model, we use the function demandgs to specify how many
sessions group g must be scheduled in subject s. The current
curriculum is shown in Table 2. Note that only the lab- and
clinic-based courses are shown.

Table 2: Curriculum
Subject Cap Hyg Y3 Y4 Y5

OTL 24 1 2 1 -
Restorative Clinic 36 (+4) - 1 3 4

Pros Lab 20 - 2 - -
Dental Surgery 10 - - 1 1

Ortho 10 - - 1 1
Paedo 10 - - 1 1

C and B Lab 10 - - 1 -
Study 18 - - 1 1

Restorative Tutorial 10 - - - 1

1460



Doubling Up
Usually, in a clinic each student works on his own treatment
chair, supervized by teaching assistants and lecturers. It is
possible to assign two students to the same chair, reducing
the demand on chairs in the clinic, but at the same time de-
creasing the quality of teaching. For the third-year groups,
this “doubling up” may be acceptable; in general this is in-
dicated by a predicate doubleUpg . Whether doubling-up is
preferable to using extra chairs in a clinic is a user choice.
The function sizegu gives the size of group g depending on
whether they double up (u = 1) or not (u = 0). The set U
denotes the two choices. For each use of doubling up, a cost
dcost must be paid.

Instrument Cleaning
For some of the subjects, the students must use their personal
instrument sets. This is indicated by the Boolean function
needsCleaninggs. After use, these sets must be sterilized,
which takes about 2 hours. This is easily achieved overnight,
but if the instruments are required twice on the same day, the
cleaning time reduces the time available for practical work.
This should be avoided, if possible. Italic values in Table 2
show which courses require instrument cleaning. If a group
has to wait for the cleaned instruments on some day, a cost
ccost must be paid.

Allocation Constraint
When the timetable was generated manually, it was easy for
lecturers to request specific time slots for their courses due
to other commitments or personal preferences. In order to
allow these wishes to be added in our system, we allow op-
tional constraints that force, forbid or restrict the assignment
of specific courses to specific slots. These wishes are ex-
pressed in the user interface as tuples of groups, subjects,
time slots and a constraint type, one of FORCE, FORBID,
RESTRICT or DONTCARE. By carefully choosing the com-
binations of groups, subjects and time slots, we can mini-
mize the number of rules that need to be given by a user.
The DONTCARE value is useful to temporarily disable some
allocation constraint during the exploration of a scenario,
without having to re-enter the constraint later on again.

The allocation constraints are also required to handle the
needs of the Hygiene student group, which uses the OTL
lab, but whose timetable is controlled by another university
department. After discussion with their timetable manager,
a fixed time slot on a Monday morning is allocated for the
OTL lab of the Hygiene group.

Incompatibility Subject
It is possible to restrict which groups work together in the
same time slot for a given subject. This might be required if
one teaching assistant is handling, say, both a Year 3 and a
Year 5 group on a given topic. Then these groups should not
be scheduled together at the same time, in order to maintain
a good student to teacher ratio.

Incompatibility Time Slot
Our model allows for different groupings of students for dif-
ferent topics, e.g. larger groups for seminars and smaller

groups for specific lab work. Thus, we must require that
two groups sharing some students cannot be scheduled at
the same time. As our model does not deal with individual
students, we must specify rules for all groups of that form.

Occurrence
We can limit how many courses a group can be assigned to
on any given day, e.g. state that a group should only have
one lab on a Wednesday, as some other lectures have to be
scheduled on that day. Note that there is some overlap with
allocation constraints.

Solution Process
In this section we describe the changes in the solution ap-
proach we have been following over a period of three years.

Initial Approach
When we started the project, we did not know which so-
lution technology would be best to solve the problem, and
whether we would be able to solve the problem at all. We
therefore started with an exploration of possible solver de-
signs. A first version was implemented with the finite do-
main constraint programming system Choco.1 In the model,
the variables are the courses to be assigned, and the val-
ues are the possible time slots. Capacity constraints for the
rooms are expressed by bin packing constraints (Cambazard
and O’Sullivan 2010), while many other constraints turn into
disequality or alldifferent (Régin 1994) constraints. While
initial solutions for feasible problems could be found quite
quickly, it was hard to prove optimality or to show infeasi-
bility of over-constrained systems. A specific problem were
the symmetry constraints due to groups in the same year, i.e.
with the same curriculum, and identical group sizes. These
symmetries cause a large number of equivalent solutions, but
are not easily removed completely. Other symmetries due to
repeated courses for the same group can be handled with
inequality constraints. As an alternative, a MIP model for
the basic problem was considered, using the CPLEX solver.2
This model did not consider doubling up on courses, and did
not have the cleaning constraints.

Operationally, the 2010 problem still had many specific
preferences to force classes at specific time slots in order
to simplify teaching resource assignment. Enforcing all of
these preferences typically lead to an over-constrained prob-
lem. It was clear that the system should allow users to play
with enabling/disabling of complete classes of constraints
and/or individual constraints, in order to find a good com-
promise satisfying the different stakeholders in the process.
In order to allow this experimentation, a Web-based user
interface for the system was developed. It allowed differ-
ent persons to evaluate timetables, and to play with specific
constraints. The user interface model was spreadsheet-like,
implemented in Javascript, while calling back-end solvers
written in Java.

1http://www.emn.fr/z-info/choco-solver/
2http://www-01.ibm.com/software/integration/optimization/

cplex-optimizer/

1461



Re-write as Application
For the timetable of 2011, we decided to rewrite the system
as a dedicated Java application, with a complete graphical
user interface. As new constraints were added, it became in-
creasingly difficult to integrate those changes in the ad-hoc
Javascript solution. A more flexible solution was required.
For this we used an application framework under develop-
ment at 4C, which supports the creation of a complete appli-
cation from a basic data model and a user interface defini-
tion. This drastically reduced the implementation effort for
this specific application, as most components were already
provided by the framework. Instead of adapting the existing
solver code, we re-implemented the solver using the new
data model. Only the MIP-based model was maintained, as
it was able to determine infeasibility of problems much more
quickly than the Choco model.

We packaged the resulting application for the Dental
School as a stand-alone Java program running on a laptop.
In the Dental School an intern from the Computer Science
department was responsible for creating and modifying po-
tential timetables, getting feedback from the different stake-
holders in the faculty. This process took several iterations,
finally creating the timetable implemented for 2011.

Dealing with Under-Capacity
Figure 1 shows a screen-shot of the application, displaying
the solution for year 2012. In 2012, we changed the pro-
cess again. As both the original project sponsor and also
the intern using the system for the timetable of 2011 were
no longer at the school, we faced the task of either training
yet another person in the use of the system, or to provide
the timetabling as a service. As initial discussions showed
that the constraint model needed significant changes to deal
with the increased resource requirements, we found it eas-
ier to make these changes in the system, while at the same
time providing intermediate solutions for the Dental School
as text documents, generated by our application framework.

The main change required was dealing with systemati-
cally over-constrained problems. The total demand for the
restorative clinic exceeded the available capacity, even with
the increase of capacity from 34 to 36 chairs. We either had
to use doubling up as a solution to reduce demand, or to
use extra chairs to increase capacity. It was not clear which
of those approaches would be more readily accepted by the
faculty; we therefore provided solution examples for both
methods.

Once it was clear that solutions for the overall problem
could be created with these extensions, several additional
changes of the timetable were requested by different stake-
holders. For example, the solution should have Year 5 stu-
dents in the restorative clinic in the morning, and Year 4 stu-
dents in the afternoon, as this simplified the assignment of
teaching assistants. This could easily be handled by adding
some new rules for the allocation constraints.

Dealing with the manager of the timetable in the dental
school directly reduced the number of interactions with dif-
ferent groups of stakeholders, while maintaining the exist-
ing process in the dental school. Overall, the time needed to

build the final time table was minimized, while involving 4C
as a partner, and improving the tool through the interaction
and the new constraints required.

Current Constraint-based Model
We describe the current constraint-based model for the den-
tal school timetabling problem, describing the variables, the
objective function and the constraints used. All necessary
notation were introduced earlier.

Variables
We describe the model currently used for year 2012. The
key decision variables are binary variables xgstu, which in-
dicate if group g is assigned to subject s in time slot t,
either doubled up (u = 1) or not (u = 0). We require
16 ∗ 9 ∗ 15 ∗ 2 = 4320 of these variables for our problem,
a medium-sized problem, so that using a four dimensional
array does not pose a problem.

∀g∈G∀s∈S∀t∈T∀u∈U : xgstu ∈ {0, 1}
Next, we introduce binary variables yt, which indicate

whether any course is taught in time period t. These con-
tribute to the cost function.

∀t∈T : yt ∈ {0, 1}

We also use binary variables zdg to state if group g will
require instrument cleaning during day d. These variables
also contribute to the cost function.

∀d∈D∀g∈G : zdg ∈ {0, 1}
Finally, we use a set of integer variables vst which state

if in time period t we use some extra capacity for subject
s. The upper bound of the domain is given by the function
extras, which will be zero for most subjects.

∀s∈S∀t∈T : vst ∈ {0, extras}

Objective Function
The objective function minimizes four elements: the total
cleaning effort during the day in (1), the number of doubled
up sessions in (2), the use of non-preferred time periods in
(3), and the use of extra capacity (4). Note that we could
easily introduce personalized costs for groups or subjects, if
for example the loss of teaching time due to cleaning is more
acceptable for year 4 than year 5 students. On the other
hand, this would require more input data from the user, a
change that should not be undertaken lightly.

min
∑
d∈D

∑
g∈G

zdgccost (1)

+
∑
g∈G

∑
s∈S

∑
t∈T

xgst1dcost (2)

+
∑
t∈T

ytp
t
cost (3)

+
∑
s∈S

∑
t∈T

vstecost (4)

1462



Figure 1: An overview of the 2012 timetable in the deployed system.

Constraints
We discuss the different constraints that are needed to ex-
press the requirements expressed in the informal problem
description. The first set of constraints links the x and the y
variables: as soon as one of the x variables for a time slot t
is one, the corresponding y must also be one.

∀g∈G∀s∈S∀t∈T∀u∈U : xgstu ≤ yt

The next constraint states that the total number of courses
in a subject allocated to a group must be equal to the demand
for that group.

∀g∈G∀s∈S :
∑
t∈T

∑
u∈U

xgstu = demandgs

Each group can only be assigned to one course in any
given time period, i.e., the sum of all x variables must be
less than or equal to one.

∀t∈T∀g∈G :
∑
s∈S

∑
u∈U

xgstu ≤ 1

The important capacity constraint states that for every
subject and every time slot, the total number of allocated stu-
dents, the sum of the group sizes, must be less than or equal
to the room capacity plus any extra capacity used. Note that
the size of a group differs if it is doubled up.

∀s∈S∀t∈T :
∑
g∈G

∑
u∈U

xgstusizegu ≤ capacitys + vst

Groups that cannot be doubled up cannot use the xgst1

variables: they must all be zero. As typically only few

courses can be doubled up, this dramatically reduces the
number of decision variables.

∀s∈S∀g|¬doubleUpg∀t∈T : xgst1 = 0

If on some day d, a group g is assigned to multiple courses
that require cleaning, then the zdg variable must be equal
to one, incurring the cost for the cleaning in the objective
function (1).

∀d∈D∀g∈G :
∑

t|onDayt=d

∑
s|needsCleaninggs

∑
u∈U

≤ 1 + zdg

Allocation Constraints. The following deals with the al-
location constraints. If we forbid some time slots for a set of
groups on a set of subjects, then we force the corresponding
x variables for each member of the sets to zero.

∀<G,S,T ,FORBID>∈A∀g∈G∀s∈S∀t∈T∀u∈U : xgstu = 0

If we force the assignment, we cannot directly set some vari-
able to one, as we do not know if we may want to double up
for that group. We have to set the sum of two variables to be
equal to one, instead.

∀<G,S,T ,FORCE>∈A∀g∈G∀s∈S∀t∈T : xgst0 + xgst1 = 1

And finally, if we want to restrict the assignment to a subset
of the possible time slots, we can simply force that for any
period not in the set, the x variable is set to zero.

∀<G,S,T ,RESTRICT>∈A∀g∈G∀s∈S∀t/∈T : ∀u∈U : xgstu = 0

If the constraint type is set to DONTCARE, then no con-
straint is issued.

1463



Incompatibility Subject. For these incompatibility con-
straints, we state that for any of the subjects s in set S, either
g1 or g2 can be assigned in time period t, but not both.

∀<S,G1,G2>∈I∀g1∈G1∀g2∈G2∀s∈S∀t∈T :∑
u∈U

xg1stu + xg2stu ≤ 1

Incompatibility Time Slot. For the more generic time slot
incompatibilities, we enforce that for any groups g1 and g2,
only one of them can be assigned to any subject d at time t.

∀<G1,G2>∈J∀g1∈G1
∀g2∈G2

∀t∈T :∑
s∈S

∑
u∈U

xg1stu + xg2stu ≤ 1

Occurrence Constraints. Finally, the occurrence con-
straints limit the number of courses assigned to a group on a
given day to be less than or equal to limit.

∀<G,d,limit>∈O∀g∈G∀t|onDayt=d :
∑
s∈S

∑
u∈U

xgstu ≤ limit

System Evolution and Maintenance
The constraint model underwent significant changes over the
three years of operation. The most obvious change was the
introduction of the fourth index u for the xgstu decision vari-
ables to indicate whether a group is doubled up or not. This
facilitated the automated choice of using doubling when re-
quired. Before, this constraint could be handled by creating
new groups for the doubled up case, with a manual choice
which group should be used in which scenario. The new
model is more flexible, but the change affected nearly every
constraint in the system. The cleaning constraints and the
corresponding introduction of the zdg variables were only
added in 2012, when this requirement was first expressed by
a stakeholder at the dental school.

Also, a number of constraints used in the early model are
no longer used. In 2010 a significant number of allocation
constraints were specified to FORCE or PRECLUDE the as-
signment of some courses for specific time periods. Many
of these constraints are no longer present, as the more con-
strained problem now no longer allows these extra prefer-
ences. Overlapping groups were used to model the doubling
up scenario, this in turn required the Incompatibility Time
Slot constraints to avoid overbooking.

Perhaps the most significant change is not in the form of
the constraints, but in the tightness of the resource limit. In
2010, there was a demand for 53+3∗36+4∗39 = 307 stu-
dent sessions for the Restorative Clinic, while 10∗34 = 340
sessions were available in AM and PM time slots. In 2012,
49+3∗49+4∗42 = 364 sessions were needed, but capacity
was limited to 36 ∗ 10 = 360 slots. This over-constrained
problem could only be solved by either doubling up some
courses, or adding more seats in the clinic. Either relax-
ation will only be used when absolutely necessary, so that
the Restorative Clinic became a tight resource constraint.

Conclusions
We presented a novel constraint-based timetabling system
for dental training schools. The system was developed in
collaboration with the dental school at Cork University Hos-
pital, and has been in use since 2010. It has enabled the den-
tal school to meet with a challenging set of demands in terms
of student numbers which, without an automated timetabling
system, would not have been possible for them to achieve.

In addition to being a novel deployed application, the sys-
tem is new from a scientific perspective since dental school-
like timetabling problems have not been previously studied
and reported in the literature. Unlike most education-related
timetabling problems which have graph coloring as a chal-
lenging core problem, dental school timetabling problems
are characterized by challenging bin packing problems.

Acknowledgements
This work was supported by Science Foundation Ireland
(Grant Number 05/IN.1/I886s2). The authors would like to
thank Professor Robert McConnell and Dr. Francis Burke of
the Cork University Hospital and Dental School for the help
and support given during the execution of this project.

References
Bonutti, A.; Cesco, F. D.; Gaspero, L. D.; and Schaerf, A.
2012. Benchmarking curriculum-based course timetabling:
formulations, data formats, instances, validation, visualiza-
tion, and results. Annals OR 194(1):59–70.
Burke, E. K.; Pham, N.; Qu, R.; and Yellen, J. 2012. Lin-
ear combinations of heuristics for examination timetabling.
Annals OR 194(1):89–109.
Cambazard, H., and O’Sullivan, B. 2010. Propagating the
bin packing constraint using linear programming. In Cohen,
D., ed., CP, volume 6308 of Lecture Notes in Computer Sci-
ence, 129–136. Springer.
Cambazard, H.; Demazeau, F.; Jussien, N.; and David, P.
2004. Interactively solving school timetabling problems us-
ing extensions of constraint programming. In Burke, E. K.,
and Trick, M. A., eds., PATAT, volume 3616 of Lecture
Notes in Computer Science, 190–207. Springer.
Cambazard, H.; Hebrard, E.; O’Sullivan, B.; and Pa-
padopoulos, A. 2012. Local search and constraint program-
ming for the post enrolment-based course timetabling prob-
lem. Annals OR 194(1):111–135.
Kingston, J. H. 2012. Resource assignment in high school
timetabling. Annals OR 194(1):241–254.
McCollum, B.; Schaerf, A.; Paechter, B.; McMullan, P.;
Lewis, R.; Parkes, A. J.; Gaspero, L. D.; Qu, R.; and Burke,
E. K. 2010. Setting the research agenda in automated
timetabling: The second international timetabling compe-
tition. INFORMS Journal on Computing 22(1):120–130.
Régin, J.-C. 1994. A filtering algorithm for constraints of
difference in csps. In Hayes-Roth, B., and Korf, R. E., eds.,
AAAI, 362–367. AAAI Press / The MIT Press.

1464


	AAAI13
	Contents
	Index
	Help
	Terms
	AAAI




