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Abstract

This paper describes USI Answers - a natural language ques-
tion answering system for semi-structured industry data. The
paper reports on the progress towards the goal of offering
easy access to enterprise data to a large number of business
users, most of whom are not familiar with the specific syntax
or semantics of the underlying data sources. Additional com-
plications come from the nature of the data, which comes both
as structured and unstructured. The proposed solution allows
users to express questions in natural language, makes appar-
ent the system’s interpretation of the query, and allows easy
query adjustment and reformulation. The application is in use
by more than 1500 users from Siemens Energy. We evaluate
our approach on a data set consisting of fleet data.

Introduction
Today’s enterprises need to make decisions based on analyz-
ing massive and heterogeneous data sources. More and more
aspects of business are driven by data, and as a result more
and more business users need access to data. Offering easy
access to the right data to diverse business users is of grow-
ing importance. There are several challenges that must be
overcome to meet this goal. One is the sheer volume: enter-
prise data is predicted to grow by 800 percent in the next five
years. The biggest part (80 percent) is stored in documents,
most of them missing informative meta data or semantic tags
(beyond date, size and author) that might help in accessing
them. A third challenge comes from the need to offer access
to this data to different types of users, most of whom are not
familiar with the underlying syntax or semantics of the data.

Unified Service Intelligence (USI) is a project of Siemens
Corporation, Corporate Technologies and Siemens Energy
focused on generating actionable insight from large bodies
of data in the energy service domain. USI Answers, the fo-
cus of this paper, is a sub-project of USI, focused specifi-
cally on offering easy and reliable natural language access
to the large bodies of data that are used in the planning and
delivery of service by Siemens Energy. The focus is on de-
tecting and responding to events and trends more efficiently
and enabling new business models.
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Related Work
Natural Language Understanding (NLU) has long been a
goal of AI. Considered an AI-complete task, it consists of
mapping natural language sentence into a complete, unam-
biguous, formal meaning representation expressed in a for-
mal language which supports other tasks such as automated
reasoning, or question answering.

Natural Language access to databases (NLIDB) is a
NLU task where the target language is a structured query
language (e.g. SQL). NLIDB has been around for a long
time, starting with the LUNAR system (Woods 1970). Early
NLIDB systems took mainly a hand-built, syntax-based ap-
proach (Woods 1970; Warren and Pereira 1982; Dowding
et al. 1993; Bos et al. 1996) which proved to be not only
labor-intensive but also brittle. A number of learning ap-
proaches were developed (Zelle and Mooney 1996; Miller et
al. 1996) and more recently (Kate, Wong, and Mooney 2005;
Kate and Mooney 2006; Zettlemoyer and Collins 2005;
Wong and Mooney 2006; 2007), and (Lu et al. 2008). With
two exceptions (Miller et al. 1996) and (Zettlemoyer and
Collins 2005), they all adopted a semantic driven approach.

Academic question answering systems showed great
promise: (Gunning et al. 2012) showed that domain ex-
perts with little training and no knowledge of the underlying
knowledge base can use such systems to answer complex
questions in scientific domains like Chemistry, Biology, and
Physics.

Recently there has been an emerging interest from the
industry sector to have computer systems not only to an-
alyze the vast amount of relevant information (Ferrucci et
al. 2010), but also to provide intuitive user interface to
pose questions in natural language in an interactive dialogue
manner (Sonntag 2009; Waltinger, Breuing, and Wachsmuth
2012). Several industrial applications of question answering
have raised the interest and awareness of question answering
as an effective way to interact with a system: IBM Watson‘s
Jeopardy challenge (Ferrucci et al. 2010) showed that open
domain QA can be done accurately and at scale. Wolfram
Alpha‘s1 computational knowledge engine centered around
Mathematica is one source behind Apple‘s Siri2, which has
proven a successful interaction medium for mobile devices.

1http://www.wolframalpha.com/
2http://www.apple.com/de/ios/siri/
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Figure 1: Parse tree representation as produced by Stan-
ford Core contrasting open domain question vs. a domain-
specific question as posed with the USI Answers setup. Note
that A region is a custom expression for regions that have the
letter a within their abbreviation.

Challenges of Building an Industrial QA
System

The challenges of building an industrial grade question an-
swering system are many fold, due not only to the domain
specificity of the underlying knowledge bases but also to the
need to cover a wide range of queries that might come up
during the interaction with the user.

The most pressing challenge is run-time performance on
commodity hardware: in our current setup, an acceptable
speed is defined as computing the answer representation
within 800 ms. The system should be scalable, in that the
response time should not be proportional to the size of data
being accessed.

Enterprise data is heterogeneous and dynamic. A QA sys-
tem needs to integrate these sources and accommodate their
changing nature. Part of the integration process consists of
offering unified semantics for the data.

Different business users need access to enterprise data,
most of them know what they want but not exactly how to
get it. An industrial QA system needs to allow them to ex-
press queries easily, as close to natural language as possi-
ble. This requirement is complicated by the fact that most
business use domain specific terms and concepts to refer
to their data. This terminology needs to be captured and
used in the question answering process. Given how used we
are with conversing in natural language, such a system has
to offer intuitive interfaces for fixing errors (i.e. getting to
the right meaning of a question) and visualizing the sub-
sequent answer. That is, the system users demand to use
not only (valid) natural language questions (e.g. show me
all active units in China), query language con-
structs (e.g. select unit name by performance
sorted by capacity desc), but also (traditional)
keyword search (e.g. a region st rna ffleet ksp), or a
mixture of these. This is important, since the regular syntax-
driven approaches (e.g. identifying relationships by their
parse tree (de Marneffe, MacCartney, and Manning 2006))
can hardly be used as a reference (see Figure 1 for an exam-
ple).

Security is an important aspect of accessing data in an in-
dustrial setting: verification that the questioner has access to
all pieces of data involved is required.

Figure 2: Overview of the USI Answers question answer-
ing interface. Each question (1) is represented via a list of
concept-instance-relationships (i.e. Application Owner has-
Value KSP) interpretations (2). Subsequently, the user is able
to adjust the interpretation or to reformulate the input ques-
tion (3). The results (4) are displayed as an list or as an direct
answer. Different data sources (5) can be selected to apply
the question answering process. Users are able to provide
feedback (6) of the existing question interpretation.

USI Answers - Question Answering on
Enterprise Data

USI Answers aims to give the right users with the right in-
formation at the right time using an automatic question an-
swering system and to enable them to turn massive amounts
of structured and unstructured service data into actionable
knowledge using natural language queries. The data comes
from unstructured sources (e.g. company news, products re-
ports) as well as from various structured ones (e.g. Oracle
data base views). The system allows users, even with a lim-
ited familiarity with technical systems and databases, to pose
questions in a natural way and gain insights into the avail-
able data.

From the point of view of the user, the question answer-
ing process consists of several steps: question interpretation,
during which a natural language question is transformed
into one or more executable queries (called interpretations),
query adjustment, during which the user is shown the avail-
able interpretations and he/she can select or modify one of
these interpretations, and, finally, query execution, during
which the selected interpretation is issued against the rele-
vant data sources and an answer is returned (see Figure 2).

Similar to other approaches, our system needs to com-
pute confidence in the interpretations generated. While ques-
tions may be ambiguous, our approach accumulates dif-
ferent confidence scores to compute an overall confidence
in an interpretation. Different from other QA approaches,
USI Answers system computes not only direct, but also list-
based answers3. Besides producing a lexical representation
of certain entities or phrases, the traditional QA output, it
also constructs and validates structured queries (e.g. Lucene-
and SQL-based) that can be executed against the list of in-
dices/data bases. This is of high importance, since one of

3see Table 2 for the whole set of answer types
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Segment Lexical Level Concept Instance Relation Potential Reference
q1 Which units - - hasLabel Unit Name/...
q1 are operating - Operating isValue Unit Status/...
- and - - hasAnd q1/q2
q2 have a provisional acceptance PAC Date - hasValue -
q2 after - - isLaterAs / followsAfter PAC Date/1968
q2 1968 - 1968 isValue Number/Date Concepts

Table 1: Example trichotomy-oriented representation within the processing for question: Which units are operating and have a
provisional acceptance after 1968?

the most common use cases of questions posed against the
system are list-based answers.

Question Type
What is a Mega Cluster ? Definition
Active units in China ? Domain List
Service region of New York ? Geo-spatial Factoid
ST and KSP with RNA ? Keyword
GT units with capacity ≤ 60MW ? Numeric
PAC date by next fiscal year ? Time/Date
SGT6 2000E NG60 ? Abstract

Table 2: Example questions by type posed against the sys-
tem.

Architecture
The question answering process in built as an Apache
UIMA4 pipeline. For each corresponding component de-
picted in Figure 4, a UIMA annotator has been developed
and incorporated. The overarching semantic principle of the
USI Answers system is the trichotomy of the representation
of concept, instance, and the relation that connects them.
That is, given an input question, the systems first tries to
identify those information units that represent domain-, or
database-specific concepts, and then the information entries
that represents an associated value or instance of an con-
cepts. Third, it tries to detect whether there is a relation-
ship between the identified objects (concept-instance rela-
tionship). See Table 1 for an example trichotomy-oriented
representation produced by the system.

This approach is needed since the data used in USI An-
swers consists primarily of (semi-) structured key-value as-
sociations stored within multiple Oracle database views. We
refer to semi-structured properties, as the considered infor-
mation units are not only single dates, numbers, tempera-
tures or entities, but also entire sentences, phrases, or com-
ment blocks. Due to this database-oriented nature of the tar-
get application, the expected answer type also differs to tra-
ditional (mostly factoid-based) QA systems. More precisely,
since a requirement of the system was to offer access to a
number of databases already in use, the developed QA sys-
tem was developed as a semantic layer that connects and

4Unstructured Information Management Architecture
http://uima.apache.org/

Figure 3: Overview of the system processing pipeline with
regards to the respective interpretation and answer signa-
tures. The interpretation signature can be adjusted based on
user interaction.

manipulates existing query interfaces and the respective as-
sociated data bases. The respective answers are thereby pri-
marily list-based that additionally involve joining of multi-
ple database tables. The overall system pipeline of USI An-
swers, as depicted in Figure 3, shows the discrimination of
the answer types that are send to the output controller.

The system pipeline works as follow: Each input ques-
tion is processed by identifying its semantic concept rep-
resentation. The semantic concept representation is defined
as the typified representation of the input question. Sub-
sequently, the respective interpretation signatures are gen-
erated (e.g 1968 7→ date(1968); number(1968); ...). There-
upon, the answer signature is constructed. An answer signa-
ture consists of an answer type (e.g. direct answers or SQL-
based), an answer property (e.g. numeric, date), and the ex-
pected database field where the answer may be found. That
is, the most confident interpretations are selected and com-
bined into individually ranked answer signatures. On the ba-
sis of the individual answer signature the system constructs
either an answer document (e.g. report), an answer query
(e.g. SQL), or produces the direct answer (e.g. factoid an-
swer phrase), which eventually is send to the output com-
ponent. Similar to other confidence-based approaches, each
of the integrated component produces confidences that are
used to score the individual interpretation. In the following
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section, we describe the QA component with regards to con-
fidence scoring and signature generation in more detail.

Knowledge Representation
This section describes the knowledge that is used in the
question interpretation and answering process, how it was
acquired and how it is represented.

USI Ontology Information units and concepts related to
the Oracle DB‘s are defined and represented in an ontol-
ogy. That is, each of the domain-specific concepts have been
defined, a short description was provided for each of them,
along with their database identifier. A set of 1,520 most com-
monly used synonyms have been identified and captured in
the ontology.

Primary Knowledge Bases We are using the information
structure as defined in the Oracle DBs, though, converting
each individual connected database view into a full text rep-
resentation by means of its Apache Lucene index represen-
tation (Hatcher, Gospodnetic, and McCandless 2010). Note,
that this data is both highly structured, in terms of clear key-
value association given (e.g. Country Name 7→ China), but
also consists of unstructured data (e.g. text extracted from
PDF reports). Currently, USI Answers uses 38 different DB
views, 36 different Apache Lucene indices, and 2 different
SPARQL endpoints. We refer to these data sources as the
Primary Knowledge Bases.

Secondary Knowledge Bases Secondary knowledge
bases are used as a resource for gathering additional ev-
idence for certain interpretation hypotheses, and for gen-
erating additional potential answers, which are not present
within the primary knowledge bases. For example, Siemens
Energy divides the world into service regions, geographical
units that correspond roughly to continents. Mapping coun-
tries to service regions requires a list of all countries in the
world. In the current release, the systems uses also multi-
ple open domain-based resources, such as DBpedia5, Free-
Base6, and GeoNames7.

In addition, various domain-specific dictionaries have
been compiled in order to capture about 12,000 regular ex-
pressions used to identify organization names as well do-
main specific objects (e.g. serial numbers). This informa-
tion is represented in RDF and stored using Franz’s Allegro
Graph8. Domain specific knowlege was obtained through
several interviews with a domain expert and formalized by
knowledge engineers. We continue to enrich and refine this
knowlegde.

Question Analysis
One of the first components that is applied within the
question-answering process is question analysis. Within this
analysis step, the systems normalizes the input stream, as
passed through the input dispatcher, by applying:

5http://www.dbpedia.org/
6http://www.freebase.com/
7http://www.geonames.org/
8http://www.franz.com/agraph/allegrograph/

Figure 4: Overview of the USI Answers workflow with re-
gards to the individual components.

• Question Normalization: Analyzing bracket-based group-
ing, resolving multiword units as indicated by quotes. Fur-
ther normalization can be augmented through a config-
urable rule-set.

• Metadata Annotation: Adding meta data information such
as user and session keys, prior selected data source restric-
tions, and security constraints needed downstream by the
security dispatcher component.

• Question Parsing: As the most traditional step in question
analysis, shallow parsing is applied. It includes lemmati-
zation, PoS-tagging, named entity recognition and disam-
biguation, syntactic chunk and the dependency parse tree
using the UIMA-based ClearTK annotator (Ogren, Wet-
zler, and Bethard 2008) in conjunction with Stanford Core
NLP9.

• Analysis Validation: This step is needed, so the system
can handle domain-specific input terms such as prod-
uct numbers and serial codes (e.g. 223/2 a39), which
may have been erroneously split, tagged, parsed or con-
catenated within the shallow parsing phase. The sys-
tem applies a list of syntax rules that re-validate the
entity information. There are currently 8 rules, all do-
main specific (e.g. an x between two numbers is a wild-
card for any expression between them (e.g. 25x3a1 7→
25A3a1;25B3a1;25C3a1;).

• Question Classification: Focuses on the identification of
the answer signature. That is, analyzing the question type
(e.g. factoid or list-based), the representation mode (e.g.
direct answer, sql-statement), and the question focus (e.g.
referenced entity object). The latter is identified by apply-
ing the rule-based approach as proposed by (Schlaefer,
Gieselman, and Sautter 2006). We use 12 syntactic rules
(e.g. a WP-VBZ-[NE/PER] sequence refers to a PER-
SON).

For each of the corresponding modules an UIMA annotator
has been developed and incorporated, as the Question Anal-

9http://nlp.stanford.edu/software/corenlp.shtml
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ysis component in the overall QA processing pipeline (see
Figure 4).

Query Generation
The next task in the processing pipeline is query generation.
As a result of the question analysis, we are able to directly
access the individual (parsed) question tokens and objects
respectively. The query generation component produces a
search query with reference to the specific knowledge base
query syntax for each accounted input object. Currently, this
component supports Dictionary- and Regular Expression-
based look-ups, but also Apache Lucene-, SparQl-, and SQL-
based query syntax formats.

Candidate Search
Within the candidate search component, the system aims to
identify and resolve the different concepts that may be in-
terlinked. In general, following the trichotomy-oriented rep-
resentation as described and depicted in Table 1, the system
tries to search for and distinguish between concepts (called
answerFields - e.g. PAC Date), concept values instances
(called searchFields - e.g. operating) or already augmented
key-value pairs (called domainFields - e.g. Country Name :
China). In addition, this component annotates the relation-
ship properties between key-value pairs and identifies time-
and-date-references within the query. That is, each time ref-
erence, such as the expression today will be annotated by
its time value in terms of Oracle time stamp. The query-
expansion module queries the SPARQL endpoint trying to
collect different surface forms of a single entity (e.g. GE vs.
General Electric). The open domain knowledge module col-
lects data as gathered within the DBpedia dataset (Auer et al.
2008). For each of the corresponding components an UIMA
annotator has been incorporated in the overall QA process-
ing pipeline.

Soft Filtering
Soft Filtering is applied to detect and (pre-)validate the dif-
ferent relations and objects assigned within by candidate
search component. Based on pre-learned prior models, we
remove first relationships (e.g. searchFields annotations)
and initially rank the different annotations referenced to the
respective query question tokens (e.g. MW has an higher
probability to refer to mega watt than to milli watt).

This component is of importance as the different con-
nected knowledge bases may assign a number of different
annotations to single and multiple terms of the input ques-
tion.

Hypotheses Generation
This component generates different question interpretations
(i.e. hypotheses of what the question might mean). More
precisely, on the basis of the candidate search component,
it generates different hypothesis of how the answerFields
(concept) and searchFields (instance) are connected to each
other (e.g. direct or implicit) (relation):
con(Serial No.); rel(larger than); ins(1968);
hypothesis1(con,rel,ins);
confidence1(hypothesis1,0.76);

Since each concept and value have multiple representa-
tions assigned, which may be connected over multiple re-
lationships (e.g. textual representation of date or num-
bers), the list of different hypothesis can get very com-
plex. In addition, this component gathers also hypothe-
ses (on e.g. geo-reasoning) that need to be applied if the
focus of the question is targeting a location. An RDF-
based open topic grammar gathers hypothesis on defini-
tions that may be needed to answer the question. For exam-
ple, given a pattern such as WP-VBZ-NE, a DBpedia query
is constructed by focusing on the entity type has abstract
(e.g. http://dbpedia.org/ontology/abstract) for definition an-
swers.

ST Rt Conf. 1968 Rt Conf.
Elem. Co. isValue 0.95 Serial No. partOf 0.23
Unit Type hasValue 0.67 PAC timeRef 0.88
... ... ... ... ... ...

Table 3: Example ranking of concept hypothesis relations for
the lexical entries ST and 1968. Each lexical entry is inter-
linked to a list of possible interpretations (e.g. Elem. Co.,...),
relations types (Rt), and confidence scores (Conf.)

Hypothesis Scoring and Ranking

The next component in the question answering pipeline uses
the different hypotheses generated from the latter module
to assign confidence scores, which indicates the probability
that a given surface (terms/phrase) is represented through
a given concept (see Table 3). For example, the phrase: ”
country is not mx ” is mapped to country-name ! = mexico
|| country-code ! = mx .

For each hypothesis, the system tries to collect evidence
support to have a hypothesis validated. In the latter exam-
ple, it connects to the list of secondary knowledge bases to
resolve mx as an possible country code that may be a repre-
sented through the label mexico, though country needs to be
converted either into country code or country name.

In addition, the system utilizes learned models (referred
to as post models) to re-validate and re-rank certain key-
value associations. These models have been trained by us-
ing user-defined database views and their associated labels.
For example, the users have defined views on the utilized
data base in the form of a simple query syntax: company :
siemens AND primary-fuel : coal AND turbine-status: st. On
the basis of these data queries, we have trained the model to
perform not only a confidence-based disambiguation of the
gathered hypothesis, but also to iteratively and automatically
capture domain knowledge as authored by the Energy ex-
perts. We have used 1,770 user-defined views for training.10

In the last step, after all confidence scores are assigned to the
different hypotheses, a final interpretation object is build to
be passed to the knowledge base router module.

10Note that for the experiments we have applied a 5-fold-cross-
validation, not the entire gold-standard set.
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Knowledge Base Router
As our primary knowledge sources consist of multiple data
base views and Lucene indices, this component is needed
to detect and select the appropriate data sources for joining
and querying. That is, based on the ranked confidence scores
of hypotheses it collects data sources that are involved and
ranks them by their distribution (in terms of number of hy-
potheses used) and their associated confidences. In terms of
SQL syntax, it detects the order of database joins of differ-
ent tables to be applied. In addition, it detects whether we
need to combine structured and/or unstructured data sources
to answer the question.

Query Translation
The query translation component uses the information gath-
ered by the latter two modules, hypothesis ranking and
knowledge base router, to construct the final query in the
representative query language. Within the current setup, the
system incorporates four different translation modes. It auto-
matically constructs SQL, Apache Lucene, SparQL and So-
lution Object queries. The latter refers to domain-specific
object representation used with the target application. In ad-
dition, this component defines also the DB, RDF or Lucene
columns where the potential answer value is found. Finally,
it defines the so-called representation mode and its property
that needs to be propagated to the user. For example, it in-
dicates whether the answer is already generated, in terms of
a direct factoid, or it refers to a list-based answer and there-
fore the generated query needs to be executed to gather the
answer list.

Answer Extraction
This component focuses on the actual answer projection for
a given input question. That is, it applies either the factoid
filter, with regards to definitional questions, or applies the
answer post-processor by using post-calculation and com-
putation. Finally, based on the resultant answer mode, if
present, the direct answer or the answer query is passed to
the output dispatcher.

Answer Manager
The answer manager coordinates the backend and frontend
communication within the question answering. It executes
the query by means of the respective representation mode
(e.g. SQL, SparQL or direct answer) and communicates the
results via an interface to the frontend. In addition, this com-
ponent provides a number of web services with regards to
geographic and statistical visualization of the answers.

Security Dispatcher
The question answering pipeline connects to the security
dispatcher to validate both that the user has access to the
required data sources as well as to the specific data items
that might be part of an answer. The security model divides
users into certain groups, and assigns row based-access per
such group. A user can belong to one or more such groups.

Development, Deployment, and Use
The system was developed by a team of about ten to twelve
engineers and scientists from Siemens Corporation, Corpo-
rate Technology, located in US, Germany, and Romania,
over the course of 3 years11. USI Answers has been in use
by Siemens Energy Service since May 2012 and is being ac-
cessed regularly by more than a thousand users in 18 coun-
tries. It is still under active development and it receives reg-
ular updates, several times per year.

User experience has been very positive, the general feed-
back being that semantic search integration simplified user
experience, particularly for new users. It lowered medium
complexity cases by about 75 percent. For example, the
search for North American open market units missing next
outage went from 90 seconds to 15 seconds (time includes
definition and execution). The number of steps required for
the user to perform more complex searchs dropped by 90
percent. The number of failure points (i.e. points where users
typically get confused about what to do) dropped by more
than 95 percent. Consequently, Siemens Energy was able to
lower the initial new user training course times by more than
50 percent while more than doubling the rate of user reten-
tion more than doubled. (Usage of the system is optional).

User comments also shifted from comments such as ”sys-
tem is impressive but too overwhelming” to ”system thinks
like me. It is very intuitive”.

Experiments
Due to the absence of an existing evaluation corpus in the
context of automatic SQL conversion, we constructed such
a corpus by ourselves, with a special emphasis on abstract
question/query types (see Table 2). The goals of the experi-
ments conducted were threefold. First, we were interested in
the onverall performance of hypothesis generation and rank-
ing by observing directly the concept-instance pairs gener-
ated by the system. Is the system able to rank and assign
the right concept relation by just looking at a single value,
without any references given? Second, the entire query was
analyzed by removing again all concept references, and try-
ing to have the system disambiguate and resolve the con-
cept references, and to construct the gold standard repre-
sentation in SQL syntax. Third, we were interested in ana-
lyzing the performance of the individual components of the
QA pipeline, in particular we focused on the influence of
the prior- and post model learning components within the
USI Answers. For all experiments, we applied a 5-fold-cross-
validation technique was used, and relevance was measured
as recall and precision at rank k (P@k).

Dataset
The reference corpus (i.e. gold standard) used in the evalua-
tion was compiled from 1, 770 database SQL query views,
which have been converted into an abstract key-value-based
representation (see example template below). These views
were collected from 395 users that could define such

11This is the total time that it took to develop the whole USI
project which USI Answers is part of
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database views by means of aggregating different SQL
commands through a query builder interface and provide a
name for each of them.

Example entry of a named view used for evaluation
Template: #VIEW DESCRIPTOR (

KEY:VALUE AND/OR/NOT
KEY:VALUE ...

)
...
Example: Generator 156(

GENERATOR_FRAME_T:*115/36* AND
GENERATOR_SERIAL_NUMBER_T:12* AND
FRAME_FAMILY_GR_DISPLAY_T:(SGT5-4000F) AND
...
)

We have used only those views that had a minimum num-
ber of two key-value pairs. The resultant reference corpus
consisted of 1, 142 named views, with 8, 733 key-value
pairs. Note that, on average, each SQL view comprises 7.6
key-value pairs. For the experiments, all key references (e.g.
generator frame,...) have been removed. That is only the
respective values (e.g. 115/36) have been used as an input
to the QA system.

Example input question representation, (from above ex-
ample), used as an input within the evaluation setup.
Input: *115/36* 12* (SGT5-4000F)

For each input representation, the system was evaluated
by measuring the hypothesis ranking of the concept-instance
pairs, as well as with regards to the prediction of the full
initial input query. As an answer signature, the automatic
SQL translation mode has been used.

Generated SQL result entry example, as constructed
within the evaluation setup.
Output: select GENERTOR_FRAME from T1 where

GENERATOR_FRAME like ’%115/36%’ and
GENERATOR_SERIAL_NUMBER like ’12%’ and
FRAME_FAMILY_GR_DISPLAY = ’SGT5-4000F’

Results
The results of the experiments are depicted in Table 4 and
Table 5. In order to evaluate the contribution of each com-
ponent in the QA pipeline, we constructed fours versions of
the system by ablating different modules: All refers to the
use of the entire QA pipeline; No Post refers to the pipeline
without the usage of the post models; No Prior refers to the
version without the usage of the prior models, and No Init to
that without the initialized confidence scores as produced by
the candidate search component.

The analysis of the hypothesis generation and ranking
components of the system, done by means of observing con-
cept instance pairs, the results, as depicted in Table 4, show
with a recall of 0.948 and a precision at rank 1 of 0.765, a
good performance with regards to accuracy, and a very good
performance with regards to recall. The experiments on the
entire view name prediction, as depicted at Table 5, highlight
again the effectiveness of the system, even though, handling

Rank P@k All No Post No Prior No Init
Recall@1 0.948 0.947 0.948 0.948
Rank P@1 0.765 0.517 0.365 0.290
Rank P@5 0.779 0.533 0.387 0.314
Rank P@10 0.779 0.533 0.387 0.315

Table 4: Results of the evaluation experiments using 8, 733
key-value pairs from 1, 142 named views. Each key has been
deleted and tried to reconstruct by USI Answers application.

only a partial re-constructed representation. More precisely,
as Table 5 shows, applying the QA pipeline on the entire
query, with on average 7.6 key-value pairs, the system is able
to re-construct concept-instance references with a precision
of 0.765 (see Table 4), but is still able to rank, with a p@1 of
0.908, the correct full SQL query view at rank one.

Rank P@k All No Post No Prior No Init
Recall@1 0.921 0.921 0.920 0.858
Rank P@1 0.908 0.901 0.898 0.742
Rank P@5 0.957 0.949 0.955 0.895
Rank P@10 0.974 0.969 0.973 0.935

Table 5: Results of the evaluation experiments using 1, 142
named views. For each view the entire list of keys has been
removed. The QA system used the partially reconstructed
key-value representation, to predict the representation of the
initial golden-standard view name.

Analyzing the individual components of the QA pipeline,
a clear influence of the learning modules can be identi-
fied. Note that the post model focus on reassessing the pre-
dicted concept-instance-relationship triple by its confidence
scores, while the prior models emphasize the lexical repre-
sentation of the input question only. The initial confidence
scores as produced by the candidate search component fo-
cuses also on the lexical representation by means of do-
main dictionaries and lexicons. Not surprisingly, without the
learning components the precision drops within both experi-
mental setup significantly. The initial precision of 0.742 (see
Table 5) of the system without the learning components can
be traced to the actual setup of the experiments. More pre-
cisely, as a baseline the system compares the value-only-
based representation with the fully typified (gold standard)
representation, which reaches, in the 5-fold-cross-validation
scenario, a precision of more than 0.74 and a recall of 0.85,
by means of computing the cosine similarity between both
lexical representations. In the context of negative exam-
ples, the system often failed on questions that consisted of
a combination of concepts and instances (e.g. SGT6-5000F
- W501F vs. serial number - generator number), which
have eventually the same number but are differently de-
fined by the user within the named view. Other failures of
the system could be traced to the limited coverage of the
encoded domain knowledge and to incomplete tagging and
pre-processing errors.
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Conclusion and Outlook
We deployed USI Answers as a natural language question
answering system for semi-structured Siemens Energy data.
The system offers easy access to enterprise data to thou-
sands of business users in 18 countries. The system allows
users, even with a limited familiarity with technical systems
and databases, to pose questions in a natural way and gain
insights of the underlying data sources available. It makes
aparent the system’s interpretation of the query, and allows
easy query adjustment and reformulation. We evaluated our
approach on a dataset consisting of SQL-based fleet data
by focusing on a threefold analysis, comprising hypothesis
generation, ranking and component performance. While the
current evaluation emphasized abstract question types, we
aim to extend it the future, in the context of geo-reasoning
and domain-specific factoid question types. Currently the
UIMA-based QA pipeline is tailored to the Energy domain.
However, in future work, we are interested in applying it
to other usecases and data coming from domains such as
healthcare and industry.
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