
 
 

 
 

Abstract 
Emergency workers engaged in strenuous work in hot 
environments risk overheating and mission failure. We 
describe a real-time application that would reduce these 
risks in terms of a real-time thermal-work strain index (SI) 
estimator; and a Markov Decision Process (MDP) to 
compute optimal work rate policies. We examined the 
thermo-physiological responses of 14 experienced U.S. 
Army Ranger students (26±4 years 1.77±0.04 m; 78.3±7.3 
kg) who participated in a strenuous 8 mile time-restricted 
pass/fail road march conducted under thermally stressful 
conditions. A thermoregulatory model was used to derive SI 
state transition probabilities and model the students’ 
observed and policy driven movement rates. We found that 
policy end-state SI was significantly lower than SI when 
modeled using the student’s own movement rates 
(3.94±0.88 vs. 5.62±1.20, P<0.001). We also found an 
inverse relationship between our policy impact and 
maximum SI (r=0.64 P<0.05). These results suggest that 
modeling real world missions as an MDP can provide 
optimal work rate policies that improve thermal safety and 
allow students to finish in a “fresher” state. Ultimately, SI 
state estimation and MDP models incorporated into 
wearable physiological monitoring systems could provide 
real-time work rate guidance, thus minimizing thermal 
work-strain while maximizing the likelihood of 
accomplishing mission tasks.  

 Introduction   
In this paper we describe an emerging real-time decision 
making application for emergency workers whose jobs 
often demand long periods of work while wearing personal 
protective equipment in challenging environments. 
Examples of teams who could benefit from this include the 
National Guard Civil Support Teams (CST) who respond 
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to incidents involving chemical and biological risks (e.g. 
figure 1), wild land firefighters, or military personnel. 
  
 
 
 
 
 
 
 
 
 
Figure 1: National Guard CST Members Conducting a Casualty 

Evacuation Exercise While Wearing Chemical Protection. 
 
 We address the problem that hot environments 
combined with heavy workloads and cumbersome 
protective equipment pose both an acute risk of heat 
strain/stroke (Sawka and Young 2006; Bouchama and 
Knochel 2002); and a longer term degrading effect upon 
performance (Cheuvront et al. 2010). Current techniques to 
manage the long term thermal safety and performance of 
these teams are based upon work-rest tables (OSHA 1985, 
TBMED 507, 2003). These tables prescribe alternating 
periods of work and rest, with the duration of each phase 
based upon the environmental conditions, proposed work 
rates, and protective equipment being worn. However, this 
approach does not take into account the actual state of the 
human. Real time physiological monitoring has been 
proposed as a way to manage the risk of acute thermal 
injury (Bernard and Kenny 1994), but has often lacked a 
well validated means to assess thermal work strain.
 Physiological monitors that track activity and/or heart 
rate are being used with some virtual training applications 
(Chi-Wai et al. 2011). Applications can provide guidance 
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to improve training based on exercise at the right heart rate 
intensity, or activity profiles that over time will meet 
Center for Disease Control (CDC) guidlines. A more 
advanced system proposed by Lopez-Matencio et al. 
(2010) uses a k-nearest neighbors approach to advise 
runners in real time which training track to take. Track 
advice is based upon their current heart rate, desired 
training heart rate, track footing, and ambient temperature. 
However, these applications focus on open ended goals 
versus the time, safety and performance constraints placed 
upon emergency workers.  
 Our application develops a real-time non-invasive 
thermal work strain state estimator for use with 
physiological monitors and combines this with a Markov 
decision process (MDP) model of the goals and constraints 
of a mission. Using this framework the intent of our 
application is to optimize the accomplishment of mission 
goals, individual safety, and long term team performance 
potential. To realize this system, both health state and 
policy estimation research questions need to be answered. 

Health State Estimation 
A simple index of thermal-work strain (Moran et al. 1998), 
can be calculated from heart rate (HR) and internal 
temperature (IT). This thermal-work strain index (SI) is a 
weighted combination of HR and IT (see eq. 1) that ranges 
from 0 (no strain) to 10 (very high strain). An SI of 10 is 
achieved at a HR of 180 beats/min and an IT of 39.5 °C 
(103.1 °F) corresponding to a level of thermal-work strain 
associated with a 50% likelihood of becoming a heat 
casualty (Sawka and Young 2006).  
 

 
        (1) 

 
Typically, routine estimation of SI in field environments 

has been hampered by the need to invasively measure IT 
using rectal or esophageal probes or thermometer pills.  
Fortunately, recent work suggests IT can be estimated non-
invasively from time-series HR data (Buller et al. 2010), 
simplifying ambulatory assessment of SI in free-living 
individuals.  

From classic exercise and thermoregulatory physiology, 
we know HR reflects both metabolic heat production and 
the amount of blood shunted to the skin to dissipate excess 
metabolic heat.  Recognizing that HR is a “noisy” 
reflection of IT, we used a simple Kalman filter (KF) to 
infer IT, and thus SI. The result was IT estimates superior 
to other current state-of-the art methods. In addition, recent 
analysis of 12 laboratory and field studies (unpublished) 
found that the KF estimates had a bias of −0.03 ± 0.32 °C 
indicating that ~95% of all estimates fell within ± 0.63 °C 
of the observed IT. Using direct measures of HR and 

inferred IT we have been able to estimate and display 
accurate estimates of SI in real-time during field exercises 
(e.g. see Android tablet display in figure 1). 
Policy Estimation 
We focused on two questions: 1) is it possible to 
adequately express the tasks, risks and goals surrounding 
thermal-work strain management in terms of a simple 
MDP that would provide a realistic policy?, and  2) would 
any derived policy perform better than the solution 
provided by the human agents themselves, responding to 
their own self-perceived physiology? To answer these 
questions we developed an MDP to model the U.S. Army 
Ranger Training Brigade course selection road march, and 
compared our optimal policy and its effect on SI to real 
world data. The road march had several attractive features 
that relate to our overall systems goals. First Ranger school 
has a series of arduous tasks that must be completed for 
students to graduate. Thus finishing the road march with as 
low an SI as possible is an advantage, conserving 
physiological reserves needed for subsequent events. 
Second as the Ranger students are very fit, motivated, and 
experienced in extreme conditions, finding a policy that 
improves upon their performance is non-trivial. Finally, the 
SI safety constraints we wish to place upon our policy are 
needed in this training environment, as one student from 
our data collection was medically withdrawn from the road 
march due to hyperthermia with an SI of 10. 

Experiment 
The U.S. Army Ranger students needed to complete an 
eight-mile road march while carrying 32 kg (70 lbs) within 
130 min or be dropped from the Ranger School. The road 
march was one of a series of demanding tasks scheduled 
for the week. The road march was conducted at night in 
temperatures of ~25°C and 85% relative humidity. The 
required march pace was such that students often needed to 
run parts of the course. Students applied different strategies 
to completing the march.  Some started quickly and then 
reduced speed, while others started slowly then increased 
speed to complete on time, yet others kept a consistent 
pace. Our experimental goal was to demonstrate: 1) we can 
learn a policy that allows students to complete the course 
on-time and avoid hyperthermia; and 2) that the policy also 
allows students to complete the course with lower final SI 
scores than without using our policy.  

Subjects and Measures 
Fourteen male U.S. Army Ranger students who averaged 
26±4 years of age; 1.77±0.04 m in height; weighed 
78.3±7.3 kg; who carried loads of 31.5±1.1 kg and had 
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14.4±3.8% percent body fat (mean ± standard deviation 
(SD)) were used for this analysis.  
 Direct measures of HR (Equivital I heart rate monitor, 
Hidalgo Inc. Cambridge UK), and IT (Jonah Ingestible 
Thermometer Pill, Respironics, Bend OR) were collected 
in 1 minute intervals. Times to complete each mile of the 
course were derived from location data collected from GPS 
units worn by each student (Foretrex 101, Garmin, Olathe, 
KS). SI scores were computed according to equation (1) 
using observed IT and HR and resting values of 71 
beats/min and 37.1 °C (Moran et al. 1998). Tri-axial 
accelerometry data were collected at the chest at 25.6 Hz.  

Markov Decision Process 
An MDP describes an environment where by a set of states 
(e.g. S:={SI, distance to goal, time}) an agent can assume, 
and a set of possible actions (A:={movement speeds}).
 An in-depth description of an MDP can be found in 
Russell and Norvig (2010). In our environment the goals 
and health constraints are described by assigning rewards 
(R) and penalties (negative rewards) for being in various 
states at certain times. Our Ranger training road march has 
a finite horizon. Thus the utility (U) of a sequence of states 
can be computed from the sum of rewards (R) for being in 
each state over time (equation 2): 
 
         (2) 
 
 The transition from one state to another is determined by 
the current state, the chosen action and the transition 
probabilities to the new state (P(S’|S, A)). A policy (π) is a 
mapping from states to actions that prescribes an action to 
be taken in each state. For any policy we can compute a 
utility function over states for that policy starting in state s 
as the sum of expected rewards over time (equation 3). 
 

             (3) 
 
 At each time point there will be an optimal policy that 
for each state will determine the optimal action to be taken 
which provides the most utility from that point on until the 
end goal is reached:   
 

            (4) 
 
 With a constrained state space, known transition 
probabilities, and finite horizon this optimal policy can be 
computed using dynamic programming.  

Ranger Road March MDP Definition 
The goals of the actual road march were simple. Complete 
the 8 mile road march in 130 min or less or be dropped 
from the course. Given that thermal state (IT) changes 

relatively slowly, a time interval of 5 min was selected 
enabling a more thorough search of the transition 
probabilities state-action space.  
State Definition 
For states we use SI, in integer units; distance (D), 
completed in units of 0.0417 miles or the fraction of a mile 
that can be completed at 0.5 miles per hour (mph) within 5 
minutes; and time. Thus: St:={{SI},{D}} Where: 
SI:={1,…,14}, D:={0, 0.0417, … , 8.9583, 9}. 
Action Definition 
Actions were constrained to just movement speeds from 0 
to 7 mph in 0.5 mph increments, thus A:={0, 0.5, 1,…, 6.5, 
7.0}. Figure 2 shows the resulting directed acyclic graph 
that represents our state-action space.  
 
 
 
 
 
 
 
 

Figure 2: Graph Representation of our State-Action Space. 
Reward Definition 
Two types of rewards were used in the definition of our 
MDP, (a) immediate rewards for SI at each time point to 
model safety limits; and (b) end state rewards for D and SI 
to model the course completion requirement, and the goal 
to finish with as low an SI as possible. The end state 
reward (t=130) for D was represented by a reward of 0 for 
completing the course on time (D≥8 miles), and a penalty 
of −1000 (D<8 miles) for not. Immediate and goal reward 
functions for SI are presented in table 1. 

 
SI 1 to 8 9 10 11 ≥12 

Rt<130 0 −100 −500 −2000 −5000 
Rt=130 100−10(SI−1) −100 −2000 −5000 

Table 1: Immediate and End-State Reward Functions for SI. 
 

The end-state SI rewards are designed to allow the students 
to complete the course with the lowest possible SI. 
R(SI)t=130 shows that finishing with a lower SI is better 
than finishing with a higher SI. However, finishing with 
SI’s > 9 is not good. The −100 reward for an SI of 10 
indicates that it is acceptable to push to complete the 
course on time. However, an SI > 10 is an unacceptable 
end state, hence the large negative penalties. The 
immediate reward function R(SI)t<130 shows that it is 
equally fine for students to have an SI between 0 and 8 
during the race but above 8 penalties will accrue. The 
negative rewards for both SI’s of 9 and 10 allow for one or 
several steps to be taken at these high SI’s and still receive 
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higher utility than not completing the race on time. 
However, the very large negative rewards of SI’s > 10 are 
designed to indicate that stopping the race for health is 
better than completing. 
Transition Probabilities 
For distance traveled we placed a small amount of 
uncertainty (N(0,1)) around the distance travelled in 5 
minutes for a given movement speed. The transition 
probabilities are shown in table 2 where d=D+A(5/60). 

 
D’ −.126 −.084 −.042 d +.042 +.084 +.126 
P .01 .05 .24 .4 .24 .05 .01 

Table 2: P(D’|D,A), where d= D+A(5/60). 
 
In general, the SI transition probabilities are complex, 

and are dependent on a large number of factors such as 
work rate, personal characteristics (body surface area, fat 
mass, fitness, acclimation), environmental conditions 
(ambient temperature, relative humidity, wind speed, solar 
load), and clothing characteristics (insulation properties 
and vapor permeability). While these dynamics are 
complex they have been captured to a high fidelity in 
physics- and physiology- based thermoregulatory models. 
The SI transition probabilities were learned by Monte 
Carlo approximation using the SCENARIO (Kraning and 
Gonzalez, 1997) thermoregulatory model to simulate the 
responses of humans under similar conditions to the 
Ranger training road march. For the model runs the mean 
personal characteristics of our students were used. Mean 
environmental conditions obtained from a nearby airport 
weather station were air temperature = 24.4 °C, relative 
humidity = 85.3%, black globe temperature = 24.4 °C, and 
wind speed 2.75 m/s. Clothing insulation and vapor 
permeability parameters for the modeling were measured 
from copper manikin tests of the uniform used by the 
students (clothing insulation factor = 1.3 CLO, and vapor 
permeability (im) = 0.42). Metabolic rate was computed 
from movement speed, height, weight and load (assuming 
an average course grade of 0 and movement over hard top 
for a terrain factor of 1) using the equation developed by 
Pandolf, Givoni and Goldman (1977) with the Givoni and 
Goldman (1971) running correction factor. With starting 
SI’s ranging from 1 to 9 all combinations of actions in our 
action set were run over six 5 minute intervals. Each 
conditional transition probability space had at least 104 
samples.  

MDP Learning 
We wish to learn a policy function that for any state 
(Time=t, SI=si and D=d) provides us with an action that 
maximizes the expected utility until our goal is reached. 
An optimal policy for any time point on our road march 
course can be defined as follows:  

 (5) 
 
A set of optimal policies can be solved iteratively using 
dynamic programming. Starting at the end of the race the 
policy at time point 125 ( ) is easily computed, as 
the utility function (U130(s)) is defined by the goal rewards. 
Next  can then be computed using the previously 
computed U125(s) function and so on, where the current U 
is computed as: 
 

   (6) 

Analysis 
For this analysis, since we were unable to provide real-time 
guidance to Ranger students during the road march, we 
utilized the SCENARIO model to both simulate the 
individual SI responses of the students using their self 
paced movement (SImodel), and simulate the SI responses 
when conforming to the learned policy (SIpolicy). Observed 
SI (SIobs) was compared to SImodel by examining the mean 
root mean square error (RMSE) and bias to verify that the 
model provided an accurate simulation of the Ranger 
student’s responses. We then compared SImodel and SIpolicy 
values at the end of the road march using a paired t-test. 
We examined the relationship between the degree of 
impact (SImodel−SIpolicy, at t=130) of the learned policy to 
the maximal SImodel and SIobs reached during the march by 
Pearson correlation. Finally, we examined the actual 
movement profile (presented as stride frequency 
spectograms for the road march) of four students; two 
where the policy had the least impact and two where the 
policy had the most. Stride frequencies (proportional to 
movement speed) were found by applying fast Fourier 
transforms (FFTs) to the vertical axis accelerometry data. 
The alpha level for all hypothesis testing was set at 0.05. 

Results 

SI Transition Probabilities 
Figure 3 shows three sets of SI transition probabilities in a 
gray scale map where black = 0 and white = 1. 
 
 
 
 
 
 
 
 
 

Figure 3: Transition Probabilities for SI of {1, 5, 9}. 
Grid Shade=P(SI’|SI,A) where White =1 and Black=0. 
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Policy Efficacy 
Figure 4 shows the mean group responses for the SIobs 
(gray), SImodeled (black), and SIpolicy (dashed). SImodeled 
differs from SIobs with  a bias of −0.26 and RMSE of 1.34 
± 0.45 SI units. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Mean Group Responses for the SIobs (gray), SImodeled 
(black), and SIpolicy (dashed). 

  
 The SIpolicy responses have a significantly lower end 
point at 130 minutes than SImodel with a mean of 3.94 ± 
0.88 versus 5.62±1.20 (t=2.16, P<0.001). Thus the policy 
had an overall mean impact of 1.67 SI units, and allowed 
the students to end with a “Low” thermal strain compared 
to a “Moderate” thermal strain (Moran et al. 1998). For all 
students the end-point SIpolicy was lower than the end-point 
SImodeled and the maximum SIpolicy score reached by any 
student was < 8.6. 
 The mean of each student’s movement speeds when 
following our policy are shown in figure 5.    
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Mean of Speeds Taken for Each Student According to 

our Optimal Policy ± SD. Running is at Speeds > 4.5 mph. 
 
 Figure 6 shows the stride frequency spectograms for the 
whole road march course for four students. Panel A and B 
show the movement profiles where the policy had the least 
impact with differences in end point SI of 0.63 and 0.75 
units. Panel C and D show the movement profiles where 
the policy had the most impact with end point differences 
in SI scores of 3.14 and 2.18 units. The movement rates of 
the students can be seen as highlights around ~2 Hz 
(walking) and ~3 Hz (running). These charts show that 

where our policy had least effect these students were 
already following our optimal policy (start fast, end slow). 
For the two students where the policy had the most affect it 
can be seen that one continually transitioned between walk 
and run (C), while the other starts and ends with walk run 
transitions (D).  
 The correlation between the policy impact and 
maximum SImodeled is 0.635 (P < 0.05); and maximum 
SIobserved is 0.352 (not significant, N=14) but 0.622 (P<0.05, 
N=13).  
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Stride Frequency Spectrograms of Students where the 
Policy had the Least (Panel A and B) and Most (Panel C and D) 
Impact. Light shades indicate more energy. Stride frequency is 
proportional to movement speed. Walking speeds are around 
2Hz, and running speeds around 3Hz. Movement patterns for the 
whole road march run from the bottom of the chart to the top. 

Discussion and Conclusions 
The SCENARIO human thermo-regulatory model was able 
to accurately estimate the SI responses of the Ranger 
students with a small bias and RMSE close to one. Thus, 
SCENARIO provided a means to generate valid estimates 
of the student’s thermoregulatory responses to our policy. 
Using this modeling approach, we found that the learned 
policy allowed all students to complete the course on time, 
with a lower SI, and without hyperthermia. Even though 
our learned policy is conservative with respect to avoiding 
high SI’s, the policy allowed the students to finish in a 
significantly less thermally stressed state. Thus we 
conclude that this road march task can be modeled as a 
simple MDP which can generate a policy that is likely to 
improve the performance of these experienced students. 
This suggests that other MDP policies could be developed 
for other physically-demanding Ranger School events 
which could help students finish tests with the least amount 
of work and thermal stress possible. 
 While the modeling suggests that our learned policy is 
effective at reducing the end state SI score is it a 
reasonable policy that could be followed by people? The 
initial fast run and walk transitions appear, at first glance, 
peculiar. However, when we examine the actual movement 
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rates of students (see figure 6) many adopt this same 
movement pattern. This reflects the fact that the needed 
early steady state pace would force an unnatural, and 
energy inefficient gait that is between a walk and a run 
(Paroczai and Kocsis, 2006). To avoid this awkward gait 
the policy we learned instead alternates between an energy-
efficient walk and an energy-efficient run.  The fact that 
this pattern is learned by the model where only thermal 
work strain is a factor is notable. When we examined the 
movement profiles of students where the policy had 
minimal impact we found that their actual movement 
profiles were similar to the learned policy (start fast, end 
slow). Conversely where the policy had a large impact the 
student’s movement profiles were quite different. 
Additionally, we found a positive relationship between the 
degree of impact and the maximal SI obtained during the 
road march. This relationship held for SI from both 
modeled mile times and the observed data (albeit a student 
with highest SI had to be removed for the relationship to 
hold for N=13), suggesting that our learned policy was 
realistic and achievable and likely to result in an overall 
less thermally stressful road march. 
 Deploying this as a real system for the Ranger students 
would be fairly simple. Our thermal work strain state 
estimator is already implemented in an Android tablet that 
receives data from a wearable physiological status monitor 
(see figure 1). The tablet is GPS enabled and thus distance 
could be calculated. A policy would need to be generated 
for the environmental conditions of each prospective road 
march. Then, given the real time estimates of SI the tablet 
would be able to prompt the student with the optimum pace 
for each 5 minute segment. 
 These results also suggest that this technique shows 
promise for other areas such as marathon races where an 
athlete may desire to finish with the best time possible but 
avoid hyperthermia. Similarly, in cycling a safe and 
effective pacing strategy is desired. Atkinson et al. (2003) 
suggest “More research, using models and direct power 
measurement, is needed to elucidate fully how … pacing 
strategy might save time in a real race and how much 
variable power output can tolerated by a rider.”  
 In conclusion this study has shown that it is possible to 
adequately express the tasks, risks and goals of an arduous 
physical activity in terms of a simple MDP. Solving the 
MDP for an optimal policy provided a realistic policy that 
allowed humans to perform their task according to pre-set 
goals and finish in a state of less thermal strain than would 
occur if they were left to follow their own training and 
instincts. These results suggest that live physiological state 
estimation, when coupled with MDP models of constrained 
real-world tasks, can optimize work rate policies to 
improve safety and reduce overall thermal-work strain 
burdens.  

Disclaimer 
The views expressed in this paper are those of the authors 
and do not reflect official policy of the Department of the 
Army, Department of Defense, or the U.S. Government. 
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