
Balancing the Traveling Tournament Problem
for Weekday and Weekend Games

Richard Hoshino
Quest University Canada

Squamish, British Columbia, Canada

Ken-ichi Kawarabayashi
National Institute of Informatics, Tokyo

JST-ERATO Kawarabayashi Large Graph Project

Abstract

The Traveling Tournament Problem (TTP) is a well-
known NP-complete problem in sports scheduling that
was inspired by the application of optimizing sched-
ules for Major League Baseball to reduce total team
travel. The techniques and heuristics from the n-team
TTP can be extended to optimize the scheduling of
other sports leagues, such as the Nippon Professional
Baseball (NPB) league in Japan. In this paper, we de-
scribe the additional scheduling constraints required by
the NPB league, such as the requirement that each team
play the same number of weekend home games, week-
day home games, weekend road games, and weekday
road games. We fully solve this TTP-variant for the case
n = 6, and conclude the paper by presenting the official
2013 NPB Central League Schedule, where we helped
this Japanese baseball league reduce total team travel by
over six thousand kilometres.

Introduction
Nippon Professional Baseball (NPB) is Japan’s largest and
most well-known professional sports league, with over 22
million fans each season, and annual revenues topping one
billion U.S. dollars. In terms of actual attendance, the NPB
ranks second in the world among all professional sports
leagues, ahead of the National Football League, the National
Basketball Association, and the National Hockey League.

The NPB is split into the six-team Pacific League and the
six-team Central League. Each team plays 144 games dur-
ing the regular season, with 120 intra-league games (against
teams from their own league) and 24 inter-league games
(against teams from the other league). To complete these
1
2 × 12× 144 = 864 games, the teams travel long distances
from city to city, primarily by airplane or bullet-train. Dur-
ing the 2012 regular season, these twelve teams traveled a
total of 280, 000 kilometres (Hesse 2012), the equivalent of
seven trips around the Earth.

Sports scheduling has emerged as a growing field of AI
research in the past decade (Kendall et al. 2010), especially
since the introduction of the Traveling Tournament Prob-
lem (TTP) by the head schedulers of Major League Baseball

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Easton, Nemhauser, and Trick 2001). The TTP is an NP-
complete problem involving an n-team sports league, where
the objective is to produce a double round-robin schedule
that minimizes the total distance traveled by all n teams. The
TTP is the exact framework for many sports leagues around
the world, such as college basketball in the USA and soc-
cer in South America, where each pair of teams plays twice,
with one game held at each team’s home arena / stadium.

Our research program (Hoshino and Kawarabayashi
2013) was motivated by our hope that graph theory could
help the NPB become more efficient and effective, to save
money, time, and greenhouse gas emissions. By reducing
the NPB scheduling problem to a shortest-path problem,
we determined the distance-optimal inter-league schedule
(Hoshino and Kawarabayashi 2011a) as well as the distance-
optimal intra-league schedule (Hoshino and Kawarabayashi
2011c) for both the Pacific and Central Leagues. Com-
bined, our proposed 864-game regular season tournament
requires 210, 000 kilometres of total team travel, represent-
ing a potential reduction of 25%. After our results were pub-
lished, the NPB invited the authors to help design the Central
League’s 2013 intra-league schedule (Hesse 2012).

In this paper, we describe how we solved this scheduling
problem by adapting the TTP to fit the exact specifications
of this Japanese league, including the strict requirement that
every team play the same number of home and away games
on weekdays and weekends – this “revenue-balancing” rule
is in place because most NPB stadiums are half-empty on
Tuesdays but filled to capacity on Saturdays. Such a re-
quirement is a natural condition in equitably scheduling a
tournament: if there are several “big-money” weekends that
coincide with major holidays (e.g. Memorial Day and Inde-
pendence Day), then each team should be assigned half of
these games at home, to ensure an equitable distribution.

This paper proceeds as follows: we first describe the n-
team Traveling Tournament Problem, and then define the
variant specific to the NPB context. We then apply Dijk-
stra’s shortest path algorithm to fully solve this TTP-variant
for the case n = 6, and generate the distance-optimal sched-
ule for the NPB Central League. We conclude the paper by
discussing our consultation work for the NPB, and compare
the 2012 and 2013 Central League schedules: this year’s
schedule requires 12 fewer trips, and the total travel distance
is reduced by over 6, 000 kilometres.

Proceedings of the Twenty-Fifth Innovative Applications of Artificial Intelligence Conference

1525

The Traveling Tournament Problem
Let there be n teams in a sports league, where n is even.
Let D be the n× n distance matrix, where entry Di,j is the
distance between the home stadiums of teams ti and tj . By
definition, Di,j = Dj,i for all 1 ≤ i, j ≤ n, and all diagonal
entries Di,i are zero.

Team t1 t2 t3 t4 t5 t6
t1 0 323 488 808 827 829
t2 323 0 195 515 534 536
t3 488 195 0 334 353 355
t4 808 515 334 0 37 35
t5 827 534 353 37 0 7
t6 829 536 355 35 7 0

Table 1: Distance matrix for the NPB Central League (in km)

For example, the distance matrix for the NPB Central
League is given in Table 1. The six teams (Hiroshima, Han-
shin, Chunichi, Yokohama, Yomiuri, Tokyo) are labelled t1
to t6, respectively. The locations of each team’s home sta-
dium is given in Figure 1 below.

Figure 1: The Central League teams on a map of Japan.

In the TTP, a double round-robin schedule is sought,
where each pair of teams plays twice during a tournament
lasting 2(n − 1) days, with each team having one game
scheduled per day. As the context for our paper is baseball,
we will now use sets rather than days to refer to the length
of a tournament. Unlike other sports (e.g. football, soccer,
hockey, basketball) where a team visits another city to play
a single match, professional baseball leagues always involve
a team visiting another city to play three or four games. To
avoid any confusion, we will now re-define the TTP to the
scheduling of 2(n − 1) sets, where each set consists of a
fixed number of games played on consecutive days.

The objective is to minimize the total distance traveled by
the n teams, with the requirement that each team begins the
tournament at home, and returns home after having played
their last away set. When a team is scheduled for a road
trip consisting of multiple away sets, the team doesn’t return
to their home city but rather proceeds directly to their next
away venue. In many ways, the TTP is a variant of the well-
known Traveling Salesman Problem, asking for an optimal
schedule linking venues that are close to one another.

In the (standard) TTP, we have the following constraints:

(a) The each-venue condition: Each pair of teams must play
two sets, once in each other’s home venue.

(b) The at-most-three condition: No team may have a home
stand or road trip lasting more than three sets.

(c) The no-repeat condition: A team cannot play against the
same opponent in two consecutive sets.

To illustrate, Table 2 lists the first ten sets of the NPB
Central League for the 2013 season, where home teams are
marked in bold. We see that this is a double round-robin
schedule satisfying all of the above conditions. In the NPB,
each set consists of three games.

Team 1 2 3 4 5 6 7 8 9 10
t1 t5 t6 t2 t4 t3 t4 t5 t6 t3 t2
t2 t6 t3 t1 t5 t4 t5 t6 t3 t4 t1
t3 t4 t2 t5 t6 t1 t6 t4 t2 t1 t5
t4 t3 t5 t6 t1 t2 t1 t3 t5 t2 t6
t5 t1 t4 t3 t2 t6 t2 t1 t4 t6 t3
t6 t2 t1 t4 t3 t5 t3 t2 t1 t5 t4

Table 2: First ten sets of the 2013 Central League Schedule.

Define a block to be a feasible solution of the TTP, i.e.,
a tournament lasting 2(n − 1) sets. We say that a block
consists of two rounds, with the first round being the first
n− 1 sets and the second round being the last n− 1 sets. In
a multi-round tournament with k blocks, there are 2k rounds
and 2k(n − 1) sets. In the NPB, each of the n = 6 teams
play 2k = 8 rounds of intra-league matches, corresponding
to 2k(n− 1) = 40 sets of three games.

In addition to the requirement of multiple blocks (k = 4
for the NPB, compared to k = 1 for the TTP), scheduling
an NPB tournament requires several additional constraints.
First, the NPB requires each pair of teams to play exactly
one set during each (n−1)-set round, which is stronger than
the each-venue condition that only requires the two sets to be
played sometime during a two-round block. As in the each-
venue condition, these two sets must be played at different
locations, with one set held at each team’s home venue. We
note that this condition is similar but not identical to the
more stringent “mirrored” condition of Latin American soc-
cer leagues (Ribeiro and Urrutia 2004), which has the rule
that if team i hosts team j in set s (where 1 ≤ s ≤ n − 1),
then team j hosts team i in set s+ n− 1.

Secondly, the NPB schedule requires a balance in the
number of home and away sets played by each team at any
point in the season. More formally, for each ordered pair
(i, s) with 1 ≤ i ≤ n and 1 ≤ s ≤ 2k(n − 1), de-
fine Hi,s and Ri,s to be the number of home and away
sets played by team i within the first s sets. (By definition,
|Hi,s+Ri,s| = s.) The NPB requires that |Hi,s−Ri,s| ≤ 2
for all pairs (i, s). For example, under this requirement
a team cannot start or end a season with three consecu-
tive home sets, ensuring that no team gains a momentum-
increasing advantage at a key point in the season.

When we met with the NPB head scheduler, we learned
that the league tries to avoid three-set home stands and three-
set road trips at all costs, as they have found in the past that
long home stands lead to diminished attendance, while long
road trips cause player fatigue.

1526

And most importantly, each team must play the same
number of weekend home games for reasons of competi-
tive fairness and revenue balance. NPB teams don’t play on
Monday, and each three-game set takes place on weekdays
(Tuesday, Wednesday, Thursday) or on weekends (Friday,
Saturday, Sunday). The 40 intra-league sets are slotted so
that there are 20 weekday sets and 20 weekend sets. The
NPB requires each team to play 10 weekend home sets, 10
weekday home sets, 10 weekend road sets, and 10 weekday
road sets. This is denoted by the four-tuple (10, 10, 10, 10).

Block #1 and Block #4 consist of five weekend sets
and five weekday sets. Due to a five-and-a-half week break
for inter-league play (between sets 13 and 14) as well as
a half-week break for the All-Star Game (between sets 21
and 22), Block #2 has six weekends and Block #3 has four
weekends. NPB rules require a specific four-tuple structure
within each block, as described in condition (g) below.

To summarize, modeling the NPB scheduling problem re-
quires four additional constraints:

(d) The each-round condition: Each pair of teams must play
exactly once per round, with their matches in rounds 2t−1
and 2t taking place at different venues (for all 1 ≤ t ≤ k).

(e) The diff-two condition: |Hi,s − Ri,s| ≤ 2 for all (i, s)
with 1 ≤ i ≤ n and 1 ≤ s ≤ 2k(n− 1).

(f) The at-most-two condition: No team may have a home
stand or road trip lasting more than two sets.

(g) The weekday-weekend condition: in Blocks #1 and #4,
each team must have one (3, 2, 2, 3) four-tuple and one
(2, 3, 3, 2) four-tuple. In Block #2, each team must have
a (3, 2, 3, 2) four-tuple, and in Block #3, each team must
have a (2, 3, 2, 3) four-tuple.

By definition, conditions (a) and (b) are made redundant
by conditions (d) and (f), respectively.

We now present an algorithm for solving this multi-round
variant of the TTP, by reformulating it as a shortest path
problem on a directed graph. The first part of our algorithm
handles conditions (a) through (e), and the full details appear
in a previous paper (Hoshino and Kawarabayashi 2011c).
Here, we make a slight fix to our Dijkstra-based algorithm
by replacing the at-most-three condition with at-most-two,
thus handling the first six conditions. The second part of our
algorithm is completely new, and addresses condition (g).

Shortest-Path Algorithm: conditions (a)-(f)
Our idea is to create a source node and a sink node and
link them to numerous vertices in a graph whose (weighted)
edges represent the possible blocks that can appear in an
optimal schedule. We then apply Dijkstra’s Algorithm to
find the path of minimum weight between the source and
the sink, which is a well-known O(|V | log |V |+ |E|) graph
search algorithm that can be applied to any graph or digraph
with non-negative edge weights.

By definition, a block is a two-round tournament sched-
ule satisfying the above conditions, with each of the n teams
playing 2(n− 1) sets of games. To solve our NPB schedul-
ing problem, we first enumerate the complete set of blocks
that can appear in a distance-optimal tournament. We then

introduce a simple “concatenation matrix” to check whether
two pre-computed blocks can be joined together to form a
multi-block schedule, without violating any of the schedul-
ing constraints. As we will explain, to determine whether
two (feasible) blocks B1 and B2 can be concatenated, it suf-
fices to check just the last two columns of B1 and the first
two columns of B2.

Each column of a block represents a set consisting of
n
2 different matches, with each match specifying the two
teams as well as the stadium/venue. Thus, a match iden-
tifies the home team and away team, not just each team’s
opponent. For any column, there are

(
n

n/2

)
ways to select

the home teams. Also there are
(

n
n/2

)
·
(
n
2

)
! ways to spec-

ify the matches of any column, since there are
(
n
2

)
! ways

to map any choice of the n
2 home teams to the unselected

n
2 away teams to decide the set of n

2 matches. Hence, there
are m =

(
n

n/2

)2 · (n2)! different ways we can specify the
matches of the first column and the home teams of the sec-
ond column. For n = 6, we have m =

(
6
3

)2 × 3! = 2400.
There are m ways that the first two columns of a block can

be chosen as described above, with the first column listing
matches and the second column listing home teams. Now
use any method, such as a lexicographic ordering, to index
these m options with the integers from 1 to m. By symme-
try, there are m different ways we can specify the last two
columns of a block, with the last column listing matches and
the second-last column listing home teams. Thus, we use the
same scheme to index these m options. To avoid confusion,
we write the home teams column in binary form, with 1 rep-
resenting a home game and 0 representing an away game.

For example, (t2, t1, t5, t6, t3, t4)T is one of the 120 pos-
sible options for the matches column, and (1, 0, 0,1, 0,1)T

is one of the 20 possibilities for the home teams column.
We remark that if we listed the column of opponents rather
than the column of matches, there would be only 120

23 = 15
unique columns, corresponding to the 15 perfect matchings
of the complete graph K6.

There exists some integer q (with 1 ≤ q ≤ 2400) that is
the index of the instance where the home teams column is
(1, 0, 0,1, 0,1)T and the matches column is (t2, t1, t5, t6,
t3, t4)T . Similarly, there exists some r (with 1 ≤ r ≤ 2400)
that is the index of the instance where the two columns are
(t5, t6, t4, t3, t1, t2)T and (1,1, 0,1, 0, 0)T . In the block
given in Table 2, the last two columns have index q and the
first two columns have index r.

For each pair (u1, u2), with 1 ≤ u1, u2 ≤ m, define
Cu2,u1 to be the n × 4 concatenation matrix where the first
two columns list the home teams and matches with index u2,
and the next two columns list the matches and home teams
with index u1. For the indices q and r from the previous
paragraph, we have

Cq,r =

1 t2 t5 1
0 t1 t6 1
0 t5 t4 0
1 t6 t3 1
0 t3 t1 0
1 t4 t2 0

 .

1527

Note that Cq,r has no row with three consecutive home
sets, no row with three consecutive away sets, and no row
with the same opponent appearing in Columns 2 and 3. As
we describe in Theorem 1 below, these three properties are a
necessary and sufficient condition for whether two feasible
blocks can be concatenated to produce a multi-block sched-
ule satisfying all the conditions from (a) to (f). Therefore,
we can simply create four copies of the block in Table 1,
concatenate them together to form a 40-set schedule, and
the resulting tournament will automatically satisfy the first
six scheduling constraints. (Alas, it does not satisfy condi-
tion (g), the weekday-weekend balancing constraint.)

Before we proceed with Theorem 1, let us explain the
role of the concatenation matrix in the construction of our
directed graph. Let G consist of a source vertex vstart, a
sink vertex vend, and vertices xt,u and yt,u defined for each
1 ≤ t ≤ k and 1 ≤ u ≤ m.

Figure 2: Converting NPB scheduling into a shortest path prob-
lem.

We now describe how these edges are connected, with a
pictorial representation of G in Figure 2. For notational sim-
plicity, denote v1 → v2 as the directed edge from v1 to v2.

(i) For each 1 ≤ u ≤ m, add the edge vstart → x1,u.

(ii) For each 1 ≤ u ≤ m, add the edge yk,u → vend.

(iii) For each 1 ≤ t ≤ k, and for each 1 ≤ u1, u2 ≤ m, add
the edge xt,u1

→ yt,u2
iff there exists a (feasible) block

for which the first two columns have index u1 and the last
two columns have index u2.

(iv) For each 1 ≤ t ≤ k − 1, and for each 1 ≤ u1, u2 ≤ m,
add the edge yt,u2 → xt+1,u1 iff the concatenation matrix
Cu2,u1 has no row with three consecutive home sets, no
row with three consecutive away sets, and no row with the
same opponent appearing in Columns 2 and 3.

The following theorem (Hoshino and Kawarabayashi
2011c) shows that the k-block NPB scheduling problem can
be reformulated in a graph-theoretic context, for any k ≥ 1.

Theorem 1 Every feasible solution of the NPB scheduling
problem can be described by a path from vstart to vend in
graph G. Conversely, any path from vstart to vend in G
corresponds to a feasible intra-league NPB schedule.

Having constructed our digraph, we now assign a weight
to each edge using the distance matrix so that the shortest
path (i.e., path of minimum total weight) from vstart to vend

corresponds to the optimal tournament schedule that mini-
mizes the total distance traveled by the n teams.

For any block, we define its in-distance to be the total
distance traveled by the n teams within that block, i.e., start-
ing from set 1 and ending at set 2(n − 1). Note that the
in-distance does not include the distance traveled by the
teams heading to the venue of set 1 or from the venue of
set 2(n− 1). We will use this definition in part (C) below:

(A) For each 1 ≤ u ≤ m, the weight of edge vstart → x1,u is
the total distance traveled by the n

2 teams making the trip
from their home city to the venue of their set 1 opponent.

(B) For each 1 ≤ u ≤ m, the weight of edge yk,u → vend is
the total distance traveled by the n

2 teams making the trip
from the venue of their opponent in set 2k(n− 1) back to
their home city.

(C) For each 1 ≤ t ≤ k, and for each 1 ≤ u1, u2 ≤ m, the
weight of edge xt,u1

→ yt,u2
is the minimum in-distance

of a block, selected among all blocks for which the first
two columns have index u1 and the last two columns have
index u2.

(D) For each 1 ≤ t ≤ k − 1, and for each 1 ≤ u1, u2 ≤ m,
the weight of edge yt,u2 → xt+1,u1 is the total distance
traveled by the teams that travel from their match in set
2t(n − 1) to their match in set 2t(n − 1) + 1, where the
last two columns of the tth block have index u2 and the
first two columns of the (t+ 1)th block have index u1.

To illustrate (D), consider the 20-set schedule formed by
concatenating two copies of Table 2. Then the last two
columns of the first block (sets 9 and 10) have index q and
the first two columns of the next block (sets 11 and 12) have
index r. When we concatenate these two blocks, the weight
of edge y1,q → x2,r is the total distance traveled by the
teams from their matches in set 10 to their matches in set
11. This sum equals D2,5+D2,6+D4,3+D3,5+D4,6, the
distances traveled by teams t1, t2, t4, t5, and t6, respectively.

By this construction, we have produced a weighted di-
graph. In part (C), suppose there exist two blocks B and B′

for which the first two columns have index u1 and the last
two columns have index u2. If the in-distance of B is less
than the in-distance of B′, then block B′ cannot be a block
in an optimal solution, since we can just replace B′ by B to
create a feasible solution with a lower objective value. This
trivial observation, based on Bellman’s Principle of Opti-
mality, allows us to assign the minimum in-distance as the
weight of edge xt,u1

→ yt,u2
, for all 1 ≤ u1, u2 ≤ m.

As a result, we have a digraph G on 2mk + 2 vertices and
at most 2m + (2k − 1)m2 edges, with a unique weight for
each edge. Combined with the previous theorem, we have
established the following.

Theorem 2 Let P = vstart → x1,p1 → y1,q1 → x2,p2 →
y2,q2 → . . . → xk,pk

→ yk,qk → vend be a shortest path
in G from vstart to vend, i.e., a path that minimizes the total
weight. For each 1 ≤ t ≤ k, let Bt be the block of minimum
in-distance selected among all blocks for which the first two
columns have index pt and the last two columns have in-
dex qt. Then the multi-block schedule S = B1, B2, . . . , Bk,

1528

created by concatenating the k blocks consecutively, is an
optimal solution for the NPB scheduling problem.

Shortest-Path Algorithm: condition (g)
In the previous section, we described a four-step procedure
to produce a weighted digraph G. Parts (A), (B), (D) are
easy to implement once we specify the distance matrix of a
particular n-team instance (e.g. Table 1 for the NPB Central
League). For part (C), we need to ensure that the weight
of each edge xt,u1

→ yt,u2
is the minimum in-distance of

a block for which the first two columns have index u1 and
the last two columns have index u2. To accomplish this, we
need to enumerate all possible ten-set blocks that satisfy the
seven conditions, and then apply the n × n distance matrix
to determine the correct weight of each edge.

Following the standard three-phase approach (Rasmussen
and Trick 2007), we first generate double round-robin home-
away pattern (HAP) sets in the form of an n by 2(n − 1)
matrix, then convert these HAP sets into timetables which
are assignments of matches to time slots, and finally convert
timetables into feasible 2(n− 1)-set schedules (i.e., blocks)
by assigning each team in {t1, t2, . . . , tn} a unique row in
the matrix.

We need to repeat this procedure for each of the four block
positions: sets 1 − 10, 11 − 20, 21 − 30, and 31 − 40. As
an example, the pattern for the first block is EDEDEDEDED
(where E is a weekEnd and D is a weekDay), and the pattern
for the second block is EDEEDEDEDE due to the break for
inter-league games between sets 13 and 14.

For example, Table 3 provides a valid HAP (with
n = 6) for the first block, which produces many pos-
sible feasible timetables, including the one shown in Ta-
ble 4. Then the timetable in Table 4 can be converted
into the block schedule given in Table 2, via the mapping
{#1,#2,#3,#4,#5,#6} → {t1, t2, t3, t4, t5, t6}.

1 2 3 4 5 6 7 8 9 10
Week-End/Day E D E D E D E D E D

Team #1 0 1 1 0 0 1 1 0 1 0
Team #2 0 1 0 1 1 0 1 0 0 1
Team #3 1 0 0 1 1 0 0 1 0 1
Team #4 0 1 0 1 0 0 1 0 1 1
Team #5 1 0 1 0 1 1 0 1 0 0
Team #6 1 0 1 0 0 1 0 1 1 0

Table 3: A feasible HAP for the first block (sets 1 to 10).

1 2 3 4 5 6 7 8 9 10
Week-End/Day E D E D E D E D E D

Team #1 #5 #6#2 #4 #3 #4#5 #6 #3 #2
Team #2 #6 #3 #1 #5#4 #5 #6 #3 #4 #1
Team #3 #4 #2 #5 #6#1 #6 #4 #2 #1 #5
Team #4 #3 #5 #6 #1 #2 #1 #3 #5 #2#6
Team #5 #1 #4 #3 #2 #6#2 #1 #4 #6 #3
Team #6 #2 #1 #4 #3 #5 #3 #2 #1#5 #4

Table 4: Timetable corresponding to the above HAP.

By a direct combinatorial enumeration, we determine all
possible HAPs and timetables that satisfy the constraints of
the NPB scheduling problem, repeating the analysis for each
of the four block positions. We find that there are 1960 fea-
sible timetables for Blocks #1 and #4, 624 timetables for
Block #2, and 736 timetables for Block #3.

Each feasible timetable yields 6! different blocks, any of
which can appear in an optimal solution to the NPB schedul-
ing problem. For example, to calculate the weights of all
edges of the form x2,u1 → y2,u2 , we enumerate all 624× 6!
possible options for Block #2, and find the weight of the
block with minimum in-distance.

Recall the weekday-weekend requirement given in condi-
tion (g) earlier: each of the 624 × 6! options for Block #2
has the property that every team has the (3, 2, 3, 2) four-tuple
that respectively counts weekend home sets, weekday home
sets, weekend road sets, and weekday road sets. And each
of the 1960× 6! options for Block #1 has the property that
every team has either a (3, 2, 2, 3) or (2, 3, 3, 2) four-tuple.

However, in order for the final tournament schedule (i.e.,
the concatenation of four separate blocks) to be a feasible
solution to the NPB problem, each team’s final four-tuple
must be (10, 10, 10, 10). Thus, if some team’s Block #1
four-tuple is (3, 2, 2, 3), then that team’s Block #4 four-
tuple must be (2, 3, 3, 2). To ensure this, we partition the
1960×6! options for Block #1 into

(
6
3

)
= 20 cases, for each

of the ways that three fixed teams among {t1, t2, . . . , t6} can
have a (3, 2, 2, 3) four-tuple, while the other three have a
(2, 3, 3, 2) four-tuple. We repeat this process for Block #4.

Thus, we can match up each of the 20 cases for Block
#1 to exactly one of the 20 cases for Block #4, knowing
that any feasible path from vstart to vend must necessar-
ily satisfy all seven conditions of the NPB scheduling prob-
lem. In other words, we need to run Dijkstra’s Algorithm
twenty times, with each iteration being run on a directed
graph whose edge weights are determined from 1960 × 6!

20

options for Block #1 and 1960× 6!
20 options for Block #4.

All code was written and compiled using Maplesoft 13
using a single Toshiba laptop under Windows with a sin-
gle 2.10 GHz processor and 2.75 GB RAM. Based on the
distance matrix in Table 1, Maplesoft ran Dijkstra’s Al-
gorithm twenty times to produce the following distance-
optimal schedule for the NPB Central League, in just under
three hours. The total travel distance is 66, 122 kilometres.

The 2013 NPB Central League Schedule
Nippon Professional Baseball is divided into the six-team
Central League and the six-team Pacific League. While each
league is officially part of the NPB they run as two separate
entities, each with its own director and staff. In September
2012, the authors met with the director of the NPB Central
League, who doubles as its chief scheduler. (Unfortunately
we were unable to meet with the Pacific League officials.)

Within the Central League, the scheduling process works
as follows: first, the league asks each of the six teams to
submit dates in which their home stadium is not available
(e.g. due to concerts, trade shows, and other events) as well
as preferred home dates and match-ups against rival teams.

1529

Team 1–5 6–10 11–15 16–20
t1 t2 t3 t5 t4 t6 t4 t2 t3 t5 t6 t5 t2 t3 t6 t4 t6 t4 t3 t2 t5
t2 t1 t4 t3 t6 t5 t6 t1 t4 t3 t5 t4 t1 t5 t3 t6 t3 t6 t5 t1 t4
t3 t6 t1 t2 t5 t4 t5 t6 t1 t2 t4 t6 t4 t1 t2 t5 t2 t5 t1 t4 t6
t4 t5 t2 t6 t1 t3 t1 t5 t2 t6 t3 t2 t3 t6 t5 t1 t5 t1 t6 t3 t2
t5 t4 t6 t1 t3 t2 t3 t4 t6 t1 t2 t1 t6 t2 t4 t3 t4 t3 t2 t6 t1
t6 t3 t5 t4 t2 t1 t2 t3 t5 t4 t1 t3 t5 t4 t1 t2 t1 t2 t4 t5 t3

Team 21–25 26–30 31–35 36–40
t1 t4 t3 t2 t6 t5 t6 t5 t3 t2 t4 t6 t5 t3 t2 t4 t6 t4 t5 t3 t2
t2 t6 t4 t1 t5 t3 t5 t3 t4 t1 t6 t5 t3 t4 t1 t6 t5 t6 t3 t4 t1
t3 t5 t1 t6 t4 t2 t4 t2 t1 t6 t5 t4 t2 t1 t6 t5 t4 t5 t2 t1 t6
t4 t1 t2 t5 t3 t6 t3 t6 t2 t5 t1 t3 t6 t2 t5 t1 t3 t1 t6 t2 t5
t5 t3 t6 t4 t2 t1 t2 t1 t6 t4 t3 t2 t1 t6 t4 t3 t2 t3 t1 t6 t4
t6 t2 t5 t3 t1 t4 t1 t4 t5 t3 t2 t1 t4 t5 t3 t2 t1 t2 t4 t5 t3

Table 5: Optimal solution to the NPB scheduling problem.

All of this information is then considered by the league, from
which a list of “hard constraints” is produced. In producing
the 2013 Central League intra-league schedule, there were
47 hard constraints, all of which needed to be satisfied.

Of the seven league-wide constraints given in the NPB
scheduling problem, conditions (a), (b), (c), (e), (g) are hard
constraints, while (d) and (f) may be relaxed under excep-
tional circumstances. For example, there is an annual high
school baseball tournament that takes place each summer in
the home stadium of the Hanshin Tigers (team t2). As a re-
sult, this team must play on the road in three consecutive
sets sometime during Block #3, thus violating at-most-two,
condition (f). Similarly, condition (d), each-round, can be
violated if the Central League scheduler cannot find a feasi-
ble block satisfying all of the hard constraints.

Note that the elimination of constraint (d) no longer al-
lows for the balanced block structure based on the one-
factorization of the complete graph K6; however, even when
this constraint is removed for certain blocks, we can still ap-
ply Dijkstras Algorithm, since two blocks X and Y can be
joined by simply checking the 6 × 4 concatenation matrix
formed by the last two columns of Block X and the first two
columns of Block Y. Therefore, our shortest-path approach
is still valid, though the nice symmetric and balanced struc-
ture no longer applies.

Define a trip to be any pair of consecutive sets not oc-
curring in the same city (i.e., any situation where that team
doesn’t play at home in sets s and s + 1, and therefore has
to travel from one venue to another.) Then Table 5 requires
a total of 195 trips and 66, 122 kilometres, which is signifi-
cantly better than the 2012 NPB Central League intra-league
schedule which required 206 trips and 86, 364 kilometres.
Furthermore, our theoretically-best schedule satisfies condi-
tions (a) through (g), while the 2012 schedule violated con-
ditions (d) and (f) multiple times – naturally, by having extra
3-set road trips, one can reduce the number of total trips.

To illustrate this key point, it is possible to create a Cen-
tral League intra-league schedule with only 170 trips and
57, 836 kilometres (Hoshino and Kawarabayashi 2011b) sat-
isfying conditions (a) through (e), i.e., all but the at-most-
two and weekend-weekday balancing conditions. These fi-

nal two conditions significantly increase the total travel dis-
tance, but as we can see, the schedule given in Table 5 is
much closer distance-wise to 57, 836 km than 86, 364 km.

While the intra-league schedule of Table 5 is theoretically
the best possible, it naturally does not satisfy all 47 Central
League constraints for the 2013 season. However, we started
by applying Dijkstra’s Algorithm to produce the distance-
optimal schedule, to give us a baseline of what could be
achieved. When we met with the Central League chief
scheduler, he inputted the 47 constraints one by one, thus re-
moving the large majority of the possible blocks. For exam-
ple, 13 of the 47 team constraints related to sets scheduled in
Block #1, and once these hard constraints were added, the
1960 × 6! options for Block #1 reduced to just 32 choices,
including the 10-set block provided in Table 2.

Furthermore, due to stadium unavailability, teams t2 and
t4 both required a three-set road trip in Block #3, forcing
us to re-do our analysis by enumerating all possible HAP
sets and timetables that satisfy the six scheduling condi-
tions excluding at-most-two. Even with this relaxation, there
were no blocks that satisfied all the hard constraints while
only having two violations of the at-most-two condition; all
choices for Block #3 required a minimum of one 3-game
home stand and four 3-game road trips.

After all 47 constraints were added, it was a simple mat-
ter to run our shortest-path algorithm on the set of possible
blocks. Naturally, the number of possible 10-game blocks
reduced dramatically from our analysis in the previous sec-
tion, where no such constraints were in place.

As a result, Maplesoft computed the shortest path in just
four minutes (instead of three hours). We made some exten-
sions to our code and generated the entire collection of 40-
set intra-league schedules satisfying all 47 hard constraints,
conditions (a) through (e), as well as the weekend-weekday
balancing condition (g).

Upon the Central League’s request, we restricted our anal-
ysis to the subset of 180 intra-league tournament schedules
with the fewest violations of the at-most-two condition, all
of which had two 3-set home stands and five 3-set road trips.
We printed off the top seven tournaments, ordered by travel
distance, with the best being a schedule that required 194
trips and 76, 598 kilometres of total team travel.

After our final consultation meeting, the Central League
met with the team representatives one last time, and a few
additional adjustments were made to the schedule just before
the Official Release, to ensure revenue-maximizing matches
of rival teams on major weekends. As a result, the final
schedule is more inefficient that the one we proposed, with
194 trips, four 3-set home stands, six 3-set road trips, and
80, 006 kilometres of total travel.

Nevertheless, we were able to play a valuable role in help-
ing the Central League produce an intra-league tournament
schedule that reduced total travel by over 6, 000 kilometres
and required 12 fewer trips, as compared to last year’s sched-
ule.

Of course, the exact same graph-theoretic methods will
work to optimize the Pacific League whose six teams are
spread throughout Japan; all that is required is the 6× 6 dis-
tance matrix and the set of hard constraints for this league.

1530

We look forward to partnering with the NPB once again,
and hope to have the opportunity to help this league pro-
duce future regular-season schedules that will result in an-
nual win-wins for the people of Japan: both economically
and environmentally.

In conclusion, we remark that this weekday-weekend bal-
ancing requirement is important to other sports leagues.
A natural question is whether the ideas in this paper can
be applied to optimize the scheduling for Major League
Baseball, especially as MLB recently approved a major re-
alignment (into 2 leagues of fifteen teams, with inter-league
games spread throughout the season). Perhaps the combi-
natorial approaches described in this paper can be scaled to
help MLB devise schedules for both the 15-team American
League and the 15-team National League to simultaneously
reduce travel while ensuring a fair and equitable distribution
of weekend home games for all thirty teams.

References
Easton, K.; Nemhauser, G.; and Trick, M. 2001. The travel-
ing tournament problem: description and benchmarks. Pro-
ceedings of the 7th International Conference on Principles
and Practice of Constraint Programming 580–584.
Hesse, S. 2012. Canadian uses math to green Japanese base-
bal. [Online; accessed 21-January-2013].
Hoshino, R., and Kawarabayashi, K. 2011a. The inter-

league extension of the traveling tournament problem and
its application to sports scheduling. Proceedings of the 25th
AAAI Conference on Artificial Intelligence 977–984.
Hoshino, R., and Kawarabayashi, K. 2011b. The multi-
round balanced traveling tournament problem. Proceedings
of the 21st International Conference on Automated Planning
and Scheduling (ICAPS) 106–113.
Hoshino, R., and Kawarabayashi, K. 2011c. A multi-round
generalization of the traveling tournament problem and its
application to Japanese baseball. European Journal of Op-
erational Research 215:481–497.
Hoshino, R., and Kawarabayashi, K. 2013. Graph theory
and sports scheduling. Notices of the American Mathemati-
cal Society to appear.
Kendall, G.; Knust, S.; Ribeiro, C.; and Urrutia, S. 2010.
Scheduling in sports: An annotated bibliography. Comput-
ers and Operations Research 37:1–19.
Rasmussen, P., and Trick, M. 2007. A Benders approach for
the constrained minimum break problem. European Journal
of Operational Research 177:198–213.
Ribeiro, C., and Urrutia, S. 2004. Heuristics for the mir-
rored traveling tournament problem. Proceedings of the 5th
International Conference on the Practice and Theory of Au-
tomated Timetabling 323–342.

1531

	AAAI13
	Contents
	Index
	Help
	Terms
	AAAI

