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Abstract

Accurate and detailed measurement of an individual’s
physical activity is a key requirement for helping re-
searchers understand the relationship between physical
activity and health. Accelerometers have become the
method of choice for measuring physical activity due to
their small size, low cost, convenience and their ability
to provide objective information about physical activ-
ity. However, interpreting accelerometer data once it has
been collected can be challenging. In this work, we ap-
plied machine learning algorithms to the task of physi-
cal activity recognition from triaxial accelerometer data.
We employed a simple but effective approach of divid-
ing the accelerometer data into short non-overlapping
windows, converting each window into a feature vector,
and treating each feature vector as an i.i.d training in-
stance for a supervised learning algorithm. In addition,
we improved on this simple approach with a multi-scale
ensemble method that did not need to commit to a sin-
gle window size and was able to leverage the fact that
physical activities produced time series with repetitive
patterns and discriminative features for physical activity
occurred at different temporal scales.

Introduction
Although physical activity is well-known by the general
public to be essential for maintaining a healthy body, re-
searchers continue to seek a better understanding of the rela-
tionship between physical activity and health. A key require-
ment of this research is the accurate and detailed measure-
ment of an individual’s physical activity. Researchers can
use this data to identify people at risk of certain diseases,
evaluate the efficacy of intervention strategies for increasing
physical activity and understand why some groups of people
are more active than others (Bauman et al. 2006).

Self-reports have traditionally been the means of pro-
viding information about physical activity (de Vries et al.
2011). However, self-reports are susceptible to subjective
factors, such as recall bias and social desirability, thus lack-
ing accuracy. For instance, self-reports tend to overestimate
the time spent in unstructured daily physical activities, such
as walking (Tudor-Locke and Myers 2001).
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One of the most promising alternatives to self-reports is
the use of accelerometers (Trost, McIver, and Pate 2005),
which are free from subjective biases. Accelerometers for
physical activity monitoring capture acceleration in different
planes, with triaxial accelerometers being one of the most
common types. Figure 1 illustrates triaxial accelerometer
data collected from seven different activity classes, with the
data from each axis shown in a different color or style. Once
this data has been collected, the challenge is to interpret this
three dimensional time series. Interpreting this data requires
two steps. First, if the accelerometer data were collected un-
der free-living conditions, the time series needs to be divided
into segments corresponding to one particular type of physi-
cal activity. Then, each smaller time series corresponding to
a segment needs to be classified as a physical activity type.
In our work, we focus on the classification task in the sec-
ond step because our data has already been segmented by
the nature of our data collection process. For future work,
we will investigate algorithms for segmenting data obtained
under free-living conditions.

The traditional approach in exercise science for classi-
fying a time series into physical activity classes is to use
regression-based thresholds called cut-points (Bassett Jr.,
Rowlands, and Trost 2012) which allow researchers to es-
timate the time spent performing physical activities at dif-
ferent intensity levels. Researchers, however, have found
cut-points to be inaccurate (eg. (Staudenmayer et al. 2009;
Trost et al. 2012)), and are turning to machine learning meth-
ods to identify physical activity types and estimate energy
expenditure more accurately.

The basic machine learning task involves classifying a tri-
axial time series as a single physical activity type. Many ap-
proaches to time series classification have been proposed in
the machine learning literature (Xing, Pei, and Keogh 2010)
and choosing the right approach depends on the nature of
the time series. Two key characteristics of physical activity
data (such as the data in Figure 1) that we will leverage to
improve classification accuracy are its repetitive pattern last-
ing for the duration of the physical activity and the fact that
discriminative features occur at different temporal scales.

In this work, we apply machine learning techniques to
the task of predicting physical activity type from data col-
lected from a single body-mounted triaxial accelerometer.
We show that a straightforward application of supervised
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Figure 1: An example of 4 seconds of data from all seven classes in the OSU Hip dataset. These plots illustrate triaxial ac-
celerometer data collected at 30 Hz, and plot line in a graph represents one axis. The activity types are, from left to right: (top)
dancing, lying down, running, sitting, (bottom) standing and household chores, walking and basketball.

learning techniques can produce highly accurate results. To
produce even more accurate results, we develop a new algo-
rithm consisting of an ensemble of multi-scale classifiers in
which each ensemble member is trained on a set of features
computed from subwindows of different sizes from the orig-
inal time series, thereby leveraging discriminative features
from different temporal scales. We evaluated this ensemble
method on three accelerometer data sets and found that it
improved over standard supervised learning techniques.

Related Work
Past work has explored activity recognition using data from
a single accelerometer, typically placed at the waist or hip
(Staudenmayer et al. 2009; Bonomi et al. 2009). A variety
of standard supervised learning algorithms have been em-
ployed, but Ravi et al. (2005) conclude that ensemble meth-
ods, especially majority voting, were consistently among the
top performing algorithms for activity recognition. An alter-
native approach is to use data from multiple accelerometers
or other sensors for physical activity recognition (Bao and
Intille 2004). Although multiple sensors can produce more
accurate predictions, they are not practical as they would re-
quire an individual to wear multiple devices, which may be
considered too cumbersome.

Our task specifically involves classifying a numeric time
series as a single activity type. A variety of methods that ac-
complish this task (Xing, Pei, and Keogh 2010; Wang et al.
2010) do so by transforming the raw time series into a more
efficient representation that preserves its key traits but re-
duces its dimensionality. Examples of these representations
include a symbolic representation (Lin et al. 2003) or a fea-
ture vector of shapelets (Ye and Keogh 2009). Once a raw
time series has been converted into an efficient representa-
tion, supervised learning techniques can be applied to it. One
of the most frequently used methods is the k-nearest neigh-

bor (k-NN) algorithm, which can be surprisingly accurate
using Euclidean distance (Keogh and Kasetty 2003) or dy-
namic time warping (DTW) (Wang et al. 2010). These tech-
niques work well when the task is to match the overall shape
of a time series, but as we will show, they perform poorly on
accelerometer data with repetitive patterns.

Hidden Markov Models (HMMs) have also been used
for physical activity recognition (Lester et al. 2005). Since
HMMs can model transitions between physical activities,
they are more suitable for segmenting a time series into a
sequence of physical activity types rather than classifying
an entire time series as a single activity type.

Methodology
A simple and effective approach to the classification task is
to cut the time series up into non-overlapping windows of
some size W . Then, each window can be converted into a
feature vector and each feature vector treated as if it were an
independent, identically distributed (i.i.d.) data instance. At
this point, supervised learning algorithms can be applied to
each feature vector. This approach works especially well for
time series with repetitive patterns, provided each window
contains at least one “cycle” of the repetitive pattern. Indeed,
this approach has been shown to be effective for physical ac-
tivity recognition by several researchers, who have all used
a variety of machine learning techniques such as neural nets
(Staudenmayer et al. 2009), decision trees (Bonomi et al.
2009) and support vector machines (Su et al. 2005).

Treating each window as an i.i.d data instance requires
addressing two key issues. The first important issue is how
to convert raw accelerometer data into a feature vector. Fea-
tures need to capture important aspects of the data that can
discriminate between different activity types and be appli-
cable for different subjects. Knowing what these features
will be beforehand is very difficult. Therefore, one approach
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for engineering features is to follow the techniques used in
computer vision and create a bag of features (Zhang and
Sawchuk 2012), which generates a large set of potentially
useful features. In our work, we found that the bag of fea-
tures approach produced accurate predictions if the algo-
rithm can handle a large number of features by guarding
against overfitting (eg. through regularization of its parame-
ters). Furthermore, since the ultimate goal is to deploy phys-
ical activity recognition algorithms in real time, the step of
converting raw accelerometer data to a feature vector needs
to be efficient. We use a large number of coarse-grained
summary statistics as features that can all be computed in
linear time from a window of data (Table 1).

The second issue involves determining the window size
W , which is seldom addressed even though it affects the ac-
curacy of the algorithm (Trost et al. 2012). The larger the
window size, the longer it takes to identify the activity. For
instance, if the window size were 60 seconds, then one must
wait for a full 60 seconds worth of data to be accumulated
before the prediction can take place. On the other hand, the
smaller the window size, the less information is available to
make an informed prediction of the activity type. If the fea-
tures are summary statistics over the window (eg. the mean),
then the window size also has an effect on the quality of
the computed features. Having the wrong window size can
cause the feature representation to oversmooth/undersmooth
aspects of the data that are needed to discriminate between
physical activity types.

Algorithm
We now describe the Subwindow Ensemble Model
(SWEM), which is designed to leverage a key aspect of
physical activity recognition – that physical activity types
have discriminative features at different temporal scales. The
SWEM consists of an ensemble of classifiers, with each
classifier trained on a different feature representation of the
data. Each feature representation corresponds to a set of fea-
tures generated from different temporal scales of the time
series. With this approach, we avoid committing to one par-
ticular window size at the expense of having to perform fea-
ture generation and classifier training for as many times as
we have ensemble members. At the end, the predictions by
each ensemble member are combined via majority vote to
produce an overall prediction for a time series.

Algorithm 1 provides pseudocode for how the en-
semble members in the SWEM are trained. The
SWEMMEMBERTRAIN function accepts as input la-
beled time series data and a list of subwindow sizes. If we
use Figure 2 as a running example, we have L = 1, 5, 10,
corresponding to subwindows of 1, 5 and 10 seconds
length. The for loop in line 2 iterates over the subwindow
sizes. In lines 4-10, we decompose each time series t
into overlapping subwindows of size l; the overlap occurs
because each subwindow of size l is shifted over by 1
second, as in Figure 2. Line 5 retrieves the class label of
time series t. Lines 6-9 takes each subwindow of size l,
converts it to a feature vector with the FEATURIZE function,
and adds the feature vector with the class label to the
training data. The BUILD-MODEL function in Line 11

Features
1. Sum of values of a period of time:

∑T
i=1 si.

2. Mean: µs = 1
T

∑T
i=1 si.

3. Standard deviation: σs =
√

1
T

∑T
i=1(si − us).

4. Coefficients of variation: cv = σs

µs
.

5. Peak-to-peak amplitude: max{s1, ..., sT } −
min{s1, .., sT }.
6-10. Percentiles: 10th, 25th, 50th, 75th, 90th

11. Interquartile range: difference between the 75th and
25th percentiles.

12. Lag-one-autocorrelation:
∑T−1

i=1 (si−µs)(si+1−µs)∑T
i=1(si−µs)2

.

13. Skewness:
1
T

∑T
i=1(si−µs)

3

( 1
T

∑T
i=1(si−µs)2)

3
2

, measure of asymme-

try of the signal probability distribution.

14. Kurtosis:
1
T

∑T
i=1(si−µs)

4

( 1
T

∑T
i=1(si−µs)2)3

− 3, degree of the
peakedness of the signal probability distribution.
15. Signal power:

∑T
i=1 s

2
i .

16. Log-energy:
∑T
i=1 log(s

2
i ).

17. Peak intensity: number of signal peak appearances
within a certain period of time.
18. Zero crossings: number of times the signal crosses its
median.
19. Correlation between each pair of axes:∑T

i=1(si−µs)(vi−µv)√∑T
i=1(si−µs)

∑T
j=1(vj−µv)

.

Table 1: Time series features used in our representation of
each window where the time series is denoted as s1, ..., sT
and T is the length of the window

trains the ensemble member with the training data and adds
the trained ensemble member to the set M .

Algorithm 2 describes how SWEM classifies a new time
series. In lines 2-9, the SWEM-PREDICT function collects
the predictions by an ensemble member over subwindows of
size l. In line 3, we retrieve the length l of the subwindow as-
sociated with ensemble memberm. The for loop in lines 5-7
converts all subwindows of length l in T into a feature vec-
tor, predicts the class of each subwindow feature vector, and
adds the predictions to p. In line 8, the prediction by a single
ensemble member m for the entire time series t is obtained
by a majority vote over p, which stores the predicted class
labels for each subwindow. Finally, in line 10, the overall
prediction by the ensemble is produced by a majority vote
over the predictions by each ensemble member.

The SWEM algorithm trades off speed for accuracy. If
there are |M | ensemble members in SWEM, then the pro-
cess of training an ensemble member and predicting with
it needs to be repeated |M | times during the SWEM algo-
rithm. Ensemble members dealing with smaller subwindow
sizes will take longer to run because there are more small
subwindows within a time series than large subwindows.
Fortunately, each ensemble member can be handled inde-
pendently of the others during training and prediction, al-
lowing us to exploit parallel processing and thereby making
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Figure 2: Decomposing a time series of a 10-second walk (shown on top) into 1, 5 and 10-second overlapping subwindows
(shown on the bottom). The subwindows shift by 1 second.

Algorithm 1 SWEMMEMBERTRAIN(T, L)

Input
1: T : dataset of labeled time series for training.
2: L: subwindow sizes.

Output
1: M : the ensemble members.

Procedure
1: M ← {}
2: for each l in L do
3: training data← {}
4: for each time series t in T do
5: label← CLASS-LABEL(t)
6: for each subwindow s of t with length l do
7: x← FEATURIZE(s)
8: training data← training data ∪ (x, label)
9: end for

10: end for
11: M ←M ∪ BUILD-MODEL(training data)
12: end for
13: return M

the SWEM algorithm efficient in practice.

Evaluation
Datasets
The SWEM was evaluated on three accelerometer-based
physical activity datasets – two datasets were from Oregon
State University (OSU) and the third was from the Human
Activity Sensing Consortium (HASC).

The OSU datasets contained data recorded by triaxial ac-
celerometers at a 30 Hz sampling rate. Participants of ages
5-15 were asked to perform seven different types of physi-
cal activities for 2 minutes each in a controlled lab environ-
ment. The seven activity classes included: lying down, sit-
ting, standing and household chores, walking, running, bas-
ketball and dance. The OSU Wrist dataset contains data col-
lected from 18 participants with wrist-mounted accelerome-
ters while the OSU Hip dataset contained data from 53 par-
ticipants with hip-mounted accelerometers. Figure 1 shows
an example of all seven classes in the OSU Hip dataset. Data
from the OSU Wrist dataset is similar and not shown due
to space limitations. The two minutes of data were cut up

Algorithm 2 SWEMPREDICT(M, t)

Input
1: M : the ensemble members generated by

SWEMMEMBERTRAIN.
2: t: the time series to be predicted.

Output
1: prediction: the prediction of time series t.

Procedure
1: v ← {}
2: for each ensemble member m in M do
3: l← SUBWINDOWLENGTH(m),
4: p← {}
5: for each subwindow s of t with length l do
6: p← p ∪ PREDICT(m, FEATURIZE(s))
7: end for
8: v[m]← MAJORITYVOTE(p)
9: end for

10: prediction← MAJORITYVOTE(v)
11: return prediction

into 10-second time windows. Thus, the classification task
involves classifying each 10-second window as an activity
type. In past work, Trost et al. (2012) found that 10-second
time windows were a good compromise between collecting
enough data to predict the activity class and having a fast
enough detection time.

The third dataset used in our experiments consists of the
“Sample Data” from the Human Activity Sensing Consor-
tium (HASC) 2011 challenge1 (Kawaguchi et al. 2011).
The data were collected from seven subjects with triaxial
accelerometers at a 100 Hz sampling rate. Six activities,
namely stay, walk, jog, skip, stUp (stair-up) and stDown
(stair-down), were performed by all subjects in a controlled
lab environment. As with the OSU data, we divide the
HASC time series data into windows of length 10 seconds.

Experiments
The SWEM consisted of 10 ensemble members, with each
ensemble member corresponding to a subwindow of length
1, 2, 3, etc. up to 10 seconds. Features 1-18 were extracted
from each axis, and Feature 19 (the correlation between

1Available at http://hasc.jp/hc2011/download-en.html
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axes) was extracted from each pair of axes, resulting in a
total of 57 features. The ensemble members for the SWEM
were linear support vector machines, implemented using
LibSVM (Chang and Lin 2011).

The dataset was randomly split by subject into three non-
overlapping subsets for training, validation and testing. Each
algorithm in our experiments was trained on the training
set, each trained model was tuned on the validation set,
and parameter settings achieving the highest performance on
the validation set were chosen as the parameters for the fi-
nal model evaluated on the test set. For the SVMs used in
SWEM, the C parameter was tuned over values 0.01, 0.1, 1,
10, 100 and 1000. Each algorithm was evaluated using 30
training-validation-testing splits and the average macro-F1
was reported.

We compared the performance of SWEM against the fol-
lowing algorithms. First, 1-nearest neighbor is a commonly
used baseline for time series classification algorithms. We
applied a 1-nearest neighbor algorithm on the raw time se-
ries with both a Euclidean distance metric (1NN EUC) and
with Dynamic Time Warping (1NN DTW). In addition, we
applied a 1-nearest neighbor algorithm on the SAX repre-
sentation of the time series with both a Euclidean distance
metric (1NN EUC SAX) and with Dynamic Time Warp-
ing (1NN DTW SAX). For SAX, we tuned the number of
segments (10, 50, 100) and the number of symbols (5, 10,
20) but found that the results did not change much. Finally,
we also applied a linear SVM, implemented with LibSVM
(Chang and Lin 2011), with the C parameter tuned on the
validation set. We chose an SVM because it was one of the
best performing algorithms on the physical activity data as
compared to other supervised learning techniques. Since ar-
tificial neural networks (ANNs) are commonly used in the
exercise science literature, we include results from a feed-
forward neural network with a single hidden layer. The nnet
(Venables and Ripley 2002) package in R was used as the
ANN implementation in our experiment. We tuned the num-
ber of hidden units (1-30) and decay weights (0, 0.5, and 1).
We also attempted to represent the data with shapelets (Ye
and Keogh 2009), but the training phase of the shapelet al-
gorithm, which is computationally expensive, did not finish
running on our full dataset.

Discussion
Table 2 illustrates the results of the experiments. The
SWEM SVM was the best performing model on the
OSU Hip (0.942), OSU Wrist (0.896) and HASC (0.820)
datasets. SVMs and ANNs performed reasonably well,
with SVMs being superior to ANNs, especially on the
OSU Wrist dataset. Although SWEM SVM resulted in a
slight improvement over SVM, both SWMs and ANNs were
provided with an informed value of W = 10, which helped
their performance. In general, finding an appropriate value
for this window size is difficult to do. The SWEM SVM al-
gorithm, in contrast, removes the need to commit to a par-
ticular window size and it can exploit features of the data
from different subwindow sizes. The nearest neighbor meth-
ods performed poorly because they tried to match the overall
shape of the time series. In addition, the SAX representation

Algorithm OSU Hip OSU Wrist HASC
SWEM SVM 0.942† 0.896† 0.820†
SVM 0.937 0.886 0.794
ANN 0.919 0.787 0.738
1NN EUC 0.572 0.456 0.648
1NN DTW 0.561 0.494 0.648
1NN EUC SAX 0.142 0.147 0.169
1NN DTW SAX 0.143 0.143 0.169

Table 2: Average macro-F1 scores of the various algorithms
on the three datasets. The bold font marks the model with
the highest average macro-F1 and the symbol † indicates
that the improvement by SWEM is statistically significant
(Wilcoxon signed rank test, p-value < 0.05) above all the
other algorithms.

also performed poorly because the aggregation caused many
of the discriminative details to be smoothed out.

We can gain further insight into the benefits of the multi-
scale approach of SWEM SVM by comparing its perfor-
mance to that of its individual ensemble members by re-
moving the meta-layer performing a majority vote. In do-
ing so, we report results as if we had made a prediction by
using only a single temporal scale. Tables 3 to 5 compare
the classification accuracies of SWEM SVM against each
individual ensemble member on the OSU Hip, OSU Wrist
and HASC datasets. We refer to each ensemble member
as SWEM SVM followed by the size of the subwindow
eg. SWEM SVM1 for a 1 second subwindow. Note that
SWEM SVM10 is the largest possible subwindow size and
these results are identical to applying an SVM to each win-
dow of data (ie. the results in Table 2).

Our results show that ensemble members of different sub-
window sizes performed better for certain activities than oth-
ers. These results confirmed our hypothesis that discrimina-
tive features existed at different temporal scales for the var-
ious activity types. For example, on the OSU Hip dataset,
subwindows of size 8 and 9 produced the best results for
lying, sitting, and walking while subwindows of size 1 pro-
duced the best results for standing and running. Similarly,
on the HASC dataset, the best results for walking were pro-
duced with a subwindow size of 9 while the smaller subwin-
dow sizes produced more accurate predictions for stay, jog,
skip, stUp and stDown. Some ensemble members performed
better than SWEM SVM for specific activities, but over all
activities, SWEM SVM always had a higher average accu-
racy than individual ensemble members.

Finally, we also experimented with using stacking
(Wolpert 1992) instead of majority vote to combine the pre-
dictions made by individual ensemble members into an over-
all prediction. However, we found that stacking produced
similar results to majority vote. An important advantage that
majority vote has over stacking is that no additional training
is needed for the meta-layer. In order to train a stacking algo-
rithm properly, the meta-layer needs to be trained on training
data that is separate from the data used to train the individ-
ual ensemble members. If training data is limited, creating a
second training set may not be possible.
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Model Macro-F1 Classification Accuracy of Each Physical Activity
lying sitting standing walking running basketball dance

SWEM SVM 0.9424 0.9806 0.9423 0.9678 0.9541 0.9823 0.9419 0.8041
SWEM SVM1 0.9090 0.9709 0.9294 0.9893 0.9488 0.9876 0.7398 0.6931
SWEM SVM2 0.9339 0.9735 0.9271 0.9836 0.9543 0.9844 0.8931 0.7648
SWEM SVM3 0.9357 0.9719 0.9365 0.9727 0.9502 0.9870 0.9283 0.7756
SWEM SVM4 0.9355 0.9800 0.9265 0.9709 0.9533 0.9810 0.9178 0.7861
SWEM SVM5 0.9345 0.9780 0.9357 0.9564 0.9494 0.9811 0.9407 0.7931
SWEM SVM6 0.9361 0.9787 0.9299 0.9609 0.9572 0.9798 0.9306 0.7911
SWEM SVM7 0.9373 0.9802 0.9353 0.9519 0.9565 0.9798 0.9378 0.8131
SWEM SVM8 0.9371 0.9819 0.9296 0.9608 0.9615 0.9776 0.9206 0.7991
SWEM SVM9 0.9383 0.9817 0.9374 0.9572 0.9567 0.9789 0.9359 0.8104
SWEM SVM10 0.9369 0.9772 0.9318 0.9666 0.9599 0.9776 0.9161 0.7978

Table 3: Macro-F1 and classification accuracies of the overall SWEM SVM algorithm and of each ensemble member on the
OSU Hip dataset. The bold font marks the best performing subwindow size overall and for each activity.

Model Macro-F1 Classification Accuracy of Each Physical Activity
lying sitting standing walking running basketball dance

SWEM SVM 0.8961 0.7993 0.9522 0.9389 0.9562 0.8345 0.9072 0.7722
SWEM SVM1 0.8538 0.7368 0.9608 0.9767 0.9639 0.8565 0.4300 0.7257
SWEM SVM2 0.8808 0.7708 0.9571 0.9618 0.9700 0.8547 0.7206 0.7243
SWEM SVM3 0.8902 0.7924 0.9481 0.9464 0.9583 0.8507 0.8461 0.7694
SWEM SVM4 0.8897 0.7778 0.9559 0.9455 0.9563 0.8426 0.8828 0.7403
SWEM SVM5 0.8911 0.8021 0.9438 0.9368 0.9514 0.8281 0.9194 0.7701
SWEM SVM6 0.8903 0.7875 0.9549 0.9382 0.9534 0.8299 0.9056 0.7535
SWEM SVM7 0.8889 0.8007 0.9549 0.9239 0.9522 0.8218 0.9150 0.7611
SWEM SVM8 0.8887 0.7764 0.9605 0.9378 0.9567 0.8235 0.8933 0.7410
SWEM SVM9 0.8872 0.7903 0.9608 0.9192 0.9518 0.8241 0.9050 0.7576
SWEM SVM10 0.8859 0.7819 0.9590 0.9340 0.9575 0.8148 0.8822 0.7312

Table 4: Macro-F1 and activity classification accuracies of the overall SWEM SVM algorithm and of each ensemble member
on the OSU Wrist dataset. The bold font marks the highest accuracy of a single subwindow model for each activity.

Model Macro-F1 Classification Accuracy of Each Physical Activity
stay walk jog skip stUp stDown

SWEM SVM 0.8200 0.9956 0.7656 0.7989 0.8400 0.7111 0.7878
SWEM SVM1 0.8134 1.0000 0.7456 0.8122 0.8267 0.6800 0.8033
SWEM SVM2 0.8173 0.9989 0.7367 0.7956 0.8456 0.7067 0.8067
SWEM SVM3 0.8151 1.0000 0.7389 0.8044 0.8178 0.7211 0.7922
SWEM SVM4 0.8076 0.9989 0.7378 0.7911 0.8267 0.6978 0.7800
SWEM SVM5 0.8056 0.9944 0.7489 0.8000 0.8244 0.7000 0.7489
SWEM SVM6 0.8025 0.9933 0.7322 0.7889 0.8322 0.7000 0.7556
SWEM SVM7 0.7934 0.9944 0.7389 0.8033 0.8156 0.6567 0.7367
SWEM SVM8 0.7935 0.9867 0.7233 0.7878 0.8344 0.6689 0.7444
SWEM SVM9 0.7996 0.9878 0.7767 0.8078 0.8111 0.6767 0.7167

SWEM SVM10 0.7940 0.9811 0.7311 0.7944 0.8256 0.6689 0.7500

Table 5: Macro-F1 scores and activity classification accuracies of the overall SWEM SVM algorithm and of each ensemble
member on the HASC dataset. The bold font marks the highest classification accuracy of a single subwindow model for each
activity.
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Conclusion
We proposed the Subwindow Ensemble Model which used
an ensemble of classifiers trained on features made up of
coarse summary statistics computed from different tempo-
ral scales. The SWEM outperformed other baseline algo-
rithms and it had the additional benefit of not needing to
commit to a single window size W . The SWEM algorithm
achieved very accurate results (≥ 90% for OSU data,> 80%
for HASC), which suggests that the algorithm could be vi-
able for deployment. For future work, we will investigate
the challenge of deploying physical activity recognition al-
gorithms in real time on free-living data. Since free-living
data consists of a mixture of different activities performed
throughout an individual’s day, we will explore algorithms
for segmenting the data and classifying these segments into
physical activity types.
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