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Abstract

In recent years, there has been a great increase in the use
of web services for the storage, annotation, and sharing
of sports video by athletic teams. Most of these web
services, however, do not provide enhanced functional-
ities to their users that would enable, e.g., faster access
to certain video moments, or reduce manual labor in
video annotation. One such web service specializes in
American football videos, supporting over 13,000 high
school and college teams. Its users often need to fast-
forward the video to certain moments of snap when the
corresponding plays of the football game start. To our
knowledge, this paper describes the first effort toward
automating this enhanced functionality. Under a very
tight running-time budget, our approach reliably detects
the start of a play in an arbitrary football video with
minimal assumptions about the scene, viewpoint, video
resolution and shot quality. We face many challenges
that are rarely addressed by a typical computer vision
system, such as, e.g., a wide range of camera viewing
angles and distances, and poor resolution and lighting
conditions. Extensive empirical evaluation shows that
our approach is very close to being usable in a real-
world setting.

Introduction
American football teams put many resources into the col-
lection, annotation, and analysis of game video of both their
own games and those of their opponents, for the purposes of
game planning. In recent years, companies have begun offer-
ing web services to facilitate these video-related activities.
Such web services currently do not perform any type of au-
tomated analysis of the game videos, but provide only basic
functionalities to their users. This makes human computer
interaction cumbersome, and requires a significant amount
of human labor when using the web service. For example,
cutting non-useful parts of the video (and thus saving the
purchased storage space) has to be done manually. Also, ac-
cessing a certain video part involves time-consuming watch-
ing of irrelevant parts, before observing the desired moment.
Therefore, there is a growing demand for automated analysis
of football videos, which would enable enhanced function-
alities.
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Designing such a video analysis system, however, is
highly non-trivial, and beyond the capabilities of off-the-
shelf computer vision tools. The key challenge is a huge di-
versity of football videos, which the web services typically
host. The videos vary widely in terms of camera viewing an-
gles and distances, resolution and shot quality, and weather
and lighting conditions. The videos are often taken by am-
ateurs, and thus exhibit motion blur and jittery camera mo-
tions, which may not be correlated with the football play.
All this requires relaxing the restrictive assumptions about
viewpoints, scales, and video shot quality, commonly made
in the computer vision literature.

This paper presents, to the best of our knowledge, the first
computer vision system that is capable of addressing a large
diversity of football videos. Given a raw football video, our
approach is aimed at estimating the moment when a foot-
ball play begins, also known as the moment of snap. Our
approach has a number of applications, including automatic
video cutting, initializing the start frame for viewing, and
providing a seed frame for further automated analysis. Since
we cannot make assumptions about the players’ layout in
the scene and video quality, our primary goal is achieving
robustness in the face of the wide variability, while also
maintaining a reasonable runtime. This is made feasible by
our new representation of motion in a video, called Variable
Threshold Image.

This study is in collaboration with one of the largest com-
panies dealing with football video1, having a client base of
over 13,000 high school, college, and professional teams.

In what follows, we first describe our application prob-
lem. Next, we describe our approach. Finally, we provide a
detailed evaluation and sensitivity analysis of our approach
on a select set of 500 very diverse real-world videos. This
empirical evaluation indicates that our current approach is
close to being ready for use in upcoming product releases.

Background and Problem Statement
In this section, we first give an overview of the web service
our work is targeted toward, and the characteristics of the
football video that we will be dealing with. We then discuss
some of the challenges involved with automated video anal-

1The commercial company currently wishes to remain anony-
mous at this time.
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ysis, and state the specific analysis problem addressed in this
paper. Finally, we review related work.

Web Services for Football Video. The web-service com-
pany that we work with provides services to over 13,000
high school, college, and professional football teams. It pro-
vides the functionalities for uploading game video, which
can then be manually annotated, and shared with other users.
Typically, the teams will upload video of each of their own
games, and also get access to opponent video via a secure
video-trade feature.

Game video is, for the most part, captured with one or
more panning, tilt, and zooming (PTZ) cameras. In most
cases, one camera captures a sideline view from an elevated
location along the sideline. The sideline view generally pro-
vides the best overall view of a game. Figs. 1 and 4 show
typical examples of sideline views. These are the views that
our work will focus on.

American football video is shot and organized around the
concept of football plays. Each game involves a sequence
of plays, separated by short time intervals where no game
action occurs, and the teams regroup. Before each play be-
gins (with minor exceptions), the offensive and defensive
teams line up facing one another at the line of scrimmage
— the line where the ball is located at the time. The play
starts when the ball is “snapped” (or passed) from a player
called the center to a player called the quarterback, and both
teams begin moving and executing their chosen strategies.
Each play lasts from roughly 5 to 30 seconds, and ends un-
der various conditions (scoring, halting forward progress,
etc). The cameras are operated so that they begin recording
a play sometime before the moment of snap (MOS), and end
recording at the termination of each play. Thus, at the end of
a game, a camera has a sequence of files, one for each play
in the game. These files are then uploaded to the web-service
for storage and manipulation via a user interface.

The recording of each play, however, does not generally
begin at the exact MOS. Rather, in many cases, there is a
significant amount of time that elapses between the start of
a video and the MOS. This prefix of the video is not useful
to viewers, costing them waiting time. It also wastes server
space, costing the web-service company dollars. Thus, auto-
mated MOS estimation could save both of these costs. First,
the play viewer could be initialized to start at the estimated
MOS, or a small number of frames before the estimated
MOS. Second, the pre-MOS prefix of a video could be cut
in order to save server space. Thus, a solution to automated
MOS estimation has an immediate and high product value.

Challenges. Automated analysis of football videos,
hosted by the aforementioned web service, is challenging
due to their enormous variability. In particular, the videos
are shot by camera-persons of varying skill and style, on
fields with different textures and markings, under different
weather and lighting conditions, from different viewpoints,
and cameras of varying quality. Further, the scenes around
the field can vary significantly, ranging from crowds, to play-
ers on the bench, to construction equipment. Figs. 1 and 4
show some examples the video variability encountered on
the web service.

Moment of Snap Estimation. In light of the aforemen-

tioned video variability, we have worked with the company
to identify an analysis problem that would both have imme-
diate product value, while also appearing approachable in
the near term. The problem that has resulted is to estimate
the frame number where a play starts in a video. We refer
to this problem as moment of snap (MOS) estimation, since
each play starts with the snap of the ball. More precisely, our
input for MOS estimation will be a video of a single football
play, and the output will be a frame number. The quality of
the output is based on how close the frame numbers are to
the actual moment of snap. In addition, the runtime of the
solution is very important, because any computational over-
head will cost money in terms of server time, and possibly
delays upon a first viewing.

Related Work. While the computer vision literature
presents a number of approaches to analyzing football (and
other team sports) videos, it is unlikely that they would be
successful on our videos. This is, for the most part, due to
the restrictive assumptions made by these approaches. For
example, inferring player formations in a football video,
presented in (Hess, Fern, and Mortensen 2007), could be
used to identify the line of scrimmage, and thus facilitate
MOS estimation. Similarly, tracking football players, pre-
sented in (Intille and Bobick 1995; Hess and Fern 2009),
and the 3D registration of a visible part of the football
field, presented in (Hess and Fern 2007), seem as useful
approaches that could be directly employed in MOS esti-
mation. However, all of these methods make the assump-
tions that the videos are taken under fairly uniform con-
ditions — namely, on the same football field, and from
the same camera viewpoint and zoom — and thus cannot
be applied in our setting. In addition, the approaches pre-
sented in (Liu, Ma, and Zhang 2005; Ding and Fan 2006;
L. and Sezan 2001) perform foreground-background estima-
tion, yard-line detection, and camera motion estimation for
the purposes of activity recognition. These approaches re-
quire high-quality videos, a fixed scale at which the players
may appear in the video, and prior knowledge of the field
model. Consequently, these approaches cannot be used for
MOS estimation in our videos. Remarkably, the reported ac-
curacies of the above approaches are often not high, despite
their restrictive settings, indicating fundamental challenges.

Overview of Our MOS Estimation
Typically, there is relatively little movement on the football
field before the snap, followed by substantial movement by
the players after the snap. Therefore, searching for the video
frame that has the maximum difference of some measure
of movement in the video before and after the frame seems
a good approach. However, as our results will demonstrate
later, such an approach is not effective for a variety of rea-
sons. First, common measures of movement in the video
— such as, e.g., optical flow, Kanade-Lucas-Tomasi (KLT)
point-feature tracker, or tangent distance — typically esti-
mate pixel displacements from one frame to another. All
these motion measures are directly affected by a particu-
lar camera zoom and viewpoint, because object motions in
close-up views correspond to larger pixel displacements than
those in zoomed-out views, and, similarly, objects moving
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perpendicular to the camera viewing angle correspond to
larger pixel displacements than those in other views. Since
we cannot make strong assumptions about the camera zoom
and viewpoint, the aforementioned naive approach could
easily confuse small pixel displacements with a pre-snap pe-
riod when they actually correspond to very large player mo-
tions on the field. Second, the camera may pan and zoom ar-
bitrarily, at any time, which registers as pixel displacements,
even when no foreground objects (here, football players)
are moving. Since we cannot assume any type of calibra-
tion information between the camera and field, which other-
wise could be used to subtract camera motion, the above ap-
proach is likely to confuse large camera motions with MOS.
Third, one could try to separate video foreground (i.e., play-
ers) from background, and conduct MOS estimation based
on the displacements of foreground pixels. However, since
we cannot make strong assumptions about video resolution,
field markings, and background, it is very difficult to reliably
detect and track players.

Given the above challenges, we developed an approach
for MOS estimation that has two main stages. The first stage,
field boundary extraction, computes for each frame in a
video an approximate top and bottom boundary of the field.
This information can be used to spatially focus later pro-
cessing on parts of the video that most likely correspond to
the actual playing field. The second stage, active cell anal-
ysis, computes a novel representation of the video based on
the concept of active cells, called Variable Threshold Image
(VTI). The VTI represents coarse changes in the motion pro-
file of a video. The VTI is then used to estimate MOS in a
way that is more resilient to the indicated challenges com-
pared to the aforementioned naive approach. The next two
sections describe each of these stages in further detail.

Stage 1: Field Boundary Extraction
We make the assumption that each video frame shows a side-
line view of a part of the football field. This assumption is
reasonable for the intended application. However, the exact
location of the football field relative to the coordinates of
each frame can vary substantially from one video to another.
To focus processing on the field rather than other frame parts
(e.g. crowd), we seek to efficiently and robustly extract ap-
proximate field boundaries in each frame.

More formally, given a frame, depicting a sideline view of
some part of a football field, the frame can be viewed as con-
sisting of three parts: 1) The top part above the playing field
in image coordinates, which often contains the crowd, or
football players on the sidelines; 2) The middle part, which
contains the field; and 3) The bottom part below the field
in image coordinates, which often contains the crowd, or
players on the sidelines. Our goal is to identify two bound-
aries, the top boundary between the top and middle part, and
the bottom boundary between the middle and bottom part,
as illustrated in Fig. 1. The frame area between these two
boundaries will roughly correspond to the football field, and
is where further processing will be focused. It is important to
note that in some cases (e.g. close-up shots), the middle/field
part will extend all the way to the top or bottom of the frame,

Figure 1: Results of our coarse field boundary detection. The red
lines mark the extracted boundaries of the field.

and hence the top and/or bottom parts may not be present.
Thus, our approach must handle such situations.

To compute the field boundaries, we draw upon a recent
dynamic programming approach for computing “tiered la-
belings” in images (Felzenszwalb and Veksler 2010). The
tiered labeling in our case is defined as follows. Let I be the
image frame with n rows and m columns. A tiered label-
ing of I is a sequence of pairs sk = (ik, jk), one for every
column, k, such that 0 ≤ ik ≤ jk ≤ n − 1. Given such a
labeling, the top boundary is defined by the sequence of ik
values across the columns, and the bottom boundary is de-
fined by the sequence of jk values across the columns. Our
solution will favor continuous boundaries.

Our goal is to find a labeling, f , that minimizes an energy
function, E(f), which measures the goodness of f for the
particular application. We specify E(f) such that it becomes
smaller for labelings which are more likely to be good field
boundaries, as

E(f) =
∑m−1

k=0 U(sk) +
∑m−2

k=0 H(sk, sk+1), (1)

where U encodes the local goodness of the pair sk for
column k, and H encodes the horizontal contiguity of the
boundaries selected for consecutive columns k and k + 1.
The definitions of these two functions are the same as those
used in (Felzenszwalb and Veksler 2010). U(sk) assigns a
lower energy (lower is preferred) to values of sk where the
corresponding pixels are estimated to belong to the football
field part of the frame. The coarse football field localiza-
tion is conducted by a simple clustering of the pixel colors,
and selecting the most dominant cluster to represent the field
color. H(sk, sk+1) penalizes pairs sk and sk+1 to a degree
that increases as their corresponding boundaries differ in lo-
cation and pixel values. This component helps smooth out
the extracted boundaries, which could be arbitrarily jagged
if only U(sk) were used to optimize labelings.

We use the standard dynamic programming to minimize
E(f). Note that this approach can return solutions where
one or both of the boundaries are not visible by assigning the
corresponding boundaries close to either row 0, or row n−1.
In practice, since we just need a coarse boundary estimation,
the tiered labeling is efficiently done every 10 columns, in-
stead of every column. As shown in the experimental sec-
tion, the algorithm runs very quickly on all frames, and is
not a time bottleneck of the current system. Two results of
the algorithm are shown in Figure 1.
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Figure 2: Sum of magnitudes of optical flow signal in time for an
example video (the horizontal axis shows frames).

Stage 2: Active Cell Analysis
This sections describes our novel representation of motion
changes in a video as Variable Threshold Image. It is based
on quantization of motion in a video, and robust accumula-
tion of spatial and temporal statistics of motion changes.

Given approximate field boundaries from stage 1, finding
the MOS amounts to identify a frame where there is little
prior motion followed by much motion on the field. As a
measure of motion, we use the popular Lucas-Kanade dense
optimal flow, which estimates for each pixel in a video frame
the magnitude and direction of its displacement in the next
frame. While optical flow may be noisy, it can be computed
efficiently compared to many other motion measures.

Our first attempt at MOS estimation based on optical flow,
first, computes the sum of magnitudes (SOM) of optical
flow vectors in the field portion of each frame. This pro-
vides a one-dimensional signal in time that roughly mea-
sures the motion across the video, as illustrated in Fig. 2.
Various statistics of this temporal signal can be used for
selecting a particular frame as the estimated MOS, includ-
ing: change points, local maximum, and various combina-
tions and smoothed versions of these. However, empirically,
these naive approaches frequently fail even in simple videos
which have no camera motion. In the case of camera mo-
tion, the performance becomes much worse. As can be seen
in Fig. 2, the various statistics of the SOM of optical flow
that one may consider do not always play out in practice.

This suggests that a more sophisticated analysis of
changes of optical flow is needed for our problem. In
response, we further investigate a quantization approach,
which leads to the concept of an active cell. We divide each
frame into N × N regular cells, where each cell within the
field boundary is assigned a value equal to the SOM of the
optimal flow vectors in that cell. Given a threshold, t, a cell
is called active if its SOM value is above t. This provides a
more robust estimate of whether there is motion in a partic-
ular area of the field versus more dispersed optimal flow. We
then use the number of active cells in a frame as a measure
of motion, rather than the overall SOM of a frames opti-
cal flow. This results in a new temporal signal of changes

of active cell numbers per frame that we analyze. Specifi-
cally, we scan a window of length 2L across the video, and
compute for each frame the difference between the number
of active cells in the L following frames frames and the L
previous frames. The frame that maximizes the difference is
interpreted as the MOS. The aforementioned difference de-
pends on two input parameters namely, the threshold t, and
the window length 2L. We experimented with a variety of
choices and normalizations of t and L to identify their opti-
mal values for MOS estimation. However, we were unable to
find combinations that worked well across most videos. This
suggests that an adaptive estimation of t would be more ap-
propriate, for which we develop a new video representation
called Variable Threshold Image.

Variable Threshold Image. For robust estimation of
changes in the number of active cells across the video,
we use a variable threshold image (VTI) as a representa-
tion of the motion in a video. We first discretize the non-
trivial range of possible thresholds t into M evenly spaced
values {t1, . . . , tm, . . . , tM}. The VTI representation of a
video with n = 1, ..., N frames is then an M × N im-
age, whose every pixel at location (m,n) encodes the dif-
ference in the total number of active cells detected at thresh-
old t = tm in frames {n− L, n− L + 1, ..., n} and frames
{n+ 1, n+ 2, ..., n+L}. Fig. 3 shows a contour plot of the
VTI for a typical play that includes some periods of cam-
era motion. The VTI provides a more complete view of the
overall motion of the video than the 1-D temporal signal (see
Fig. 2). In particular, the local optima in the VTI tend to cor-
respond to actual large changes in motion on the field, as
illustrated by labels of the time intervals of different events
in the football play in Fig. 3. To understand why such local
optima occur, consider an event that causes an increase in
the amount of motion starting at frame n. For some thresh-
old tm, VTI(m,n) will be large. As we increase the thresh-
old, tm′ > tm, the difference in active cell numbers will
tend to decrease, VTI(m,n) > VTI(m′, n), since for larger
thresholds there will be overall fewer active cells (even with
motion). Further, as we move away from frame n to frame
n′, where n′ < n or n′ > n, and keep the threshold fixed
at tm, VTI(m,n′) < VTI(m,n), since for a frame n′ we
will have similar numbers of active cells before and after n.
Thus, motion events will tend to register as peaks in the VTI.

MOS Classification. The VTI optima may correspond to
several possible types of motion events on a football field,
including the MOS, player motion before the MOS, and
camera pans and zooms. As a result the problem of find-
ing the MOS using the VTI amounts to selecting the correct
local optima. To do this, we performed an exploratory anal-
ysis of various easily computable properties of local max-
ima across a variety of videos with different characteristics.
Such properties included, absolute and normalized values of
the maxima, area of the maxima, the absolute and normal-
ized optical flow values before and after the maxima. Given
these features, we pursued a machine learning approach to
classifying optima as the MOS using different classifiers, in-
cluding linear SVM, RBF-SVM, and decision trees. How-
ever, none of these classifiers gave satisfactory results, due
to the mentioned huge variations in video sets. Therefore,
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Figure 3: Contour plot of variable threshold image for a play.

we resorted to our domain knowledge, and hand-coded the
classification rule for selecting an optimum of the VTI as
our MOS estimate. We first collect the top local optima that
have a value within 50% of the best local optima. We find
that this set of optima almost always contains the optimum
corresponding to the true MOS. We then select the optimum
from that set that has the minimum amount of raw optical
flow occurring in the L frames before it. The intuition be-
hind this rule is that it is generally the case that the true MOS
produces a local optimal with the best value or very close to
the best value. Further, the time before the MOS is generally
fairly free of significant motion, even camera motion. This
is because most players will be standing still and the camera
is generally focused waiting for the action to begin. There
are cases when the camera is moving or zooming during the
MOS, but our rule often works in those cases as well.

Experiments
We evaluate our moment of snap detector on a set of 500
videos of football plays from the company’s web-service
database. Each video is hand-labeled by the frame number of
the MOS for evaluation purposes. Videos are selected by the
company to be representative of the video diversity they ob-
tain from their customers, and is constrained only to include
sideline view videos. The videos vary widely in viewpoint,
number of players, presence of a crowd, resolution, duration,
scale, field color, and camera work. This makes the dataset
very unconstrained. Figs. 1 and 4 shows snapshots of sam-
ple videos.

Parameter Sensitivity and Selection. Our input param-
eters are the scanning window size L described in Section

Figure 4: Sample Videos - Video1 (top), Video2 (bottom)

hhhhhhhhhhhhhhError(frames)
W-Size (frames)

50 100 150 200

[−5,+5] 38 39 35 24
[−15,+15] 30 30 30 28
[−30,+30] 5 15 17 10
≥ 1 second 27 16 18 38

Table 1: Percent of videos in different error ranges for different
values of the window size L. [−δ, δ] corresponds to videos where
the predicted MOS is within δ frames of the true MOS. The final
row is videos whose predictions are greater than 30 frames away
from the true MOS. [−δi, δi] does not include videos in [−δj , δj ]
where j < i.

, and the “frame gap” used when computing optical flow.
The frame gap of v indicates that optical flow is computed
at frames that are multiples of v. Larger values of v lead to
faster computations of, but less accurate optical flows. We
begin by considering the impact of L on MOS accuracy. Ta-
ble 1 shows quantitative results for different windows sizes
using a fixed frame gap of 2. For each window size we show
the percent of videos that have a predicted MOS within a
specific number of frames of the true MOS. We see that the
best results occur for values of L ranging from 100 to 150
frames. When using small windows, we are more suscepti-
ble to noise, while larger windows smooth out the signal too
much for good localization. Based on these results we use a
value of L = 50 for the remainder of our experiments.

Table 2 shows quantitative results for different values of
the frame gap v when using L = 100. After discussions
with the company, it was decided that the maximum runtime
permissible by our approach was approximately 4x to 5x of
real-time. Given this constraint, the minimum frame gap that
we can consider is v = 2. From the table we see that indeed
a gap of v = 2 provides the most accurate results, and thus
we use this value for the remainder of the paper.

hhhhhhhhhhhhhhError(frames)
Gap(frames) 2 3 5

[−5,+5] 39 32 28
[−15,+15] 30 34 31
[−30,+30] 15 15 17
≥ 1 second 16 19 24

Table 2: Percent of videos in different error ranges when applying
our algorithm with different gaps and window size = 100.
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```````````Error(frames)
Method

Max Change First Big Ours

[−5,+5] 2 3 39
[−15,+15] 3 7 30
[−30,+30] 6 12 15
≥ 1 second 89 78 16

Table 3: Comparison with baselines. Accuracy in [%]

Comparison to Baselines. As described in Section , we
considered a variety of baseline approaches early in our de-
velopment that computed simple statistics of the raw opti-
cal flow changes in time. Here we compare two of the best
baselines of this type: 1) Max Change, which measures the
difference in total optical flow between successive frames,
and returns the frame preceding the maximum difference;
and 2) First Big, which selects the frame preceding the first
“big” change in optical flow, where big is relative to the set
of changes observed in the video. Note that the baselines
only consider optical flow within the extracted field bound-
aries, which make them more comparable to our active-cell
approach. Table 3 shows the results of two baselines, and our
approach for L = 100 and v = 2. We see that the baselines
do not perform very well, and commit a large percentage
of errors over 1 second. Rather, our approach has a much
smaller percentage (16%) of 1 second errors. A large frac-
tion of the active cell results are extremely accurate, with
69% having an error less than 15 frames or 0.5 seconds. As
we will show later, these levels of error appear to be at a
level that can be useful for video initialization and cutting.

Running Time. The average runtime of our code, imple-
mented in C, per frame, used by each computational step
is as follows: 1) Field boundary extraction 1ms, 2) Optimal
flow calculation 105ms, and 3) Active cell analysis 49ms.
The optical flow consumes about 2/3 of the total runtime.

Error Analysis. We carefully examined videos where our
current approach makes errors of more than 1s. Errors can
be grouped into two categories: 1) The MOS occurs at or
very close to the first video frame, and 2) A local opti-
mum corresponding to a non-MOS event has a significantly
higher value than that of the MOS. The reason for the first
case is that our method ignores the first and last L

2 frames
of the video since the sliding window of length L is cen-
tered at each analyzed frame. The second error case is more
complex, and is related to arguably poor camera work. In
some videos, there are extremely jerky camera movements.
Those movements result in large local optima due to appar-
ent movement of background objects on the field (e.g. num-
bers, lines, logos) and/or non-moving players. One way to
avoid the second type of error is to explicitly estimate and
subtract camera motion from the optical flow. Video Cut-
ting Evaluation. An important application of our MOS esti-
mator will be to cut unnecessary pre-MOS parts of the video.
We say that the estimated cut point is a bad cut if it occurs
after the MOS. To avoid bad cuts, the company plans to pro-
pose cut points not exactly at our estimated MOS, but rather
at some number of frames ∆ before our our MOS estimate.
We considered three values of ∆ and measured the percent-

age of bad cuts across our data set for each: 1) ∆ = 0: 63%
bad cuts, 2) ∆ = 30: 11% bad cuts, and 3) ∆ = 60: 8% bad
cuts. These results show that ∆ need not be large to arrive
at reasonably small bad cut rates. The majority of these re-
maining bad cuts are due to videos with very early moments
of snap, which our method does not properly handle, yet.

Road to Deployment
Considering the size and diversity of our dataset, the above
results show that the current system can have utility in real
software. The current plan is to begin integrating the MOS
estimator into the highlight viewer and editor functionality
provided by the company in 2013. The MOS detector will be
used for smart initialization of video and safe cutting. There
is interest in improving our current approach, both in terms
of runtime and accuracy/reliability.

Regarding computation time, we will explore alternative
optical flow calculations and video sampling strategies. We
will also evaluate the speedups attainable via GPU imple-
mentations. Regarding improving the accuracy and reliabil-
ity, we are currently pursuing two directions. First, in terms
of reliability, we are interested in providing the company not
only a MOS estimate, but also a confidence associated with
our estimate. When our system indicates high confidence the
accuracy should almost always be high. Such a confidence
estimate would be quite valuable to the company, since they
could choose to only act on highly confident predictions.
Our second effort toward accuracy improvement is to ad-
dress the two main failure modes observed in our experi-
ments. First, to address the issue of camera motion, we are
currently developing approaches for estimating the camera
motion that are tailored to our data. In particular, we are de-
veloping estimation techniques based on tracking the lines
on the football field. The other major error mode was for
videos where the MOS occurs very close to the start. We
plan to work on determining whether there was any signifi-
cant player motion at the start of the video.
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