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Abstract

Coronary heart disease (CHD) is a major cause of death
worldwide. In the U.S. CHD is responsible for approxi-
mated 1 in every 6 deaths with a coronary event occur-
ring every 25 seconds and about 1 death every minute
based on data current to 2007. Although a multitude of
cardiovascular risks factors have been identified, CHD
actually reflects complex interactions of these factors
over time. Today’s datasets from longitudinal studies
offer great promise to uncover these interactions but also
pose enormous analytical problems due to typically large
amount of both discrete and continuous measurements
and risk factors with potential long-range interactions
over time. Our investigation demonstrates that a statis-
tical relational analysis of longitudinal data can easily
uncover complex interactions of risks factors and actu-
ally predict future coronary artery calcification (CAC)
levels — an indicator of the risk of CHD present sub-
clinically in an individual — significantly better than
traditional non-relational approaches. The uncovered
long-range interactions between risk factors conform to
existing clinical knowledge and are successful in iden-
tifying risk factors at the early adult stage. This may
contribute to monitoring young adults via smartphones
and to designing patient-specific treatments in young
adults to mitigate their risk later.

Introduction
Heart disease and stroke – cardiovascular diseases, generally
– encumber society with enormous costs. According to the
World Heart Federation 1, cardiovascular disease costs the
European Union e 169 billion in 2003 and the USA about
$400 billion in direct and indirect annual costs.

One major cardiovascular disease is coronary heart disease
(CHD). It is reported to be a major cause of morbidity and
death in adults through heart attacks or acute myocardial
infarctions (AMI). CHD is a condition which includes plaque
build up inside the coronary arteries, i.e., atherosclerosis.
Atherosclerosis is a disease process that begins in childhood,
eventually resulting in clinical events later in life. The factors
that determine development and progression of CHD are in
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1See http://www.world-heart-federation.org/ cardiovascular-
health/global-facts-map/ economic-impact/ and references in there.

large part established; however, the causes are very closely
related with risk factors present in youth. Early detection
of risks will help in designing effective treatments targeted
at youth in order to prevent cardiovascular events in adult-
hood and to dramatically reduce the costs associated with
cardiovascaular dieases.

Our major contribution is to demonstrate the impact of
AI and machine learning on CHD research and the potential
for developing treatment plans. We show that relationships
between the measured risk factors, the development of CHD,
and overall plaque burden can be automatically extracted
and understood. As the cohort ages and sufficient clinical
events occur, this work will allow us to apply these methods
to clinical events such as AMI and heart failure. Specifically,
we propose to use the longitudinal data collected from the
Coronary Artery Risk Developments in Young Adults (CAR-
DIA)2 study over different years to automatically estimate
models using machine learning techniques for predicting the
Coronary Artery Calcification (CAC) amounts, a measure of
subclinical CHD, at year 20 given the measurements from the
previous years. This longitudinal study began in 1985− 86
and measured risk factors in different years (2,5,7,10,15,20)
respectively. Several vital factors such as body mass index
(bmi), cholesterol-levels, blood pressure and exercise level are
measured along with family history, medical history, nutrient
intake, obesity questions, pyschosocial, pulmonary function
etc. Using the predictions of the CAC levels we can pre-
dict cardiovascular events such as heart attacks. This in turn
allows us to enable pro-active treatment planning for the
high-risk patients i.e., identify young adult patients who are
potentially at high-risk to cardiovascular events and design
patient-specific treatments that would mitigate the risks. And
this could even be ported to one people’s laptops and/or smart-
phones, illustrating that AI could indeed empower people to
take control of their CV health.

Specifically, we use Statistical Relational Learning
(SRL) (Getoor and Taskar 2007) algorithms for predicting
CAC-levels in year 20 (corresponding to year 2005 when
the patients were between 38 and 50 years old) given the
measurements from all the previous years. SRL approaches,
unlike what is traditionally done in statistical learning, seek
to avoid explicit state enumeration as, through a symbolic

2http://www.cardia.dopm.uab.edu/
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representation of states. The advantage of these models is
that they can succinctly represent probabilistic dependencies
among the attributes of different related objects leading to
a compact representation of learned models that allow for
sharing of parameters between similar objects. Given that the
CARDIA data is highly relational (multiple measurements
are performed over examinations for each participant) and
temporal, we use SRL methods to learn to predict CAC-levels.
We use a de-identified version of the data set for methodolog-
ical development.

More precisely, we use two kinds of SRL algorithms for
this task – Relational Probability Trees (RPT) (Neville et
al. 2003) and a more recently popular Relational Functional
Gradient Boosting (RFGB) (Natarajan et al. 2012) approach.
RPTs upgrade the attribute-value representation used within
classical classification trees. The RFGB approach, on the
other hand, involves learning a set of regression trees, each
of which represents a potential function. The functional gra-
dient approach has been found to give state of the art results
in many relational problems and we employ the same for
CAC prediction. We use a sub-set of measurements from the
CARDIA data set and predict the CAC-levels. We compared
the SRL algorithms against propositional machine learning
algorithms and demonstrated the superiority of the SRL algo-
rithms. The learned models were also verified by our medical
expert and the results conform to known medical risks. The
results also provided a few insights about the relationships
between risk factors and age of the individual. Identifying
risk factors such as cholesterol level in young adulthood
has potential to enable both the physician and the subject to
devise a personalized plan to optimize it. Keeping track of
these risk factors in young adulthood will prevent serious
cardio-vascular events in their late adulthood.

In summary, we first present a very important real-world
problem: that of predicting cardio-vascular risks in adults
given their risk factors early in the adult stage. This problem
has a significant potential impact in the design of preventive
personalized treatments for adults. Second, this problem is
addressed using ML techniques. These techniques were devel-
oped recently within the SRL community and we adapt these
algorithms to our particular task and present the algorithms
from the perspective of this task. Third, the introduction of
the application to the AI community is important. Fourth,
long-range interactions between the risk factors are mined
effectively in our approach. For example, being a smoker
in young adulthood and having a low hdl-cholestrol level
in mid-adulthood could have a negative impact in the older
adults. Such dependencies are extracted by using time as
an explicit parameter in our models. Finally, the proposed
approaches are compared against state-of-the-art machine
learning techniques on the task of predicting CAC-levels in
patients in their adulthood.

Methodology

Before explaining how to adapt the CARDIA data to the
relational setting, we will justify and detail our relational
methodology.

The Need for Relational Models
Are relational models really beneficial? Could we also use
propositional models? As we show, relational approaches
are able to comprehensively outperform standard machine
learning and data mining approaches. Beyond this, there are
several justifications for adopting statistical relational analy-
ses. First, the data consists of several diverse features (e.g.,
demographics, psychosocial, family history, dietary habits)
that interact with each other in many complex ways making
it relational. Without extensive feature engineering, it is diffi-
cult — if not impossible — to apply propositional approaches
to such structured domains. Second, the data was collected
as part of a longitudinal study, i.e., over many different time
periods such as 0, 5, 10, years etc., making it temporal. Third,
like most data sets from biomedical applications, it contains
missing values i.e., all data are not collected for all individ-
uals. Fourth, the nature of SRL algorithms allow for more
complex interactions between features. Finally, the learned
models can be generalized across different sub-groups of
participants and across different studies themselves. And, the
relational models are very easily interpretable and hence en-
able the physician and policy-maker to identify treatable risk
factors and plan preventative treatments

While SRL methods seem appropriate, this data poses a
few challenges for SRL, to necessitate some preprocessing.

(1) Since the data is longitudinal, there are multiple mea-
surements of many of the risk factors over different years of
study. Hence time has to be incorporated into the model. To
do so, the features are treated as fluents with time being the
last argument. For instance, weight(X,W, T ) would refer to
person X having weight W at time T . (2) CAC-levels of the
participants are negligible (and often actually unobserved) in
early years. This prevents us from using standard Dynamic
Bayesian Network or HMMs; the values are nearly always
zero in the initial years, being non-zero only in 10% at year
15 and 18% at year 20. (3) The input data consists of mainly
continuous values. SRL methods use predicate logic where
attributes are binary. In the case of features such as choles-
terol level, ldl, bmi, we discretized them into bins based on
domain knowledge. This is one of the key lessons learned:
using the domain expert’s knowledge (for discretization in
our case) makes it possible to learn very highly predictive
models in real problems. (4) The cohort decreased over the
years. There were a number of participants who did not ap-
pear for a certain number of years and returned for others.
We did not try to normalize the data set by removing all the
missing participants or replacing them with the most com-
monly observed value. Instead, we allowed the values to be
missing. The only case where we dropped the participants
from the data base was when they were not present in year 20
where we predict the CAC-levels. This is to say that we are
not considering the problem to be a semi-supervised learning
problem but treat it as a strictly supervised learning one. (5)
Recall the goal of the study is to identify the effect of the fac-
tors in early adulthood on cardiovascular risks in middle-aged
adults. The algorithm should be allowed to search through
all the risk factors in all the years for predicting CAC-levels.
This implies that the data must not be altered or tailored in
any form. In this work, we did not make any modifications
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to the data except for the discretizations mentioned earlier.
As we show, our methods are very successful in identifying
long-range correlations. One of the biggest lessons learned
from this work is that risk factors between the ages of 18
through 30 are very significant for CAC-level prediction at
age 38 to 50.

However, which SRL approach should we use?

Relational Gradient Boosting
One of the most important challenges in SRL is learning the
structure of the models, i.e., the weighted relational rules.
This problem has received much attention lately. Most ap-
proaches follow a traditional greedy hill-climbing search:
first obtain the candidate rules/clauses, score them, i.e., learn
the weights, and select the best candidate. The temporal na-
ture of our task at hand makes it difficult to use these ap-
proaches. Therefore, we use a boosting approach based on
functional gradients recently proposed that learns the struc-
ture and parameters simultaneously (Natarajan et al. 2012).
It was proven successful in several classical SRL domains
and achieves state-of-the art performances. Also, it easily
— as we will show — accounts for the temporal aspects of
CAC-level prediction.

Functional gradient methods have been used previously to
train conditional random fields (CRF) Dietterich et al. (2004)
and their relational extensions (TILDE-CRF) (Gutmann and
Kersting 2006). Assume that the training examples are of
the form (xi, yi) for i = 1, ..., N and yi ∈ {1, ...,K}. We
use x to denote the vector of features. The goal is to fit a
model P (y|x) ∝ eψ(y,x). The potentials are trained using
Friedman’s (2001) gradient-tree boosting algorithm where
the potential functions are represented by sums of regression
trees that are grown stage-wise. More formally, functional
gradient ascent starts with an initial potential ψ0 and iter-
atively adds gradients ∆i.After m iterations, the potential
is given by ψm = ψ0 + ∆1 + ... + ∆m. Here, ∆m is the
functional gradient at episode m and is

∆m = ηm × Ex,y[∂/∂ψm−1log P (y|x;ψm−1)] (1)

where ηm is the learning rate. Dietterich et al. suggested
evaluating the gradient at every position in every training
example and fitting a regression tree to these derived exam-
ples i.e., fit a regression tree hm on the training examples
[(xi, yi),∆m(yi;xi)].

Let us denote the CAC-level as y and for ease of explana-
tion assume that it is binary valued (i.e., present vs absent).
Let us denote all the other variables measured over the dif-
ferent years as x. Our aim is to learn P (y|x) where, P (y|x)
= eψ(y;x)/

∑
y e

ψ(y;x) Note that in the functional gradient
presented in Equation 1, the expectation Ex,y[..] cannot be
computed as the joint distribution P (x,y) is unknown. In-
stead of computing the functional gradients over the potential
function, they are instead computed for each training exam-
ple i given as 〈xi, yi〉. Now this set of local gradients form a
set of training examples for the gradient at stagem. The main
idea in the gradient-tree boosting is to fit a regression-tree on
the training examples at each gradient step. We replace the
propositional regression trees with relational regression trees.

The functional gradient with respect to ψ(yi = 1;xi) of
the likelihood for each example 〈yi,xi〉 can be shown to be:
∂ logP (yi;xi)
∂ψ(yi=1;xi)

= I(yi = 1;xi) - P (yi = 1;xi), where I is the
indicator function that is 1 if yi = 1 and 0 otherwise. The
expression is simply the adjustment required to match the
predicted probability with the true label of the example. If
the example is positive (i.e., if the participant has significant
CAC-level in year 20) and the predicted probability is less
than 1, this gradient is positive indicating that the predicted
probability should move towards 1. Conversely, if the exam-
ple is negative and the predicted probability is greater than 0,
the gradient is negative driving the value the other way.

Now, to fit the gradient function for every training exam-
ple, we use Relational Regression Trees (RRTs) (Blockeel
and Raedt 1998).At a fairly high level, the learning of RRT
proceeds as follows: The learning algorithm starts with an
empty tree and repeatedly searches for the best test for a
node according to some splitting criterion such as weighted
variance. Next, the examples in the node are split into success
and failure according to the test. For each split, the procedure
is recursively applied further obtaining subtrees for the splits.
We use weighted variance on the examples as the test crite-
rion. In our method, we use a small depth limit (of at most 3)
to terminate the search. In the leaves, the average regression
values are computed.

The key idea underlying the present work is to represent the
distribution over CAC-levels as a set of RRTs on the features.
When learning to predict the CAC-levels in year 20, we use
the data collected from all the previous years. We ignore the
CAC-levels that are present for some individuals at year 15
since we are interested in planning preventive treatments in
early adulthood based on other risk factors. We bear in mind
that CAC rarely regresses from present to absent or from a
higher level to a lower level. These trees are learned such
that at each iteration the new set of RRTs aim to maximize
the likelihood of the distributions w.r.t ψ. When computing
P (cac(X)|f(X)) for a particular patientX , given the feature
set f , each branch in each tree is considered to determine the
branches that are satisfied for that particular grounding (x)
and their corresponding regression values are added to the
potential ψ.

To investigate the usefulness of other relational learners,
we also considered Relational Probability Trees (Neville et
al. 2003). We modified the RPT learning algorithm to learn a
regression tree similar to TILDE to predict positive examples
and turn the regression values in the leaves into probabilities
by exponentiating the regression value and normalizing them.
We modified TILDE to automatically include aggregate func-
tions such as count, mode, max, mean etc. while searching
for the next node to add to the tree. Also, the regression
tree learner can use conjunctions of predicates in the inner
nodes as against a single test by the traditional RPT learner.
This modification has been shown to have better performance
than RPTs (Natarajan et al. 2012) and hence we employ this
modified RPT learner in our experiments.
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Adapting the CARDIA Data
The CARDIA Study examines the development and determi-
nants of clinical and subclinical cardiovascular disease and
its risk factors. It began in 1985− 6 (Year 0) with a group of
5115 men and women whose age were between 18-30 years
from 4 centers : Birmingham, Chicago, Minneapolis, and
Oakland. The same participants were asked to participate in
follow-up examinations during 87 − 88 (Year 2), 90 − 91
(Year 5), 92− 93 (Year 7), 95− 96 (Year 10), 2000− 2001
(Year 15), and 05− 06 (Year 20). Data have been collected
on a variety of factors believed to be related to heart dis-
ease. This rich data set provides a valuable opportunity to
identify risk factors in young adults that could cause serious
cardiovascular issues in their adulthood. This in turn will al-
low physicians and policy makers to develop patient-specific
preventive treatments.

We used known risk factors such as age, sex, cholesterol,
bmi, glucose, hdl level and ldl level of cholestrol, exercise,
trig level, systolic bp and diastolic bp that are measured
between years 0 and 20 over the patients. Our goal is to
predict if the CAC-levels of the patients are above 0 for year
20 given the above mentioned factors. Any CAC-level over 0
indicates the presence of advanced coronary atheroma and
elevated risk for future CHD and needs to be monitored. So,
we are in a binary classification setting of predicting 0 vs non-
0 CAC levels. Also, most of the population had CAC-level
of 0 (less than 20% of subjects had significant CAC-levels)
in year 20. Hence there is a huge skew in the data.

We converted the data set into predicate logic, see e.g. (De
Raedt 2008) for an introduction. The first argument of every
predicate is the ID of the person and the last argument is
the year of measurement. It is possible for our algorithm to
search at the level of the variables or ground the variable to a
constant while searching for the next predicate to add to the
tree. For example, we could use some values such as “never
smoked”, “quit smoking” etc. directly in the learned model
and in other cases, use variables in the node. We are able to
learn at different levels of variablizations in the model.

The risk factors, however, are continuous variables. For
instance, ldl, hdl, glucose, bmi, dbp, bp etc. all take real
numbered values with different ranges. Many methods exist
that can discretize the data and/or directly operate on the
continuous data. While automatically discretizing the features
based on the data is preferred, some of these risk factors have
been analyzed by the medical community for decades and the
thresholds have been identified. For example, a bmi of less
than 16 is severely underweight, greater than 40 is extremely
obese etc. Hence, we used inputs from a domain expert to
identify the thresholds for discretizing the numeric features
and these are presented in Table 1. A particular value of the
measurements can fall into only one of these bins.

We also included the difference between the two successive
measurements as input features. This represents the “change”
in risk factor for the subject. For the boosting algorithm
(RFGB), we used the preset parameter of number of trees,
namely 20. The tree-depth of the trees was set to 3 and hence
we preferred a reasonably large set of small trees. As men-
tioned above, we allowed the algorithm to construct the ag-
gregators on the fly. We compare against learning a single

Feature Thresholds
cholestrol 70, 100, 150, 200, 250, 300, 400

dbp 0, 30, 50, 70, 90, 100, 150
glucose 0, 50, 100, 200, 300, 400

hdl 10, 30, 50, 70, 100,120,200
ldl 0,50,100,150,200,400
trig 0,25,50,100,300,1000,3000
bmi 0,16,18.5,25,30,35,40,100

Classifier Parameters
J48 C 0.25 M 2

SVM C 1.0, L 0.01, P 1E12, N 0, V 1, W 1 Poly Kernel
AdaBoost P 100, S 1, l 10
Bagging P 100, S 1, l 10, M 2, V 0.001, N 3, S 1, L -1
Logistic R 1.0E-8, M -1

Table 1: (Top)Domain expert’s discretization of some of
the input features. (Bottom) Parameters of the propositional
classifiers

tree(RPT) of depth 10. This is due to the fact that every path
from root to leaf indicates an interaction between the risk
factors and our domain expert indicated that 10 should be
the upper limit of the interactions. We also compared our
algorithms against various algorithms and parameter settings
using the weka package and report the results. Hence, we
propositionalized our features by creating one feature for
every measurement at every year. We included the change
(difference between measurements in successive years) fea-
tures for the propositional data set as well.

The best parameters determined by cross-validation and
used for the propositional classifiers are presented in Ta-
ble 1(top). For J48, C was set as 0.25 while the minimum
number of examples is 2. For support vector machines, C was
set to be 1.0, the rescale parameter was set to 0.01 and the
poly kernel was used. For Logistic regression, R was set to
1.0E-8 and allowed to converge (instead of maximum number
of iterations). In bagging, we used 10 iterations with a bag
size of 100 and no depth limit. We performed 5-fold cross
validation for evaluation.

Predicting CAC Levels
Our intention here is to investigate the benefits and the quality
of relational models for CAC level prediction.

Comparison with Propositional Learners: We now
present the results of learning to predict CAC-levels using our
algorithms and the standard ML techniques. A full test set has
a very large skew towards one class and hence the accuracies
can be very inflated. Hence in the test set, we sampled twice
the number of negatives as positives. Recall that the positive
class would mean that the CAC-level of the subject in year
20 is significant (i.e., greater than 0). Table 2 compares the re-
sults of boosting (RFGB) and RPT — against decision-trees
(J48), SVM, AdaBoost, Bagging, Logistic Regression (LR)
and Naive Bayes (NB).

A key property of many real-world data sets is a signif-
icantly increased number of negative examples relative to
positive examples. This is also seen in our data set since most
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Algorithm AUC-ROC
J48 0.609 ± 0.04

SVM 0.5 ± 0.0
AdaBoost 0.528 ± 0.02
Bagging 0.563 ± 0.02

LR 0.605 ± 0.02
NB 0.603 ± 0.03
RPT 0.778 ± 0.02

RFGB 0.819 ± 0.01

Table 2: Results on CARDIA data set. Area under ROC
curves have been presented.

CAC-levels are zero and hence the number of negatives can
be order of magnitude more than the number of positives. In
these cases, simply measuring accuracy or conditional log-
likelihood (CLL) over the entire data set can be misleading.
It can be shown easily that predicting all the examples as the
majority class (when the number of examples in one class
are far greater than the other) can have a very good CLL
value, but a very low AUC-ROC or AUC-PR value (nearly 0).
For more details of PR and ROC curves, we refer the reader
to (Davis and Goadrich 2006).

The AUC-ROC results presented clearly show that the
SRL approaches dominate the propositional ones. Most of
the standard algorithms classify nearly all the examples as
negative and as mentioned earlier, presenting accuracies can
be misleading. We chose to present AUC-ROC instead. SVM
and AdaBoost classify all examples as negative while Bag-
ging, LR, Naive Bayes and J48 classify a very small number
of examples (nearly 5% of positive examples correctly). In
contrast, the SRL approaches have a smoother classification
performance and hence have a higher AUC-ROC with RFGB
having the best ROC.

We present the Precision Recall curves for the SRL al-
gorithms in Figure 1.d. We did not include the other al-
gorithms since their PR values were very low. The boost-
ing approach has a better performance particularly in the
medically-relevant high recall region. Evaluating precision at
high recalls assesses an algorithm’s ability to predict while
disallowing many false negatives, which is the critical com-
ponent to a good screening tool. In the case of predicting
CAC levels, a false negative means categorizing a patient as
“low-risk” who might potentially go on to have a heart attack,
a costly outcome we wish to avoid.

The effect of the number of trees on the performance of
RFGB is presented in Figure 1.a. We have presented both the
AUC-ROC and AUC-PR values as a function of the number
of trees. As with the previous case, the results are averaged
over 5 runs. As the number of trees increase, there is an
increase in the performance of RFGB. Also, it can be noted
that beyond a certain number of trees (in our case 10), there
is not a significant increase in the performance. When the
number of trees is close to 30, there is a slight dip in the
performance of the algorithm. This could be due to overfitting.
When we look at the trees closer, it appears that with larger
number of trees (say 30), the last few trees are picking up

random correlations in the data (though the regression values
in the leaves are quite low). Figure 1.b presents the effect of
the depth of the tree when learning a single tree (i.e., RPT).
It appears that the performance of the algorithm stablizes
around a depth of 5. Increasing beyond 5 does not have a
statistically significant impact on the performance showing
that interactions between 5 risk factors is sufficient to predict
the CAC-levels.

Assessment of the Results: The results were verified by
our radiologist, and are very interesting from a medical per-
spective for several reasons: First, as our last set of experi-
ments show, the risk of CAC levels in later years is mostly
indicated by risk factors in early years (ages 25 through 40).
This is very significant from the point of view of the CAR-
DIA study since the goal is to identify risk factors in early
adult stage so as to prevent cardio-vascular issues in late
adulthood. Second, the learned tree conforms to some known
or hypothesized facts. For instance, it is believed that females
are less prone to cardiovascular issues than males. The tree
identifies sex as the top splitting criterion. Similarly, in men,
it is believed that the ldl and hdl levels are very predictive and
the tree confirms this. Third, the tree also identifies complex
interaction between risk factors at different years. For in-
stance – (i) smoking in year 5 interacts with cholesterol level
in later years in the case of females, and (ii) the triglyceride
level in year 5 interacts with the cholesterol level in year 7
for males. Finally, the structure of the tree could enable the
physician and policy-maker to identify treatable risk factors.

Prediction Based on Early Adulthood Data only: We
performed three additional experiments.

1 In the first setting, we repeated the earlier experiment with
one major change. Instead of considering all the risk factors
at all years, we considered the measurements only till year 10
i.e., only the risk factors from young adulthood. We aim to
predict the CAC-level in year 20. The average AUC-ROC are
0.779± 0.01 and are not significantly different from the ones
learned using the entire data set. This confirms our hypothesis
that the risk factors in younger age are responsible for the
cardiovascular risks in older age.

2 To further understand the impact of the different years, we
ran the RFGB algorithm using data from individual years
only i.e., the first set of trees were learned with only year 0,
the second with only year 5 and so on. The goal is again to
predict CAC-level in year 20 given these individual years.
The results are presented in Figure 1.c (solid line) and again
they were averaged over 5 runs for each year. As can be seen,
year 0 has the highest AUC-ROC compared to the other years.
This is a very significant result. This further shows that the
factors of a subject between his/her ages 18− 30 determine
the risks in later years. This validates the observations made
by Loria et al. (Loria, Liu, and et al 2007) where individual
correlations between risk factors at different years and CAC-
level at year 15 are measured to show that year 0 risk factors
are as informative as later years. Of course, in the current
experiment, we did not include things such as changes in the
behavior (for example, how much one reduced the cholesterol
level) and it is interesting to understand how lifestyle changes
of a person in early adulthood can affect the cardio-vascular
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Figure 1: (a) Effect of number of trees in performance of RFGB. (b) Effect of the depth of the tree in the performance of a single RRT. (c)
The impact of the measurements in different years in the CAC-level at year 20. (d) PR curves comparing the SRL algorithms.

risks in later years.
3 The final experiment aims to compute the change in pre-
dictive performance of the algorithm with increase in data.
We first used only year 0 data and learned a single tree. Now
using this tree, we learned the second tree using year 5 data
and so on. So the goal is to see how AUC-PR changes with
adding more observations in future yeas and can be seen as
the progress of the risk factor over time. The results are pre-
sented in Figure 1.c (dashed). As expected from the previous
experiment, year 0 has a big leap and then adding individual
years increases performance till year 7 and then plateaus be-
yond that. This is again a significant result. Our initial results
show that beyond ages 25− 37 of a person, there is not much
significant information from the risk factors.

Prediction using only socio-economic data: In addition,
we were also interested in finding how non-standard risk
factors such as family history, daily habits and drug use can
affect the CAC-levels i.e., can we determine if these factors
are as predictive as the ones considered above? These diverse
set of features included the age of the children, whether the
participant owns or rents a home, their employment status,
salary range, their food habits, their smoking and alcohol
history etc. There were about 200 such questions that were
considered. Initial experiments showed that we were able
to predict the CAC-levels reasonably well and in fact with
comparable statistical performance to that of the clinical risk
factors. While the results are preliminary, they reveal striking
socio-economic impacts on the health state of the population,
factors that have long been speculated on, but which can be
conclusively quantified.

Conclusion
Coronary heart disease (CHD) kills millions of people each
year. The broadening availability of longitudinal studies and
electronic medical records presents both opportunities and
challenges to apply AI techniques to improve CHD treatment.
We discussed the important problem of identifying risk fac-
tors in young adults that can lead to cardiovascular issues in
their late adulthood. We addressed the specific problem of
uncovering interactions among risk factors and of using them
for predicting CAC levels in adults given the risk factor mea-
surements of their youth. Our experimental results indicate
that the risk factors from the early adulthood of the subjects
seem to be the most important ones in predicting risks at later
years.

Motivated by the initial success of our work, we plan
to pursue research in several different directions. First, we
plan to include all the collected features for training the
models. This will allow one to identify complex relationships
between different types of features such as demographics and
psychosocial etc. Second, while the boosted set of trees have
high predictive accuracy, they may not necessarily be easy to
interpret by physicians. Hence our goal is to convert the set
of trees into a single tree. Third, the current data set does not
have the notion of “events” i.e., there are no records of cardio-
vascular issues such as heart attacks in the current data set
(year 20). Recently, these events have started to appear. It will
be extremely important to directly predict the events instead
of the surrogates such as CAC levels. The ultimate goal is
to make a tool for personalized prevention of heart disease
using ideas from machine learning that could potentially be
used for all young adults to get a precise estimate of their
future risk of disease.
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