
Predictive Models for Determining If and When to Display Online Lead Forms

Timothy Chan, Joseph I, Carlos Macasaet, Daniel Kang, Robert M. Hardy,
Carlos Ruiz, Rigel Porras, Brian Baron, Karim Qazi, Padraic Hannon, Tomonori Honda

Propensity Modeling Team
Edmunds.com

1620 26th St, 4th Floor
Santa Monica, CA 90404

Abstract

This paper will demonstrate a machine learning appli-
cation for predicting positive lead conversion events on
the Edmunds.com website, an American destination for
car shopping. A positive conversion event occurs when
a user fills out and submits a lead form interstitial. We
used machine learning to identify which users might
want to fill out lead forms, and where in their sessions
to present the interstitials. There are several factors that
make these predictions difficult, such as (a) far more
negative than positive responses (b) seasonality effects
due to car sales events near holidays, which require the
model to be easily tunable and (c) the need for compu-
tationally fast predictions for real-time decision-making
in order to minimize any impact on the website’s us-
ability. Rather than develop a single highly complex
model, we used an ensemble of three simple models:
Naive Bayes, Markov Chain, and Vowpal Wabbit. The
ensemble generated significant lift over random predic-
tions and demonstrated comparable accuracy to an ex-
ternal consulting company’s model.

1 Introduction
Edmunds.com is a car-shopping website committed to help-
ing people find and purchase the car that meets their every
need. Almost 18 million visitors use our research, shopping,
and buying tools every month to make an easy and informed
decision on their next new or used car. We provide com-
prehensive car reviews, shopping tips, photos, videos, and
feature stories offering a friendly and informative car shop-
ping experience.

One key conversion activity is enabling visitors to contact
dealers for price quotes. In the past, in order to request a
price quote from a dealer, visitors needed to navigate to par-
ticular pages. We call price quote requests, dealer leads, and
we call the pages that allow visitors to make such requests,
static lead forms.

Through a series of experiments, we found that some vis-
itors who wanted price quotes were unable to locate the ap-
propriate lead form pages. So, we created a lead form that
could appear at the most appropriate time for the user. To
accomplish this, we implemented an interstitial or pop-up

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

style lead form. We call a visitor who requests a quote from
a dealer using an interstitial or static lead form a lead sub-
mitter.

Given that interstitials tend to annoy visitors who are not
interested in submitting leads, we prefer to show lead forms
only to visitors who are likely to respond positively. Annoy-
ing our visitors could lead to fewer page views, lower dwell
times, and lower advertising revenue. We need to minimize
annoyance while generating revenue through dealer leads.

This is a difficult problem because: (a) a small percent-
age of our visitors request price quotes from dealers; so
we have an extreme class imbalance, which makes build-
ing good models difficult (Gao et al. 2008; He et al. 2009),
(b) interstitials are a new feature on our site, so we have lim-
ited training data, (c) our website is dynamic; content and
page routing can change at any time,1 (d) to maintain web-
site usability, we had to ensure that pages loaded within 500
milliseconds, and (e) half of our traffic consists of new visi-
tors.

Because of these limitations, we needed a computation-
ally efficient yet robust and adjustable AI-based model that
will predict who is most likely to react favorably to the lead
form interstitial and when to show it.

2 Data

We used two main sources of data for our modeling efforts,
internal clickstream data and third-party demographic in-
formation. The primary source – our clickstream – is the
page view history of each visitor to our site (Moe 2003;
Moe and Fader 2004). From this, we can glean insight into
the pages and content that interest each visitor, as well as the
progression of page views reflecting each visitor’s thought
process. We organize our pages by assigning them to cate-
gories such as new car, used car, inventory, reviews, tips &
advice, news, calculator, etc. These categories help us de-
termine, at a high level, the type of information visitors are
seeking. This information is especially useful when visitors
stay on the site for a long time and view a lot of content.
However, many of our visitors have short clickstream ses-

1We assume that under-fitted models will be more robust to
website changes than over-fitted models.

Proceedings of the Twenty-Sixth Annual Conference on Innovative Applications of Artificial Intelligence

2882



sions. More than half of our visitors are “new”2 and the
average number of page views per visitor is fewer than four.
Nevertheless, a small number of visitors have very long ses-
sions, making for a long-tailed pages per session distribu-
tion.

Because clickstream data contains limited information,
we augment our dataset using external demographic infor-
mation provided by third parties. This demographic infor-
mation comes in two distinct forms. The first comes from
a cookie-based provider (Eirinaki and Vazirgiannis 2003;
Chester 2012). With this, we infer household-level infor-
mation about our visitors because each cookie is associated
with a particular computer. The main drawback of this type
of data is that it is not available for most visitors. Only visi-
tors with the third-party cookie display this information.

The other type of demographic information is zip-code
based data (United States Census Bureau 2010). In this case,
we map the IP address of each visitor to a zip-code and we
obtain aggregate demographic information about each geo-
graphic area. Because we only have to ensure that a particu-
lar IP address maps to a zip-code, the coverage for this type
of data is much better, but the information obtained is less
targeted.

3 Models
One of the difficulties associated with clickstream prediction
models is that the length of browsing history varies drasti-
cally from session to session. We must either aggregate the
data into summary statistics, or the model must be able to
handle variable length data. These considerations impacted
our choice of models. We settled on Naive Bayes, Markov
Chain, and Vowpal Wabbit (VW).

The Naive Bayes model assumes that each page view is
a separate disjoint event and that the overall propensity for
filling out a lead form is the sum of incremental propensities
for each page viewed. The Markov Chain model focuses
on transitions between pages. Finally, Vowpal Wabbit is an
online logistic regression model into which we pass aggre-
gated session statistics as well as third-party demographic
information. We designed all three models to predict the
likelihood of a conversion event, which, in our case, is a vis-
itor filling out and submitting an interstitial lead form.

Naive Bayes
We chose Naive Bayes (Langley, Iba, and Thompson 1992)
as the first model because of its simplicity and ability to han-
dle large numbers of categorical variables as separate fea-
tures. Despite its simplicity, it has been shown to have accu-
racy comparable to other classification models. (Rish 2001;
Hand and Yu 2001). In our application, we treat each page
on our website (after cleaning) as a distinct feature, as in a
“bag of words” or “bag of features” (Zhang et al. 2007). Our
Naive Bayes model only considers webpages without refer-
ence to demographic information or the order of the page

2This means that we cannot associate a visitor’s session with
any previous sessions. This can happen for various reasons includ-
ing visitors clearing their caches or using multiple browsers.

views. Thus, we assume that every page a visitor views in-
crements the propensity to submit a lead.3

Our first step in building a Naive Bayes model was to
clean the recorded URLs for each visitor. This is crucial
because there can be over 5 million distinct URLs for one
month’s traffic of only 12.5 million visitors. Thus, with-
out cleaning, there would be too few statistically significant
URLs. We cleaned URLs by removing query parameters and
by combining similar, infrequently visited, pages together
into page types.

For example, we aggregated all pages that contain dealer-
ships such as:

http://www.edmunds.com/dealerships/all/NewYork/

http://www.edmunds.com/dealerships/Acura/California/

http://www.edmunds.com/dealerships/Hyundai/Kansas/Wichita.html

into www.edmunds.com/dealerships. This puts rarely vis-
ited pages into broader categories like car-care, car-reviews,
etc. By doing this, we cut down the number of unique fea-
tures to fewer than 9,000 pages.

To simplify the Naive Bayes calculation, we computed
the weight of evidence (Goodman and Royall 1988) for each
page as follows:

ppagei =
Count of lead submitters who saw page i

Count of all visitors who saw page i
(1)

pavg =
Count of lead submitters

Count of all visitors
(2)

wpagei = log

(
ppagei
pavg

)
(3)

where ppagei is the likelihood of conversion given that a vis-
itor saw page i. pavg is the average conversion rate, and
wpagei is the log-likelihood ratio, or weight of evidence, for
page i. Given these weights of evidence, we compute the
Naive Bayes score for the k-th visitor as:

WNB
k =

∑
i∈{pagek1 ,...pagekN}

wi (4)

where pageki is the i-th webpage that the k-th visitor viewed
and N is the total number of pages that the k-th visitor
viewed.

With this Naive Bayes model, we can analyze how view-
ing particular pages on Edmunds.com impact lead submis-
sions. Pages like consumer reviews for older models, car
maintenance pages, and discontinued vehicle pages exhibit
negative weights of evidence. This supports our intuition
that viewers of these pages most likely are not new car shop-
pers wanting price quotes from dealers. On the other hand,
pages like dealership info, car leasing info, and the home-
page for new cars carry positive weights of evidence. An-
other interesting observation is that for new car pages, the
direction of the weight of evidence depends on make and
model. This shows that visitor intent is linked to the types
of cars they view. Some cars with negative weights of ev-
idence are Aston Martin, Lamborghini, Tesla, and the Ford

3After a threshold is surpassed, a lead form is displayed.

2883



Mustang. This tells us either that buyers of these cars do
not need help obtaining pricing information or that they jare
aspirational window shoppers or car enthusiasts rather than
buyers who are close to purchasing.

The assumption that page views are independent and that
page order is not important are not realistic. Yet, the Naive
Bayes model is intuitive and computationally efficient.

Markov Chain
The second model we explored was a first order Markov
Chain model. The Markov Chain model has been uti-
lized in various domains including anomaly detection (Ye
2000) and classification (Liu and Selfridge-Field 2002;
Kaliakatsos-Papakostas, Epitropakis, and Vrahatis 2011;
Li and Wang 2012). Because lead submission are rare
events, an algorithm that is able to detect anomalies seemed
a good choice. The model detects differences in page transi-
tion patterns between lead and non-lead submitters. Unlike
Naive Bayes, this model focuses on the order of events, ex-
aming that a visitor who views Page A before Page B may
have different lead submission propensity than a visitor who
views Page B followed by Page A.

One limitation of Markov Chain model is that it requires
significantly more training data than the Naive Bayes model.
Using 9,000 different URLs like we did with Naive Bayes
resulted in 81 million possible transitions. Many of these
transitions rarely happen, so confidence in the transition
probabilities will be low. To reduce the number of possi-
ble transitions, we used our internal page categories such as
home page, model review, new model mydp pricing, etc.
These categories describe pages at a high level and lack de-
tails such as car make and model. Because we have about 90
different page categories, the number of transitions reduces
to 8,000.

With this page category data, we created the Markov
Chain model in the following manner. First, we calculated
page transition probabilities for lead submitters and non-lead
visitors separately.

T lead
cati,catj =

CNT lead
cati,catj∑

catk
CNT lead

cati,catk

(5)

Tnon-lead
cati,catj =

CNTnon-lead
cati,catj∑

catk
CNTnon-lead

cati,catk

(6)

where CNT lead
cati,catj is the count of lead submitters who

saw page category i followed by page category j and
CNTnon-lead

cati,catj is the count of non-lead submitters who saw
page category i followed by page category j. We also cal-
culated the transition probability for a visitor’s initial page
category (the category of the page on which a visitor lands)
in a similar manner.

T lead
cat0i

=
CNT lead

cat0i∑
cat0j

CNT lead
cat0j

(7)

Tnon-lead
cat0i

=
CNTnon-lead

cat0i∑
cat0j

CNTnon-lead
cat0j

(8)

where CNT lead
cat0i

is the count of lead submitters who landed

on page category i and CNTnon-lead
cat0i

is the count of non-
lead submitters who landed on page category i. Given these
transition probabilities, the Markov Chain model becomes:

WMC
k = log

(
T lead
cat0k1

Tnon-lead
cat0k1

)
+

catk(N−1)∑
j=catk2

log

(
T lead
j,j+1

Tnon-lead
j,j+1

)
(9)

where catki is the category of the i-th webpage that the k-th
visitor viewed.

The Markov Chain model provided insight into the types
of pages on which lead submitters tend to land. Intuitively,
visitors who land on dealership, incentives, inventory, or
pricing related pages are more likely to be close to purchas-
ing a car and therefore more likely to request a price quote.
Visitors who land on pages that provide advice on new car
buying are also more likely to submit leads. On the other
hand, visitors who land on pages about used cars, repair &
maintenance, or advice about warranty and safety, are less
likely to submit leads. These intuitive results provided some
assurance that the model was correctly tuned.

The Markov Chain model also provided insight into
browsing patterns of lead submitters. Consider these two
visitors who saw the following, as their first two pages on
Edmunds.com:
Visitor A: new model pricing, maintenance index
Visitor B: maintenance index, new model pricing
The new model pricing page has a positive weight of ev-
idence, while the maintenance index page has a negative
weight of evidence. In our Naive Bayes formulation, be-
cause order does not matter, both visitor A and B will have
the same likelihood to submit a lead. However, according to
the Markov Chain model, a visitor who saw the new model
pricing page first has a positive weight of evidence. The
visitor is 1.91 times more likely to submit a lead than on av-
erage. In contrast, if a visitor saw the maintenance page, fol-
lowed by new model pricing page, there is a negative weight
of evidence. That visitor is 20% less likely to submit a lead
compared to the average. Thus, this model learns the order-
ing of events, in this case, sequences of page views.

Vowpal Wabbit
One notable thing about our visitors is that their behav-
ior reflects seasonality. Because car manufacturers tend
to have sales events near holidays, we have more visitors
and higher conversion rates around holidays like Memo-
rial Day, Independence Day, and Labor Day. Ideally, our
model should account for this seasonality. One way to
capture seasonality is to use online learning (Bottou 1998;
Kivinen, Smola, and Williamson 2004; Smale and Yao 2006;
Saffari et al. 2009; 2010).

We chose to use Vowpal Wabbit (VW), an online learning
system developed by John Langford and others (Langford
2007; Agarwal et al. 2011). It is regarded as a computation-
ally fast machine learning system. We felt that VW was an
appropriate choice for our third model because it focuses on

2884



statistics and other information not used by the other two
models.

The main features explored by this online model were: (a)
clickstream statistics, e.g., page count, new car visit, etc.,
(b) vehicle price information, (c) zip code information, (d)
search keywords, and (e) quadratic term that combines click-
stream statistics and zip code information.

We normalized these features before building the model.
For example, the number of pages visited was transformed
using a log(x+1) function to compress long-tailed distribu-
tions. Return visit counts were converted into indicator vari-
ables, showing either a statistically significant increase or
decrease in the conversion rate compared to the average con-
version rate.4 We transformed zip code and search keyword
information using weight of evidence as in the Naive Bayes
formulation. We also measured whether visitors looked at
similarly priced cars or whether they transitioned to higher
or lower priced cars. We hypothesized that visitors shopping
within narrow price ranges were deeper into the buying fun-
nel and readier to request quotes from dealers. We tried to
choose the most appropriate transformation for each variable
on a case-by-case basis.

One difficulty in training VW was its sensitivity to the or-
der of training cases. Some sensitivity was expected because
training used stochastic gradient decent. However, because
our conversion rate was so low, this sensitivity was mag-
nified. Thus, we used batch learning for feature selection
before training with VW. For simplicity, we utilized R’s lo-
gistic regression package (The R Development Core Team
2012) and backward feature selection (Guyon and Elisseeff
2003) to narrow down the key variables.

After feature selection, we saw some interesting results.
The most important features were the statistics from click-
stream behavior such as number of pages visited, the frac-
tion of visits containing new car pages, the number of car re-
view pages visited (showing negative correlation), etc. The
weight of evidence for zip code and search keywords were
also important. On the other hand, third-party demographic
information added some value, but not with high impor-
tance.5 This may have been caused by the fact our demo-
graphic variables were zip code based, and probably over-
lapped with our zip code weight of evidence variables. Fi-
nally, we thresholded the VW model to target the same per-
centage of visitors as the Naive Bayes and Markov Chain
models.

Simple Ensemble for Final Predictions
Given our three different models, we needed to form an
appropriate ensemble (Dietterich 2000; Wang et al. 2011)
based on stacking (also called blending) (Ting and Witten
1999; Dzeroski and Zenko 2004). Even though the stacking
approach can be hit-or-miss, and hard to justify theoretically,

4The main reason for this transformation is that the lead conver-
sion rate as a function of the count of return visits shows a nonlin-
ear relationship that logistic regression and Vowpal Wabbit cannot
easily capture.

5Validation AUC for the VW model showed improvement from
0.703 to 0.725 by adding the third party demographics information.

it gained popularity following its success in the Netflix (Ko-
ren 2009) and Heritage Health Prize (Vogel, Brierley, and
Axelrod 2011) competitions.

Although we could have taken more time to devise a better
stacking algorithm, we decided to use a logical “OR” func-
tion to aggregate the predictions from Naive Bayes, Markov
Chain, and Vowpal Wabbit. We took this approach to limit
false interstitial signals that would reduce dwell time and ad
revenue.

To retrain our models, a Hadoop workflow aggregates the
required metrics using the latest clickstream data. Then,
Python scripts process the aggregated data to produce a
weight of evidence CSV file for the Naive Bayes model
and transition probability CSV files for the Markov Chain
model. With the CSV files and a holdout set of clickstream
data, a validation harness incorporating our business rules
determines both target rate and accuracy of the model. Upon
verification, we publish the updated CSVs to our lead pre-
diction service.

4 Results
We verified the effectiveness of our predictive model us-
ing three different baselines: (a) conversion when intersti-
tial was shown to everyone, (b) conversion when interstitial
was shown randomly at 5% for every page viewed, and (c)
conversion when using a consulting company’s model

The first baseline provides an upper bound on conversion
rate lift. When we showed the interstitial to everyone, we
got about a 70% lift. However, by showing an interstitial to
everyone, we saw a significant increase in complaints, with
visitors stating that the user-friendliness of our website had
declined. This demonstrated the necessity for a “smart” so-
lution that would target the lead form interstitial properly.

As a second baseline, we compared our model to ran-
dom interstitial display. Rather than randomly dividing the
population for determining who will see the interstitial, we
randomly decided to show or not show interstitials on each
page. Because visitors who see more pages have a higher
likelihood to see the interstitial, this “random” model ex-
ploits the correlation between page views and the interstitial
conversion rate. Thus, the conversion rate was higher for
this model than had we just randomly divided the population
into interstitial and non interstitial visits. When we chose a
5% likelihood for showing the interstitial on each page, we
observed a 20% conversion rate lift.6

For the last baseline, we compared our blended model to a
consulting company’s model which was built with the same
goal: to increase lead conversions. Because the consulting
company did not reveal many details about their model, we
treated it as a black box. Also, since the consulting com-
pany was working on building and improving their model
for eight months, it provided a rough upper bound estimate
for the performance we might expect on this problem.

Figure 1 compares the conversion rate between our model,
the consulting company’s model, and a control group. Over
1.5 months, the weighted average conversion (accounting
for daily traffic variation) was 0.210% for the control group,

6For reference, the average page views per visitor was 4.6.

2885



0	
  

0.0005	
  

0.001	
  

0.0015	
  

0.002	
  

0.0025	
  

0.003	
  

0.0035	
  

0.004	
  

9/28/2012	
   10/8/2012	
   10/18/2012	
   10/28/2012	
   11/7/2012	
   11/17/2012	
   11/27/2012	
  

TO
TA

L	
  
CO

N
VE

RS
IO
N
	
  R
AT

E	
  

DATE	
  

CONTROL	
  

EDMUNDS	
  
MODEL	
  
EXTERNAL	
  
CONSULTANT	
  

Figure 1: Comparison of Total Conversion Rate

0.273% for the consulting company’s model, and 0.270%
for our final internal model. This indicates a 29% boost
in conversions for the Edmunds.com model and a 30% in-
crease for the consulting company’s model, demonstrating
that the two models perform similarly. Given that the first
baseline showed at most a 70% increase in conversion and
because we targeted less than 15% of the population, with
random targeting we would expect a 10.5% increase in con-
version. Both our stacked model and the consulting com-
pany’s model also outperformed the second baseline which
exploits the number of pages viewed by our visitors.

To understand the differences between our model and
the consulting company’s model, we examined lead conver-
sion and return visitors. Our internal model actually had a
slightly higher (by about 5%) lead conversion rate per visi-
tor than the consulting company’s model. Though lead con-
version per interstitial was higher, total lead submissions
were lower, suggesting that our model may have cannibal-
ized static lead form submissions. That is, our model may
have shown the interstitial to visitors who were already go-
ing to submit a lead via the static form. Figure 2 shows that
lead conversion depends on the percentage of return visitors.
The consulting company’s model performs better with re-
turn visitors, while our model shows more promise for first
time visitors. This suggests potential for further improve-
ment by aggregating our model with the consulting com-
pany’s model.

5 Level of Exposure
We deployed our model as an A/B test. We randomly buck-
eted each of our visitors into one of several recipes. Al-
though the recipes and allocations varied over time, we usu-
ally reserved at least ten percent of our traffic for the de-
fault site experience, which had no lead form interstitials.
The rest of the traffic was typically split between our pre-
dictive model and the one developed by our consultant. The
model recipes were just the regular site experience, with the
possibility that a lead form interstitial might be shown. Ul-
timately, our model was deployed to production for three
months at a high traffic level. The model scored 14.5 mil-
lion unique visitors and recommended lead form interstitials
for 2 million of them. Of those, 12,600 thousand submitted
leads.

6 Comparison to a Third Party Vendor
As described previously, Edmunds.com partnered with a
consulting company to build a lead prediction model. While
developing and maintaining their model, a representative
from the company attended our daily project scrums. We
also held several meetings with their developers to discuss
the nature of our data and give them some domain expertise.

For visitors who were bucketed into the consultant’s A/B
test recipe, we used the consultant’s REST service to deter-
mine whether or not to show a lead form. The REST call
included, among other things, the URL visited, our assigned

2886



0	
  

0.0002	
  

0.0004	
  

0.0006	
  

0.0008	
  

0.001	
  

0.0012	
  

0.0014	
  

37.5%	
   38.0%	
   38.5%	
   39.0%	
   39.5%	
   40.0%	
   40.5%	
  

PO
PU

P	
  
CO

N
VE

RI
O
N
	
  P
ER

	
  V
IS
IT
O
R	
  

PERCENTAGE	
  OF	
  RETURN	
  VISITOR	
  	
  

Internal	
  Model	
  

External	
  Consultant	
  

Linear	
  Fit	
  -­‐	
  Internal	
  
Model	
  

Linear	
  Fit	
  -­‐	
  External	
  
Consultant	
  

Figure 2: Percentage of Return Visitor vs. Lead Conversion per Visitor

page category and page name, and any vehicle data, such as
make or model, associated with the page.

Aside from providing us with a prediction, this REST
call also afforded the vendor live updates of the visitors in
their recipe. Through separate REST calls, we also noti-
fied the vendor, in real time, every time a lead form inter-
stitial was presented, dismissed, or submitted. In addition
to live updates, every month we sent them the past month’s
clickstream history for all visitors so they could retune their
model with more comprehensive data sets.

The consulting company did not provide us too many de-
tails about their model, but they did indicate it was a tree-
based ensemble.

7 Discussion
We learned several lessons from this case study and we iden-
tified opportunities for future research.

1. Systematic Feature Creation
Even though this research is more focused on improving
model accuracy and less on feature generation, creating a
good set of features is critical to building good predictive
models. By cleaning the data and creating good features,
we can use simpler, more computationally-efficient learn-
ing models. For example, our models are simpler than
state of the art algorithms that utilize bagging and boost-
ing like AdaBoost, Random Forest, and Gradient Boost-
ing Machine. Simpler algorithms can be computed more

quickly, enabling us to minimize user wait times. There-
fore further advances in generating useful features will be
beneficial.7

2. Improving the Aggregation Process using Stacking
Because of the cost of model building, it is practical to
start with simpler models and build more complex mod-
els only if they are warranted. Stacking potentially lever-
ages the strengths of several simple models. In light of
recent work that has shown that stacking tends to be hit-
or-miss (Graczyk et al. 2010), future work should be done
to determine conditions under which stacking will work
effectively. Work could also be done to determine which
additional model types will improve an existing stack.

3. Early Estimation of Trade-off between Improving Predic-
tion vs. Improving Product
In website AI applications, data may not represent the
implementation environment as well as we would like.
Changes in usage patterns, seasonality, and changes in the
website itself result in a non-stationary problem domain.
For example, aside from optimizing interstitial timing, we
have noticed significant improvement in conversion lift by
enhancing the aesthetic design of the interstitials them-

7Although there have been some studies involving automatic
feature generation (Leather, Bonilla, and O’Boyle 2009), more
effort has been devoted to improving feature selection tech-
niques (Saeys, Inza, and Larranaga 2007; Deisy et al. 2010)

2887



selves. Thus we should weigh the benefits of making bet-
ter interstitial timing predictions against making better in-
terstitials.8

We reaped a number of benefits by developing a predictive
model ourselves. First, we freed up resources from having to
communicate with the consulting company. Due to security
concerns, we could not provide the consultants direct ac-
cess to our data warehouse; because of this, each month, we
needed to prepare training data to upload to a shared loca-
tion accessible by the consultants. Finally, it was necessary
to spend hours explaining domain specific terminology and
Edmunds.com business practices to the consultants.

Second, because the consultant company’s model was a
black box to us and was reliant on data provided by us, it
often lagged behind changes to the website. When we made
layout or navigation changes to our site, we had to wait for
the consultant to re-tune their model instead of being proac-
tive about model changes.

Third, the consulting company’s model implementation
sometimes failed to handle Edmunds.com’s traffic volume.
In addition to providing a model, the consulting company
also managed a REST layer for scoring visitors live. At
times, their service became unavailable or did not return
within an acceptable delay. We then had to rely on them
to fix the problem in a timely manner.

8 Conclusion
Through our project to improve lead form conversions for
Edmunds.com, we showed that stacking three simple mod-
els can effectively predict classification of a small minor-
ity class. Model building focused on data transformation
and feature creation, rather than on model complexity. The
project demonstrated a need for further research in the fol-
lowing areas: (1) systematic feature generation, (2) formal-
ization of the ensemble stacking algorithm to enable estima-
tion of offline performance, (3) knowing which additional
models have the best chance of further improving the en-
semble, and (4) a method for determining when to improve
our website product offerings versus using predictive mod-
eling to optimize timing.

Towards the end of 2013, we removed the lead form inter-
stitial. Edmunds.com underwent an extensive site redesign
that included a new lead product. Product teams needed to
test the effectiveness of incremental improvements to the site
without metrics for traditional leads diluted by the intersti-
tial.

In the first quarter of 2014, after the changes to the new
site stabilized, we decided to reintroduce the lead form inter-
stitial in order to increase our overall lead volume. We made
some slight modifications to avoid interfering with our new
lead product. We also simplified our deployment by remov-
ing Vowpal Wabbit from the ensemble. This way, all model
scoring was performed by a single web application artifact.

8All products encompass design and implementation issues. Ef-
fective products must be executed efficiently. (Minderhoud 1999).
In our case, we are trading off effort to get the right product (aes-
thetic of interstitial) with getting the product right (accuracy of in-
terstitial prediction).

Finally, we reduced the target rate for the interstitial. We
found that by targeting only the top 5% of visitors who were
most likely to submit a lead, we increased our lead conver-
sion rate by 26% without negatively impacting bounce rate,
dwell time, or advertising revenue.

9 Acknowledgments
We would like to thank Andy Wadhwa for contributing to
our team before moving to Newegg.com and Steven Spitz
for his invaluable assistance in the final editing of this paper.
We would also like to acknowledge the invaluable contribu-
tion that Punnoose Isaac, Brian Terr, and Philip Potloff pro-
vided to the Propensity Modeling Team. Finally, we would
like to thank Ely Dahan, Sanjog Misra, and Anand Bodapati
from UCLA for helpful discussions.

References
Agarwal, A.; Chapelle, O.; Dudik, M.; and Langford, J.
2011. A reliable effective terascale linear learning system.
Computing Research Repository abs/1110.4198.
Bottou, L. 1998. On-Line Learning in Neural Networks.
New York, NY: Cambridge University Press. chapter Online
Learning and Stochastic Approximation, 9–42.
Chester, J. 2012. European Data Protection: In Good
Health? Springer Science+Business Media. chapter Cookie
Wars: How New Data Profiling and Targeting Techniques
Threaten Citizens and Consumers in the “Big Data” Era.
Deisy, C.; Baskar, S.; Ramraj, N.; Koori, J. S.; and Jee-
vanandam, P. 2010. A novel information theoretic-interact
algorithm (it-in) for feature selection using three machine
learning algorithms. Expert Systems with Applications
37(12):7589–7597.
Dietterich, T. 2000. Ensemble methods in machine learning.
In Multiple Classifier Systems, First International Work-
shop. IAPR.
Dzeroski, S., and Zenko, B. 2004. Is combining classi-
fiers with stacking better than selecting best one? Machine
Learning 54(3):255–273.
Eirinaki, M., and Vazirgiannis, M. 2003. Web mining for
web personalization. ACM Transactions on Internet Tech-
nology 3(1):1–27.
Gao, J.; Ding, B.; Fan, W.; Han, J.; and Yu, P. S. 2008.
Classifying data streams with skewed class distributions and
concept drifts. IEEE Internet Computing 12(6):37–49.
Goodman, S. N., and Royall, R. 1988. Commentary: Ev-
idence and scientific research. American Journal of Public
Health 78(12):1568–1574.
Graczyk, M.; Lasota, T.; Trawinski, R.; and Trawinski, K.
2010. Comparison of bagging, boosting and stacking ensem-
bles applied to real estate appraisal. In Second international
conference on Intelligent information and database systems:
Part II. ACIIDS.
Guyon, I., and Elisseeff, A. 2003. An introduction to vari-
able and feature selection. The Journal of Machine Learning
Research 3:1157–1182.

2888



Hand, D. J., and Yu, K. 2001. Idiot’s bayes – not so stupid
after all? International Statistical Review 69(3):385–398.
He, X.; Duan, L.; Zhou, Y.; and Dom, B. 2009. Thresh-
old selection for web-page classification with highly skewed
class distribution. In 18th International World Wide Web
Conference. ACM.
Kaliakatsos-Papakostas, M. A.; Epitropakis, M. G.; and
Vrahatis, M. N. 2011. Weighted markov chain model for
musical composer identification. Applications of Evolution-
ary Computation 334–343.
Kivinen, J.; Smola, A. J.; and Williamson, R. C. 2004. On-
line learning with kernels. IEEE Transaction on Signal Pro-
cessing 52(8):2165–2176.
Koren, Y. 2009. The bellkor solution to the netflix grand
prize. Technical report, Yahoo! Research.
Langford, J. 2007. Wiki for vowpal wabbit project. https:
//github.com/JohnLangford/vowpal wabbit/wiki.
Langley, P.; Iba, W.; and Thompson, K. 1992. An analysis
of bayesian classifier. In The Tenth National Conference on
Artificial Intelligence. AAAI.
Leather, H.; Bonilla, E.; and O’Boyle, M. 2009. Auto-
matic feature generation for machine learning based opti-
mizing compilation. In International Symposium on Code
Generation and Optimization. IEEE.
Li, D., and Wang, H.-Q. 2012. A markov chain model-
based method for cancer classification. In 8th International
Conference on Natural Computation. IEEE.
Liu, Y.-W., and Selfridge-Field, E. 2002. Modeling music as
markov chains: Composer identification. Technical report,
Stanford.
Minderhoud, S. 1999. Quality and reliability in product
creation - extending the traditional approach. Quality and
Reliability Engineering International 15(6):417–425.
Moe, W. W., and Fader, P. S. 2004. Capturing evolving visit
behavior in clickstream data. Journal of Interactive Market-
ing 18(1):5–19.
Moe, W. W. 2003. Buying, searching, or browsing: Dif-
ferentiating between online shoppers using in-store nav-
igational clickstream. Journal of Consumer Psychology
13(1&2):29–39.
Rish, I. 2001. An empirical study of the naive bayes clas-
sifer. IJCAI 2001 Workshop on Empirical Methods in Artifi-
cial Intelligence 3(22):41–46.
Saeys, Y.; Inza, I.; and Larranaga, P. 2007. A review of fea-
ture selection techniques in bioinformatics. Bioinformatics
23(19):2507–2517.
Saffari, A.; Leistner, C.; Santner, J.; Godec, M.; and
Bischof, H. 2009. On-line random forest. In Conference
on Computer Vision and Pattern Recognition. IEEE.
Saffari, A.; Godec, M.; Pock, T.; Leistner, C.; and Bischof,
H. 2010. Online multi-class lpboost. In Conference on
Computer Vision and Pattern Recognition. IEEE.
Smale, S., and Yao, Y. 2006. Online learning algorithm.
Foundations of Computational Mathematics 6(2):145–170.

The R Development Core Team. 2012. R: A Language and
Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing.
Ting, K. M., and Witten, I. H. 1999. Issues in stacked
generalization. Journal of Artificial Intelligence Research
10:271–289.
United States Census Bureau. 2010. Zip code statistics.
http://www.census.gov/epcd/www/zipstats.html.
Vogel, D.; Brierley, P.; and Axelrod, R. 2011. Heritage
provider network health prize: How we did it. Technical
report, Team Market Makers.
Wang, G.; Hao, J.; Ma, J.; and Jiang, H. 2011. A com-
parative assessment of ensemble learning for credit scoring.
Expert Systems with Applications 38(1):223–230.
Ye, N. 2000. A markov chain model of temporal behavior
for anomaly detection. In Workshop on Information Assur-
ance and Security. IEEE.
Zhang, J.; Marszałek, M.; Lazebnik, S.; and Schmid, C.
2007. Local features and kernels for classification of texture
and object categories: A comprehensive study. International
Journal of Computer Vision 73(2):213–238.

2889




