
The Quest Draft: an Automated Course Allocation Algorithm

Richard Hoshino and Caleb Raible-Clark

Quest University Canada, Squamish, British Columbia, Canada

Abstract

Course allocation is one of the most complex issues fac-
ing any university, due to the sensitive nature of decid-
ing which subset of students should be granted seats
in highly-popular (market-scarce) courses. In recent
years, researchers have proposed numerous solutions,
using techniques in integer programming, combinato-
rial auction design, and matching theory. In this pa-
per, we present a four-part AI-based course allocation
algorithm that was conceived by an undergraduate stu-
dent, and recently implemented at a small Canadian lib-
eral arts university. This new allocation process, which
builds upon the Harvard Business School Draft, has re-
ceived overwhelming support from students and faculty
for its transparency, impartiality, and effectiveness.

Introduction
In the multi-unit assignment problem, a set of indivisible ob-
jects is to be allocated amongst a set of individuals, where
individuals have preferences over bundles of objects, and
monetary transfers are forbidden. The goal is to design a
mechanism where individuals are incentivized to report their
preferences truthfully, with the final allocation of objects to
individuals maximizing overall welfare. Real-life applica-
tions include the assignment of shifts to workers, players to
sports teams, shared lab resources to scientists, and takeoff-
and-landing slots to airlines (Budish and Cantillon 2012).

Course allocation is the most-studied application of the
multi-unit assignment problem, and is a well-known open
problem in market design theory (Budish 2011). At most
post-secondary institutions, it is impossible for all students
to receive their most preferred set of courses, due to limits
on class size and other scheduling constraints. University
administrators are thus tasked with the challenging problem
of matching students to courses in a fair and equitable way.

Many business schools use auction-based mechanisms,
even though these mechanisms lead to welfare loss and are
easily manipulable (Sonmez and Unver 2010). Some large
universities allow students to register for courses sooner if
they have a higher grade point average, which ensures that
those with the highest GPAs get into all the best courses.
This unbalanced mechanism also reduces overall welfare.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Over the years, economists have played a key role in
designing welfare-maximizing strategy-proof solutions to
single-unit assignment problems; among the numerous suc-
cess stories are matching medical school graduates to hos-
pitals, and matching high school students to local pub-
lic schools (Roth 2002). However, the multi-unit assign-
ment problem is much more challenging, and recent break-
throughs have relied on AI-based techniques. One recent
example is the methodology to calculate nearly-optimal
market-clearing prices for each course, using a mixed-
integer program (Budish, Othman, and Sandholm 2010).

The authors of this paper, a faculty member and an under-
graduate student at a small Canadian liberal arts university,
were invited to propose a new course allocation mechanism,
to replace the previous process where students were allo-
cated their entire semester of courses on a first-come-first-
served basis. Many alternatives were considered, including
the auction-based MIP described above; ultimately, the au-
thors recommended a process that was less of a “black box”
– a mechanism that was effective and equitable, transpar-
ent and easy-to-understand. Our proposed mechanism, the
Quest Draft, was implemented in August 2013.

In this paper, we present our four-part algorithm that
builds upon the draft used at the Harvard Business School:
(i) a cyclically-shifted “snake” order that optimally spreads
out draft picks among the students; (ii) a backtracking sys-
tem where each student’s final schedule is guaranteed to
meet pre-specified caveats (e.g. student x gets course ci if
and only if she also gets cj); (iii) a pairwise-swapping pro-
cess that iteratively switches the timeslots of two courses
to minimize the number of instances when students are
“shafted” by having no available course to choose from;
(iv) and a perfect-information computer proxy that is pro-
grammed to strategically draft courses on behalf of each stu-
dent, based on the course preferences of all n students.

This paper proceeds as follows: first, we describe the
unique features of our university that made the previous pro-
cess of course allocation so problematic. We then detail each
of the four parts of our algorithm, explain how we imple-
mented the first three components for the 2013-2014 aca-
demic year, and share the results. We then explore the poten-
tial complications of implementing the final part of our al-
gorithm, discuss its strengths and limitations, and conclude
the paper with avenues for further research.

Proceedings of the Twenty-Sixth Annual Conference on Innovative Applications of Artificial Intelligence

2906



Context
Quest University Canada, a small liberal arts college in
Squamish, British Columbia, opened its doors in September
2007. The founders of Quest designed a curriculum where
students spend their first two years engaged in a rigorous
Foundation program spanning the arts and sciences, after
which the students have the opportunity to drive their own
education by posing a unique “Question” that directs the fi-
nal two years of their studies.

Each student’s Question can be thought of as their ma-
jor. As each Question is expected to be interdisciplinary,
students are required to take upper-year courses across mul-
tiple divisions (Life Sciences, Humanities, etc.) Thus, each
of the 550 students has a unique self-designed set of courses.

At many large undergraduate institutions, there are few
capacities or restrictions on course enrollment; students sign
up for their preferred courses, and a classroom is selected
based on the number of students that register for a particular
course. This flexibility does not exist at Quest, where all
classes are capped at 20 students.

To further complicate matters, every class at this univer-
sity operates under the block format, where students take just
one course at a time for an entire month, with three hours of
class time each day. Unlike other universities where there
are dozens of timeslots for various courses from early in
the morning to late in the evening, at Quest there are only
four feasible time slots – a fixed time slot for each month of
the semester. Thus, in this context, the words “block” and
“month” are synonymous with “time slot”.

Because there are only four time slots each semester,
students often experience the frustration of seeing two
Question-related courses offered in the same block, forcing
a student to pick one or the other. While this is not a problem
at larger institutions, where multiple sections of a course are
offered each semester and a student can select any conve-
nient time slot, this is impossible at Quest, where a course
such as Calculus II is offered only once every academic year.

No master course schedule will satisfy every Quest stu-
dent, due to these self-designed majors, the 20-person course
cap, the block format, and the scarcity of course offerings.

Inevitably, certain courses are more popular than others,
and are sought after by several dozen students. To address
this issue and be as “fair” as possible, Quest had, since its
inception, registered students for courses on a first-come-
first-served basis. Each semester’s registration period would
open at 4:30PM on a particular day; students would register
online for their four blocks by selecting their four desired
courses that semester and registering with a single click.

In the language of market design theory, this process was
known as a Random Serial Dictatorship (Abdulkadiroglu
and Sonmez 1998), where the students who clicked their
mouse buttons first got into all four of their desired courses,
while other students couldn’t enroll in any of their highly-
ranked courses because in each block, the 20th student
clicked the mouse button a few seconds before them. Often,
the most popular courses were completely full by 4:31PM.
This course registration mechanism, the “Fastest-Finger”
Serial Dictatorship, rewarded the students who knew the pre-
cise location on campus with the fastest Wi-Fi connection.

In August 2013, the senior administration approved the
Quest Draft, an AI-inspired approach to course allocation,
to replace the Fastest-Finger Serial Dictatorship that had
caused anxiety among the student body, and was widely
viewed as unfair. We now describe our four-part algorithm,
used to register students for the Spring 2014 semester.

Part 1: Cyclically-Shifted Snake-Order Draft
Instead of a process by which students choose their en-
tire bundle of courses with a single click, Quest students
now register each semester through an automated four-round
draft, where students submit a pre-determined “wishlist” of
20 desired courses over all four months, in decreasing order
of preference. In each round, every student is given one se-
lection, and is assigned their top-choice course from all the
courses for which there is still an open seat.

Once student x has successfully enrolled in course c (e.g.
Evolution in March), we update that student’s wishlist. First,
we remove every other course ranked that month, since stu-
dent x can only take one course in each month. Second, if
student x has ranked the same course offering in a different
block (e.g. Evolution in January), then we delete that choice
from their wishlist. As soon as course c has reached 20 stu-
dents, we eliminate c from every student’s wishlist.

The automated draft program was written in both Python
and Maplesoft; the actual Maplesoft code is provided below:

for n to nops(draftorder) do
x := draftorder[n]:
c := wishlist[x][1]:
enrollment[c] := enrollment[c]+1:
classlist[c] := classlist[c],x:
schedule[x] := schedule[x],c:
wishlist[x] := update(wishlist[x],c,x):
if enrollment[c] = courselimit[c] then
for l to rows do z := inputmatrix[l,1]:
wishlist[z] := remove(wishlist[z],c):
end do:

end if:
end do:

In the past, registration took place over a period of four
days, starting with the 4th years on a Monday and ending
with the 1st years on that Thursday. (And within each year,
the course allocation mechanism was the Fastest-Finger Se-
rial Dictatorship, starting at 4:30PM.) Through this auto-
mated draft program, registration no longer takes four days:
with 550 students each taking four courses, the Quest Draft
has 2200 picks, with a total runtime of just 1.6 seconds.

A natural question is how we should decide the draft or-
der. The National Hockey League (NHL) uses a ladder draft,
where the team that gets the first pick in round i gets the
first pick in round i + 1. On the other hand, Harvard uses a
snake-order draft, where the student who gets the last pick
in Round i gets the first pick in Round i + 1. We imple-
mented a cyclically-shifted snake-order draft: for example,
with n = 8 students, the draft order is as follows.

Round 1: A, B, C, D, E, F, G, H
Round 2: H, G, F, E, D, C, B, A
Round 3: E, F, G, H, A, B, C, D
Round 4: D, C, B, A, H, G, F, E

2907



We first randomly permute the n students to decide the
draft order for Round 1. Once Round 1 is decided, all subse-
quent rounds follow a fixed pattern, which we now describe.

Let p(i) := (p1(i), p2(i), p3(i), p4(i)), where pj(i) de-
notes the pick number of student i in round j. In our exam-
ple with n = 8, the first student would have the four-tuple
p(1) = (1, 8, 5, 4). In general, if there are n = 4k students,
then p(i) = (i, 4k+1−i, i+2k, 2k+1−i) if 1 ≤ i ≤ 2k and
p(i) = (i, 4k+1− i, i−2k, 6k+1− i) if 2k+1 ≤ i ≤ 4k.

If n 6≡ 0 (mod 4), then we just add dummy students to
make n a multiple of 4. It is easy to show that this cyclically-
shifted snake-order is the only draft ordering that satisfies
each of the following four “equitability” properties:

(a) Each student’s picks are spread out as evenly as possible,
with exactly one pick in each of the four quartiles.

(b) The sums p1(i)+ p2(i) and p3(i)+ p4(i) are constant for
each 1 ≤ i ≤ n.

(c) p1(i) < p2(i) if and only if p3(i) > p4(i).

(d) The value mini{p1(i)2 + p2(i)
2 + p3(i)

2 + p4(i)
2} is as

small as possible.

Consider a scenario where 100 fourth-year students reg-
ister for a semester, where each course is capped at twenty
students and exactly five courses are offered in each block.
In each of the four months, the 100 students rank the five of-
fered courses in order of their personal preference, and (nat-
urally) hope to get into the course that is their first choice.

We ran hundreds of simulations where each student’s
wishlist of 20 courses was randomized, and compared the
results of the Random Serial Dictatorship (RSD) with the
Cyclically-Shifted Snake-Order Draft (CSSOD). Each stu-
dent’s score is the sum total of preference rankings over all
four blocks. The best possible score is 1 + 1 + 1 + 1 = 4
points, which occurs whenever a student gets into all of their
first-choice courses; the worst possible score is 5 + 5 + 5 +
5 = 20 points. One comparison is given in Figure 1 below.

Figure 1: Comparison of the RSD and the CSSOD

In Figure 1, the average score for the RSD is 5.27 points,
with only 81% of students getting into at least three of their
first-choice courses. However, in the CSSOD, the average
score is 4.84 points, with 98% of students getting into at
least three of their first-choice courses. Analyzing all of our
simulation results, we discover that the average score of the
CSSOD is about 5% less than the average score of the RSD.

It is clear that the RSD is a sub-optimal system; equitabil-
ity is lacking when fourth-year student x gets to choose all
of his courses before fourth-year student y. Total welfare
loss also follows intuitively, since student x’s last-choice
course might be student y’s first-choice course. This intu-
ition, formally known as a negative callousness externality,
has been confirmed in an analysis of the Harvard Business
School draft, where “the lucky gain less than the unlucky
lose.” (Budish and Cantillon 2012).

As a result, the university has replaced the four-day Serial
Dictatorship with the automated Cyclically-Shifted Snake-
Order Draft, which we run four straight times, once for each
of the four years. (Thus, all fourth-year students pick all
four of their courses before any third-year student makes a
single pick.) The senior administration requested this policy
because upper-year students at Quest have fewer options of
courses to take in any given block, due to their self-built ma-
jor’s requirements, and have a more urgent need to complete
certain courses that are required for graduation.

Part 2: Caveats and Backtracking
In a sports league draft, there is a substantial time window
between picks, which enables each team to adapt their strat-
egy based on which players have been selected thus far. A
football team may have every intention of drafting a strong
quarterback in Round 1 and a decent wide receiver in Round
2, but may choose to flip that order if an elite top-rated wide
receiver is unexpectedly up-for-grabs in Round 1.

Unlike the National Football League draft which takes
place over a three-day period, our 2200-pick course allo-
cation draft runs in less than two seconds. To ensure that
students don’t end up with an undesirable bundle of courses,
we allow students to create special “caveats”, i.e., personal
constraints that apply only to them.

These caveats take on two forms: an at-most condition
that guarantees that the student doesn’t get any more than r
courses out of a pre-specified set {c1, c2, . . . , ct}, as well as
an if-and-only-if condition that guarantees that the student
gets course ci iff she also gets course cj . The first caveat is
known as a preference constraint, and can be modeled using
a bihierarchical structure (Budish et al. 2013).

These caveats are crucial in our course allocation mech-
anism; without it, students could end up with a undesirable
combination of courses, or worse, end up with a situation
that actually occurred at the University of Michigan, where
students were incorrectly registered for multiple sections of
the same course (Krishna and Unver 2008).

Thanks to these caveats, students are empowered with
more options and flexibility. For example, a first-year stu-
dent who wishes to take exactly one upper-level Humanities
course could rank all r such courses among her first r selec-
tions while invoking the at-most caveat.

2908



The at-most caveat is easy to program: for example, sup-
pose student x has requested no more than two courses from
the set {c1, c2, c3, c4, c5}. Suppose x drafts c1 in Round 1
and c2 in Round 2. As soon as c2 has been picked, courses
c3, c4, and c5 are automatically eliminated from x’s wishlist.

The inaugural Quest Draft occurred in November 2013,
and was used to register students for the Spring 2014
semester, covering January to April. Of the 550 students
who took part in the draft, about half requested an at-most
caveat; however, the if-and-only-if caveat was only invoked
by a handful of students, all of whom used it to request two
consecutive blocks of a foreign language – e.g. “Spanish
1 in March if and only if Spanish 2 in April”. (Every stu-
dent must complete two foreign language courses, and the
most popular option is for students to do this in consecutive
months during some semester of their time at Quest.)

To handle the if-and-only-if caveat, we employ a special
backtracking mechanism that works as follows: suppose stu-
dent x has c1, c2, c3 as the first three courses on her wishlist,
and also specifies the caveat “c1 iff c2”. Suppose x picks
c1 in Round 1, and before she makes her Round 2 pick, the
final seat in c2 is taken. Then we backtrack to x’s original
first-round selection, reset all the selections that have been
made after this pick, eliminate courses c1 and c2 from x’s
wishlist, and have her draft c3, the first course on her up-
dated wishlist. We then re-start the rest of Round 1, starting
with the student picking right after x.

This backtracking step would of course be unnecessary if
we could figure out in advance that x would not be able to
register for c1 and c2; we would only have to run the en-
tire draft once, as long as we first remove these two courses
from x’s original wishlist. However, we found complex in-
stances involving multiple individuals where it wasn’t obvi-
ous which if-and-only-if caveats would be triggered. There-
fore, we opted for the more conservative method of back-
tracking. While this approach takes longer to run, the algo-
rithm is still polynomial-time and is guaranteed to terminate.

Theorem 1 The Quest Draft is a deterministic polynomial-
time course allocation algorithm.

Proof Let there be n students, each ranking m = O(n)
courses on their wishlist. There are 4n picks in the draft,
since each student is enrolled in four courses per semester.
Even if we assume that each course has an enrollment cap
of one student, every draft pick requires at most O(nm) =
O(n2) operations to update each student’s wishlist and re-
move the drafted course that is no longer available, as well
as check the at-most caveats to verify if any of the m courses
need to be removed from that student’s wishlist. Thus, at
worst, there are 4n×O(n2) = O(n3) picks required to run
the entire draft, assuming no backtracking.

Since student x ranks m courses on her wishlist, the draft
will backtrack on x’s behalf at most m

2 times, since two
courses are removed from x’s wishlist for each backtrack.
(Clearly, an infinite loop cannot occur, as the cardinality of
x’s wishlist drops after each backtrack.) Thus, the number
of total backtracks is at most mn

2 = O(n2). Therefore, the
total running time of our course allocation algorithm is, at
worst, O(n3)×O(n2) = O(n5).

Naturally, the running time is far better than O(n5) in
practice. We noted that with n = 550 students and 4n =
2200 picks, the entire course allocation draft ran in just 1.6
seconds, including caveats. And there were only three back-
tracks, far less than the theoretical maximum of O(n2).

As mentioned before, the if-and-only-if caveat was only
specified by students wishing to take two consecutive blocks
of a foreign language. In the Spring 2014 semester, six lan-
guage blocks were offered: French 1, French 2, Chinese 1,
Chinese 2, Spanish 1, and Spanish 2.

Three first-year students were backtracked after they re-
quested “French 1 iff French 2”. All three of these stu-
dents listed these two courses with their first two picks, and
so the number of reset picks was minimal. Neither Chi-
nese course filled up to 20 students, so backtracking wasn’t
necessary. Finally, Spanish 2 had exactly 20 students after
all the second-year students had finished drafting their four
courses. Thus, no backtracking was necessary in this sce-
nario: any first-year student requesting “Spanish 1 iff Span-
ish 2” had both courses removed from their wishlist.

Part 3: Pairwise-Swapping Algorithm
When Quest allocated courses via the Fastest-Finger Serial
Dictatorship, students were averse to registering for less-
popular courses in case they were later cancelled due to low
enrollment. A few days after everyone had registered, the
senior administration would decide if any courses would be
cancelled, with the typical threshold being fewer than 5 stu-
dents. The unlucky students who had registered for can-
celled courses would then have to sign up, on a first-come-
first-served basis, for whatever courses still had an open seat.

This policy was especially problematic for upper-year stu-
dents, who would be informed of a cancelled course a week
after they had signed up it, and then discover that the re-
maining seats in their second- and third-choice courses that
month were already taken by first-year students. There was
no mechanism to “bump out” first-years in favour of these
unlucky upper-years, who should have been given priority.

As a result, many students interested in taking a less popu-
lar course ci would instead register for the more popular op-
tion cj in the same month to grab one of the coveted twenty
seats; once the university announced that ci would indeed
proceed as planned, these students would drop cj and take
one of the open seats in ci. In implementing our course al-
location mechanism, steps were taken to prevent this type
of strategic (mis)-behaviour, which had the added drawback
of cancelling classes that should have run had students been
honest in reporting their preferences.

The first fix was to decide which classes would be can-
celled prior to finalizing the results. This simple change in-
centivized students to rank the courses they actually wanted,
so that these desired courses would run as intended.

When we ran the draft, we discovered that only one course
was allocated to fewer than five students. After this course
c was cancelled by the Academic Dean, we simply re-ran
the draft with course c off everybody’s wishlist, as if c never
existed in the first place. Thus, the four students who were
matched to this course were not penalized for honestly rank-
ing c in their 20-course wishlist.

2909



Because each iteration of the Quest Draft runs in 1.6 sec-
onds, we had much time to experiment before the final allo-
cation of students to courses was officially published. Much
to our surprise, a large percentage of fourth-years registered
for required “Foundation” courses in February and March,
which they had apparently not yet taken. As the university
had underestimated the number of Foundation courses that
students would take in February and March, many first-years
and second-years were shafted, with no available course to
take in either of these two months.

Many shafts were unavoidable, as students poorly se-
lected the 20 courses on their wishlist. For example, a
second-year student ranked three highly-popular January
courses, with no other options that month. For each of these
three courses, the twenty seats were drafted by third-years
and fourth-years, leaving her with no course to choose from
in January. But in other scenarios, students were shafted
through no fault of their own; there were simply not enough
seats in Foundation-level courses in February and March.

To address this issue, we added a “pairwise-swapping” al-
gorithm to our computer program, a simplified variation of
a discrete optimization technique known as simulated an-
nealing that has solved complex problems in sports tourna-
ment scheduling (Kendall et al. 2010). This heuristic deter-
mines the effect of iteratively switching the months that two
courses are offered, with the goal of minimizing the total
number of shafted students:

(a) Let TA be the set of teaching assignments for the k
professors: each professor p has the teaching schedule
{c1, c2, c3, c4} for the four months, where at least one ci
is empty (representing a non-teaching block).

(b) For each of the
(
4
2

)
k = 6k possible triplets (p, ci, cj), we

check whether the scenario of professor p swapping the
months of these two courses would lead to fewer students
being shafted.

(c) For the triplet (p, ci, cj) that best reduces the number of
total shafts, we swap ci and cj in professor p’s schedule,
reflect this change in TA, and go back to step (a).

(d) End when none of the 6k triplets (p, ci, cj) yields an im-
provement, and output the teaching assignment TA.

This simple pairwise-swapping heuristic, recently devel-
oped by one of the authors to develop best-known bounds for
an open problem in scheduling theory (Goerigk et al. 2014),
can be applied in this context to find a local optimum in each
iteration. We found that this approach tended to be particu-
larly effective when some ci was empty (i.e., professor p had
a non-teaching block in month i). As all these courses are
unique, each with its own professor, we made the assump-
tion that a student wanting to take course c in one month
would be equally content to take c in another month.

We discovered a simple scenario that would significantly
reduce the total number of shafts, with one professor moving
her course from January to February, and another moving his
course from April to March. Both professors agreed to shift
their non-teaching block by one month, and as a result, eigh-
teen first-year students were no longer shafted, having been
allocated a Foundation course in February and/or March.

Of course, there were other teaching assignments that led
to fewer shafts, but they were not possible to implement,
mostly due to professors having pre-arranged commitments
during their non-teaching block.

This “pairwise-swapping” algorithm led to a major im-
provement at minimal cost; however, this simple solution
would have been impossible to find had the university not
replaced the Fastest-Finger Serial Dictatorship. Only 38 of
the 550 students were shafted, all in exactly one month, with
nearly every shaft being unavoidable due to how these stu-
dents filled out their 20-course wishlist. (Once the draft re-
sults were published, the Registrar asked these 38 first-year
and second-year students to sign up for any available course
that month, on a first-come-first-served basis.)

Part 4: Strategic Computer Proxy
In order to register students for the Spring 2014 semester,
we ran the Quest Draft in November 2013, with each of
the 550 students providing a ranked wishlist of 20 courses,
among the 119 courses that were offered between January
and April. In implementing this course allocation mech-
anism, we paid much attention to its features, from the
cyclically-shifted snake ordering of draft picks, the flexibil-
ity of caveats, and the pairwise-swapping that enabled more
students to be allocated to courses. However, there was one
design weakness that we hoped would not be discovered and
exploited by students. Alas, the flaw was discovered, and
several students took full advantage.

In any draft-based multi-unit allocation mechanism, the
strategic manipulation of preferences can lead to sub-
optimal outcomes. To illustrate this principle, suppose that
x wishes to take course ci in month i, for 1 ≤ i ≤ 4, and
suppose that x’s true preference ranking is {c4, c3, c2, c1}.
From talking with fellow students, x concludes that c4 in
April will not be selected by 20 students, and so she under-
reports her preference for c4, believing she can draft this
course in Round 4. Conversely, x learns that c1 in January
is the most popular course at the university, and so she over-
reports her preference for c1, hoping to draft this course in
Round 1. As a result, x’s reported ranking is {c1, c3, c2, c4}.

From post-draft interviews with Quest students, we
learned that some students under-reported desired courses
and turned out not to get them, and over-reported less-
desired courses which harmed others who strongly desired
them. These sub-optimal outcomes, known as ex-post
Pareto inefficiencies, occur when students are not truthful
in ranking their preferences. At Harvard Business School,
which has run their draft since the mid-1990s, researchers
have demonstrated that the draft is manipulated in practice
and that these manipulations cause significant welfare loss.
A detailed analysis reveals that nearly half of Harvard stu-
dents are unambiguously harmed by strategic play, whereas
only 10 percent benefit (Budish and Cantillon 2012).

Ideally, we desire a mechanism that is strategy-proof,
where every student’s optimal strategy is to report his or her
preferences truthfully. While our mechanism is obviously
strategy-proof if students are only selecting a single course
in a fixed month (the single-unit assignment problem), it is

2910



not if students are selecting four courses across four differ-
ent months (the multi-unit assignment problem).

A well-known result in market design theory states that
dictatorships are the only multi-unit assignment mechanisms
that are strategy-proof and ex-post Pareto efficient (Pápai
2001). But as we saw earlier in the paper, mechanisms such
as the Random Serial Dictatorship (RSD) lead to a clear loss
of welfare, as well as the ex-ante perception of unfairness.

To address these weaknesses and mitigate errors in strate-
gic play, we proposed a proxy draft, where a single agent
(known as a “perfect-information proxy”) possesses the
course rankings of all n students, and drafts strategically on
behalf of each student based on how many seats are left in
each course desired by that student. If the proxy ever makes
a mistake in drafting a less-desired more-popular course ci
before a more-desired less-popular course cj , we backtrack.

Our proxy algorithm is simple to describe: for each of the
4n picks in the draft, consider that student’s top-choice pick
in every month that she has not yet been allocated a course.
Then the proxy will draft, on behalf of that student, the avail-
able course with the fewest number of open seats. (If there
is a tie between two or more courses, the strategic proxy will
draft the course appearing highest on that student’s wishlist.)

Let us illustrate the proxy algorithm with our earlier ex-
ample, where student x has {c4, c3, c2, c1} as the first four
courses on her 20-course wishlist, with ci offered in month i.
Suppose that when x makes her first-round selection, all four
of these courses are still available, and c1 is, as expected, the
course with the fewest number of available seats. Then the
proxy will draft c1 on behalf of x in Round 1.

The proxy’s goal is to draft all four of these courses on
x’s behalf. However, suppose that c2 unexpectedly reaches
full capacity before x makes her second-round pick. Since
x prefers c2 to c1, the algorithm backtracks to x’s original
Round 1 selection, ignores x’s top-choice course in January,
and selects the most popular course among {c2, c3, c4}.
Without loss of generality, suppose this course is c2.

Suppose x drafts c2 in Round 1, c3 in Round 2, and before
her third-round pick, c4 reaches full capacity. We then back-
track to x’s first-round selection, have her draft c3 instead,
and re-continue the draft from there. (She will then select
c4 with her second-round pick.) At the conclusion of the
draft, suppose x has selected {c3, c4, d2, d1} with her four
picks, with courses d2 and d1 appearing 8th and 19th on her
original 20-course wishlist.

For each student, define f(k) = 2−k to be the utility of
receiving the kth course on her wishlist. Then in the above
example with x, her total utility is 1

22 + 1
21 + 1

28 + 1
219 .

Because of the backtracking feature, the perfect-information
proxy maximizes the total utility of each student in the draft,
given the submitted course rankings of all n students.

Our proposed utility-maximizing backtracking proxy is
similar but not equivalent to the Proxy Bidding Mecha-
nism (PBM), a recently-developed approach that matches
students to courses using a simultaneous ascending auction,
where proxies bid for courses using an artificial currency
(Kominers, Ruberry, and Ullman 2010).

In the PBM, each of the n students is given four bills rep-
resenting different bid values, with all bid values distinct and

being an integer between 1 and 4n inclusive. Like in our
cyclically-ordered snake-order draft, each student is given
four bills so that the sum total of “dollars” is constant, equal-
ing 8n+ 2 for each student.

The student then gives these four bills, along with a
strictly-ordered list of desired courses, to a proxy. The al-
gorithm then opens up the market for bidding. Each proxy
bids the lowest possible value for their most-desired course.
Bids can be increased, but not decreased. Bidding continues
until no proxies wish to make further bids.

The PBM is effective because it is resilient to the strate-
gic play seen in the Harvard Business School draft, where
students rank more-desirable classes higher than their pref-
erence for them, in order to claim spots earlier in the draft.
Consequently, net utility has been shown to be greater in the
PBM than in the Harvard draft.

In the PBM, lowest-value bids are made first (i.e., the per-
son with the 1-dollar bill makes the opening bid), whereas
in the Quest Draft, the first pick is given to the individual
holding the 4n-dollar bill.

For this reason, it is likely that our backtracking proxy is
preferable to the PBM in instances where demand is highly
concentrated in a small number of courses, which is pre-
cisely the situation at our university. The PBM would in-
volve a series of increasing bids cycling through each proxy,
whereas our approach would involve several early uncon-
testable bids, and reduce overall run time.

The PBM includes “Extended Preference” features: IF,
which assigns a given less-desirable course only if a given
more-desirable course has been assigned; and NOTIF, which
assigns a given less-desirable course only if a given more-
desirable course has not been assigned. A student wishing
to take only one of {c1, c2, c3}, in this order, would indicate
this by: [c2 NOTIF c1, c3 NOTIF c1, and c3 NOTIF c2].

On the other hand, our four-part algorithm includes a sim-
ple at-most caveat, which collapses three statements down to
one. Furthermore, a student requesting a complicated con-
straint such as “give me no more than three of the following
seven courses” can do so easily with a single at-most caveat,
rather than a complex chain of conditional IF and NOTIF
statements.

Unlike the PBM, we included the if-and-only-if caveat be-
cause it is more comprehensive, preserving a student’s abil-
ity to create two-way conditional registration, especially in
situations where one wishes to take back-to-back language
blocks, and wants either both courses or neither. Clearly,
both of our caveats are compatible with the strategic proxy:
if any caveat has been violated, we simply backtrack.

Decision and Deployment
We recommended this deterministic polynomial-time proxy
algorithm for two reasons: first, by having the proxy play
on each student’s behalf, we would eliminate errors from
incorrect strategic under-reporting; second, we would level
the playing field, allowing the proxy to utilize the student’s
realized position in the drafting order, thus increasing ex-
ante welfare relative to what actually happens in a pick-by-
pick draft (Budish and Cantillon 2012).

2911



When we proposed the strategic proxy to focus groups
of students and faculty, it was rejected: in addition to its
perception of being too complicated, the proxy draft would
unfairly guarantee the advantage of students “majoring” in a
low-demand subject (e.g. physics) who wished to take elec-
tives in a high-demand subject (e.g. psychology).

Furthermore, this algorithm would maximize each stu-
dent’s total utility assuming a geometric utility function such
as f(k) = 2−k. However, this is not the correct utility func-
tion as most students would prefer the four courses ranked
{2, 3, 4, 5} on their wishlist over the four courses ranked
{1, 18, 19, 20}.

For these reasons, the perfect-information strategic proxy
was not included in the Quest Draft. Nevertheless, we suc-
cessfully implemented the first three parts of our algorithm,
and replaced the Fastest-Finger Serial Dictatorship.

After the new course allocation policy was approved by
the senior administration, the authors spent the first two
weeks of the Fall 2013 semester running information ses-
sions, to explain the new process to all students and fac-
ulty. In administering the Quest Draft, we collected student
preferences with an online survey, which exported an Excel
spreadsheet readable by our Maplesoft program.

Once the Academic Dean approved the final teaching
assignment of professors to courses (the output of our
pairwise-swapping algorithm), we officially ran the 2200-
pick draft to match students to these courses, with the out-
put being a simple-to-read Excel file. The Quest Draft ran in
just 1.6 seconds, on a stand-alone laptop with 2.75 GB main
memory and a single 2.10 GHz processor.

In analyzing the results, we gave each student a score,
the sum total of preference rankings over all four blocks.
Every fourth-year student received the best possible score of
1 + 1 + 1 + 1 = 4 points, as 100% of fourth-year students
got into their first-choice course in each of the four months.
The average scores were 4.48 for the third-years, 5.98 for
the second-years, and 7.52 for the first-years. Of the third-
year students, 89% got into their first-choice course in at
least three of the four months.

As hoped for, we were able to distribute highly-popular
courses among students in a more equitable way, to avoid
the situation from previous years when there were extreme
winners and losers.

Maintenance
While the Quest Draft ran flawlessly, the actual process of
course registration was far more complicated. Given that
there is no batch input method for course registration in the
university’s record-management system, the Registrar’s Of-
fice had to manually input student-to-course assignments, all
2200 of them, one at a time using a drop-down menu.

This tedious input time (totaling 13 hours) was a poor use
of human resources, and caused students to wait several days
to discover which courses they had been allocated.

Ideally, there would be a simple way to upload our Excel
file with the draft results directly into the university’s record-
management system. We are investigating ways to make this
process much more efficient in the future.

The Maplesoft program is maintained by one of the au-
thors of this paper (the faculty member), though it is offi-
cially housed in the Registrar’s Office. A minor update is
required in every registration cycle, to reflect the slate of
courses that are offered each semester. However, the ac-
tual code used to run the first three parts of our algorithm
will not require changing, and will remain robust as long as
the university keeps operating under the block format, where
students take just one course at a time for an entire month.

Conclusion
As shown in previous research, any proxy algorithm will
over-report popular courses, and will not eliminate all costs
of strategic behaviour. At Harvard, optimal welfare (pre-
dictably) occurs when all students honestly rank their course
preferences. This is followed by the strategic proxy, then the
pick-by-pick draft, with the random serial dictatorship being
the worst mechanism (Budish and Cantillon 2012).

Our proposed perfect-information strategic proxy ensured
an output that would maximize each student’s total utility
assuming a geometric function such as f(k) = 2−k. While
this is not the correct utility function for some students, this
is indeed correct for those students who would prefer their
first-choice course in a semester, compared to receiving the
four courses ranked {2, 3, 4, 5} on their wishlist.

Moving forward, one option is to have students indicate
which utility function they prefer, which would of course be
expressed in common language rather than as a mathemati-
cal formula. Then the backtracking feature of our strategic
proxy algorithm would need to be rewritten to take different
utility functions into account.

Alternatively, we could develop a different type of proxy
algorithm. One promising approach is to model the draft as
a finite repeated game with perfect information, with each
individual proxy selecting a strategy corresponding to the
game’s Nash equilibrium (Kalinowski et al. 2013). This is a
technique that we will carefully study in the months ahead.

Being at a small school with little to no bureaucracy, we
are fortunate to have the freedom to experiment with novel
approaches, with the full support of our administration. Our
hope is that every iteration of the Quest Draft will lead to
a more effective and efficient course allocation process for
both the students and the Registrar’s Office.

We see our university as a natural laboratory for testing
cutting-edge ideas, and we welcome collaborative partner-
ships from those in the AI community, especially from re-
searchers studying the multi-unit assignment problem.

We look forward to the day that AI research can lead
to a welfare-maximizing strategic proxy that will optimize
the process of allocating courses to students: not just at
Quest University Canada, but at other universities through-
out North America, and throughout the world.

Acknowledgements
We are grateful for the support of our community at Quest,
most notably: David Helfand (President), Ryan Derby-
Talbot (Chief Academic Officer), Tim Schoahs (Registrar),
and Rich Wildman (Chair of the Summer Fellows Program).

2912



References
Abdulkadiroglu, A., and Sonmez, T. 1998. Random serial
dictatorship and the core from random endowments in house
allocation problems. Econometrica 66(3):689–701.
Budish, E., and Cantillon, E. 2012. The multi-unit assign-
ment problem: Theory and evidence from course allocation
at harvard. American Economic Review 102(5):2237–2271.
Budish, E.; Che, Y.-K.; Kojima, F.; and Milgrom, P. 2013.
Designing random allocation mechanisms: Theory and ap-
plications. American Economic Review 103(2):585–623.
Budish, E.; Othman, A.; and Sandholm, T. 2010. Finding
approximate competitive equilibria: Efficient and fair course
allocation. Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS).
Budish, E. 2011. The combinatorial assignment problem:
Approximate competitive equilibrium from equal incomes.
Journal of Political Economy 119(6):1061–1103.
Goerigk, M.; Hoshino, R.; Kawarabayashi, K.; and West-
phal, S. 2014. Solving the traveling tournament problem by
packing three-vertex paths. Proceedings of the 28th AAAI
Conference on Artificial Intelligence (to appear).
Kalinowski, T.; Narodytska, N.; Walsh, T.; and Xia, L.
2013. Strategic behavior when allocating indivisible goods
sequentially. Proceedings of the 27th AAAI Conference on
Artificial Intelligence (AAAI’13).
Kendall, G.; Knust, S.; Ribeiro, C.; and Urrutia, S. 2010.
Scheduling in sports: An annotated bibliography. Comput-
ers and Operations Research 37:1–19.
Kominers, S.; Ruberry, M.; and Ullman, J. 2010. Course
allocation by proxy auction. Proceedings of the 6th Inter-
national Conference on Internet and Network Economics
(WINE’10) 551–558.
Krishna, A., and Unver, U. 2008. Improving the efficiency
of course bidding at business schools: Field and laboratory
studies. Marketing Science 27(2):262–282.
Pápai, S. 2001. Strategyproof and nonbossy multiple assign-
ments. Journal of Public Economic Theory 3(3):257–271.
Roth, A. 2002. The economist as engineer: Game theory,
experimentation, and computation as tools for design eco-
nomics. Econometrica 70(4):1341–1378.
Sonmez, T., and Unver, U. 2010. Course bidding at business
schools. International Economic Review 51(1):99–123.

2913




