
A Speech-Driven Second Screen Application for TV Program Discovery

Peter Z. Yeh1, Ben Douglas1, William Jarrold1, Adwait Ratnaparkhi1, Deepak Ramachandran1,
Peter F. Patel-Schneider1, Stephen Laverty2, Nirvana Tikku2, Sean Brown2, Jeremy Mendel3

1. AI & NL Research, Nuance Communications, Sunnyvale, CA
2. Mobile Product Strategy, Nuance Communications, Cambridge, MA

3. Creative Development, Nuance Communications, Sunnyvale, CA

Abstract

In this paper, we present a speech-driven second screen ap-
plication for TV program discovery. We give an overview
of the application and its architecture. We also present a user
study along with a failure analysis. The results from the study
are encouraging, and demonstrate our application’s effective-
ness in the target domain. We conclude with a discussion of
follow-on efforts to further enhance our application.

Introduction
The recent explosion of content (e.g. movies, TV shows,
sports, etc.) available on television coupled with an increase
use in mobile devices (i.e. smart phones and tablets) has cre-
ated significant interest in second screen applications from
both end-users and content providers. These applications
enrich the television viewing experience in numerous ways.
One of which is helping end-users effectively find and con-
trol content on television via spoken natural language (i.e.
speech-driven TV program discovery).

Speech-driven TV program discovery applications have
recently become available in the marketplace from select
cable/satellite providers. However, these applications are
limited. They support a pre-defined set of utterance types
(e.g. switch to <channel>, find a <genre>movie, and find
a movie with <actor >). Hence, end-users must conform to
these types, and cannot combine them in an ad-hoc manner
(e.g. search by genre, actor, and TV station).

More advanced research prototypes (Liu et al. 2012) do
not have these limitations. However, these prototypes focus
on a piece of the overall problem (e.g. entity recognition),
and do not support the full range of features required of an
end-to-end system. For example, these prototypes do not:

• Support question answering (e.g. who is the french actress
in the movie the dark knight)

• Handle expressive utterances involving conjunction, dis-
junction, and negation (e.g. find a movie without tom
cruise and nicole kidman)

• Handle the complexities of searching and controlling
“live” television

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we report on an active R&D effort at Nuance
Communications to develop an end-to-end speech-driven
second screen application for television program discovery
that addresses these limitations. Our solution integrates the
following Artificial Intelligence (AI) and Natural Language
(NL) technologies:

• Statistical and linguistic-based natural language under-
standing technologies (Ratnaparkhi 1996; Maxwell and
Kaplan 1993) to construct a rich semantic representation
of the end-user’s utterance.

• A large-scale common sense knowledge-base (Cycorp
2013) that serves as the target output of linguistic pro-
cessing and supports SQL query generation.

• Techniques from Natural Language Interface to
Databases (NLIDB) (Popescu, Etzioni, and Kautz
2003) to transform the output of linguistic processing into
a SQL query to execute against a commercial Electronic
Program Guide (EPG) database, which is updated on a
daily basis.

• NL generation technologies (Gatt and Reiter 2009) to
summarize and confirm the outcome of acting on the end-
user’s utterance.

We give an overview of the main features of our appli-
cation followed by a description of its architecture. We then
present results from a user study along with a thorough anal-
ysis of the failure cases. Finally, we describe follow-on ef-
forts to further enhance our application with the eventual
goal of making it available to a large user population.

Application Overview
When a user starts the application for the first time, it
will prompt the user for his/her zipcode and cable/satellite
provider. The application uses this information to limit all
results to the user’s provider and viewing area. The user is
then taken to a screen with a speech icon that he/she can tap
on to begin speaking to the application (see Figure 1 top).

If the spoken utterance is a search request (e.g. watch
an action movie tonight or find a movie with tom hanks),
then the application will display all relevant results (ordered
by start time) along with a confirmation of these results in
the prompt box (see Figure 1 bottom). The user can scroll
through these result, and tap on any one to view additional

Proceedings of the Twenty-Sixth Annual Conference on Innovative Applications of Artificial Intelligence

3010

Figure 1: Top: Start screen. User can tap on speech icon to
begin speaking to the application. Bottom: Results screen.
A text confirmation is also shown at the bottom of the screen.

details such as the program synopsis, cast, ratings, etc. The
user can also tap on the speech icon to issue additional utter-
ances.

If the utterance is a question (e.g. where was tom cruise
born), then the application will display the answer (i.e. Syra-
cuse, NY) in the prompt box. It will also display any pro-
grams relevant to the question. For example, any Tom Cruise
movies or TV shows that are playing.

If the utterance is a command (e.g. change channel, in-
crease volume, etc.), then the application will execute the
command. For channel change commands, the application
will also display the programs that are currently showing on
the new channel.

The application will prompt the user accordingly for ut-
terances that it does not understand. Table 1 shows a sample
of utterance types supported by the application.

Architecture Overview
Our application implements a client-server architecture (see
Fig. 2). The client is responsible for calling Nuance’s ASR
service to convert the speech input to text,1 displaying the
results, and controlling the TV. The server is responsible
for the natural language interpretation, retrieval of results,

1A detailed description of Nuance’s Automatic Speech Recog-
nition (ASR) is outside the scope of this paper. Information on a
publicly available, commercial version of the ASR service that we
used is available at: http://nuancemobiledeveloper.com.

Utterance Type Example
Search: Action movies with Tom Cruise
Multi-Slot playing tonight.
Search: Find a French movie with a
Hi-Precision British actor.
Search: Logical Watch action movies without
Expression Tom Cruise or Bruce Willis.
WH-Question Who directed the Dark Knight?

Where was Terminator filmed?
Command Switch to HBO.

Table 1: Sample of supported utterances.

Figure 2: Architecture overview. The Hub invokes the
spokes in a clock-wise manner starting with NER.

and response generation. We focus on the server in this
paper, which is implemented as a hub-and-spoke architec-
ture. Each spoke performs a specific task, and the hub in-
vokes them in the proper order. Hence, the resulting system
is highly modular, allowing future spokes to be added with
minimal impact to the rest of the system.

Ontology and Data Source
Our hub-and-spoke architecture requires a common repre-
sentation across all the spokes. Moreover, this representa-
tion should support challenges that may occur during NL
interpretation and SQL query formulation. We believe these
requirements can be served by a large multi-purpose ontol-
ogy, and chose ResearchCyc (Cycorp 2013) for this purpose.
For example, the NER (see below) may have difficulty dis-
tinguishing between TV and movie titles. Cyc’s rich sub-
sumption hierarchy can provide one concept that subsumes
both and can be the target for NER. In particular, the Cyc
term VideoConceptualWork includes the desired cate-
gories of ‘movie’ and ‘tv show’, and excludes undesirable
but related ones such as books or music. Similarly, XLE
(see below also) can produce rich logical forms containing
semantic relations grounded in Cyc between the entities de-
tected by NER. Cyc’s rich domain and range constraints on
these relations can be used during SQL query formulation to
further constrain the query.

3011

Input a tv show with jerry seinfeld playing
this weekend

Output a [TVShow-CW] tv show [/] with
[Person] jerry seinfeld [/] playing
[CalendarDay] this weekend [/]

Table 2: Example of NER input and output.

Our application also requires a continuously up-to-date
database of programs playing on TV. We use a 3rd party
commercial Electronic Program Guide (EPG) as our target
database. This EPG is a relational database and contains
schedule information for all cable and satellite providers in
the U.S. and Canada for the upcoming two week period. It
also contains additional information for each program such
as the cast, filming location, birth dates of cast members,
etc. Moreover, the EPG vendor also provides a daily update,
which our system downloads and applies on a nightly basis.

Named Entity Recognition
The Named Entity Recognizer (NER) takes the ASR output
from the client and detects proper nouns like movie titles
and people names. It also detects other phrases that are not
proper nouns but have significance in the TV domain, e.g.
genres and time phrases. Table 2 shows an example of NER
input and output where the tag for each detected entity is
grounded in our target ontology.

Our NER is a BIO-style tagger where each word is tagged
with bX, iX, or o, indicating the start of entity X, the con-
tinuation of entity X, or that the word is outside any entity,
respectively. The NER is a machine-learned approach and
uses the maximum entropy framework to predict BIO tags
from annotated data, similar to (Borthwick et al. 1998). The
model features and search algorithm are borrowed from the
part-of-speech tagging approach of (Ratnaparkhi 1996), but
the original contextual features have been changed to in-
clude:
• All consecutive word bi-grams in a window of ±2 words

from the current word
• The previous tag, and previous 2 tags conjoined with the

current word
Our NER also uses list match features to flag phrases in

the utterance that match those in an externally provided dic-
tionary. We construct this dictionary by extracting ˜160K
entries (i.e. movie and TV show titles, actor names, and role
names) along with their type (i.e. movie, actor, etc.) from
our 3rd party commercial EPG (see subsection above). Each
word in a phrase is assigned a feature if the phrase has an
exact match in the dictionary. The features are of the form
bY, iY, eY, and denote the beginning, middle, and end of
a phrase of type Y. A word can receive multiple list match
features if it participates in multiple matches.

We apply the above feature patterns to the training data to
create the actual feature set used by the model training algo-
rithm. We use a combination of real and synthetic utterances
for training (i.e. 19K vs. 166K utterances). The synthetic
utterances are necessary because the real ones do not cover

all the anticipated linguistic phenomena, and are generated
using a combination of manually authored natural language
patterns and dictionary derived from our 3rd party EPG.

Canonicalizer
The canonicalizer takes relevant entities detected by NER
and maps them to the corresponding database element based
on the surface form in the utterance. This mapping is neces-
sary because of the mismatch between how a user may refer
to an entity of interest (e.g. movie, actor, etc.) and how the
entity is encoded in our target EPG. For example, a user may
refer to the second terminator movie as terminator two, but
the EPG may encode it as “Terminator 2: Judgment Day”
(the official title).

We implement our canonicalizer using the open source
search engine Solr because it provides a wide array of
fuzzy match options (which is absent from most relational
database systems), allowing us to fine-tune the match strat-
egy. Hence, for each relevant entity (e.g. TV show, movie,
actor, etc.) the canonicalizer performs a fuzzy match lookup
of the entity’s surface form in the corresponding Solr index,
i.e. the index built over the EPG table and attribute corre-
sponding to the entity’s type. Each match result is a 3-tuple
of the form < T,A, I > where T is the table correspond-
ing to the entity’s type, A is the attribute in T containing the
unique identifier for the entity, and I is the unique identifier.
If there are multiple matches (e.g. “Avatar” referring to both
the movie and animated TV show), then the topN , based on
popularity, are returned.

These results are associated with their respective entity
for use by downstream spokes to further constrain the SQL
query during query formulation. Moreover, downstream
spokes need only include the identifier (and not the surface
form) in the resulting SQL query, which speeds up query
execution.

XLE
Our system uses the Xerox Language Environment (XLE)
(Maxwell and Kaplan 1993), which incorporates a Lexical
Functional Grammar (LFG) parser and an integrated rule
system, to parse input utterances and rewrite them into Log-
ical Forms (LFs) grounded in our target ontology.

The LFG parser produces not just a single parse, but a
packed representation (Maxwell and Kaplan 1993) that com-
pactly encodes all the viable alternative parses of the utter-
ance, e.g. encoding multiple prepositional phrase attach-
ments. Moreover, entities detected by NER are used to con-
trol the parsing. For example, in “watch tom cruise” if NER
tagged “tom cruise” as a Person type, then the parser will
observe this tag, and not generate alternative parses for the
phrase such as Tom being the subject of a cruise event.

The XFR rule system (Crouch and King 2006) rewrites
the parse output into alternative LFs using three sets of
rewrite rules. First, XFR rewrites the parse structure by
adding WordNet (Miller 1995) word senses for each concept
term (including NER entities) in the parse.

XFR then rewrites the resulting structure into alternative
Abstract Knowledge Representation (AKR) formulae (Bo-
brow et al. 2005), which encode the space of possible the-

3012

matic roles between the concept terms based on the alterna-
tive parses from the LFG parser. The AKR formulae also use
logical contexts to capture various linguistic notions such as
utterance type (e.g. question, command, etc.), disjunction,
negation, etc. We note that the AKR representation serves
as an intermediate representation that allows different on-
tologies to be supported, hence increasing the modularity of
our system.

Finally, XFR rewrites the AKR formulae into alternative
LFs in our target ontology. WordNet senses for each con-
cept term are mapped to appropriate terms in the ontology.
Thematic roles are mapped to predicates (i.e. semantic rela-
tions), and type-checking rules are applied to ensure terms
are compatible with the arguments of the predicates, remov-
ing alternatives that are ill-typed. For example, the AKR
representation of “play terminator two” has multiple Word-
Net word senses for “play”, including one for playing a mu-
sical instrument and one for playing a movie. The former
can be removed because “terminator two” is detected as a
movie by the NER, and choosing it triggers a type violation.
Additional structural rewrites may be performed to better
align a LF alternative with the ontology (e.g. rewriting a set
of binary thematic roles and their arguments into a ternary
predicate).

The resulting alternative LFs are scored using a set of sim-
ple heuristics that prefer the most common (i.e. frequently
occurring) interpretation for the TV domain. For example,
in “watch a movie with tom cruise on tv” it is unlikely that
“tom cruise” will be sitting on the TV, so this alternative
is scored lowly (and removed). Should multiple LFs (and
hence unresolved ambiguity) remain, then one is randomly
selected as the final result.

Semantic Query Engine
The Semantic Query Engine (SQE) takes the output of the
NER and XLE spokes, and maps it to a SQL query. There
are two approaches to this problem: 1) learn the mappings
from an utterance to a target query (Zelle and Mooney 1996;
Kate, Wong, and Mooney 2005); or 2) compose a query
from manually defined mappings between linguistic and
database elements (Popescu, Etzioni, and Kautz 2003). We
adopt the latter approach because it does not require training
examples, which is difficult to acquire at scale for this task.

SQE first tries to specialize each NER entity’s type based
on semantic relations between them produced by XLE. This
step compensates for fine-grained types that may be difficult
for NER to detect. For example, given the utterance movies
with tom cruise, NER tags tom cruise as a Person type, and
XLE relates tom cruise to movies via a videoWorkActor rela-
tion. Hence, SQE can retrieve the domain (and range) con-
straints of videoWorkActor from the underlying ontology. If
this type constraint (i.e. Actor) is a subclass of the original
type (i.e. Person), then SQE can specialize it.

Second, SQE adds structure to the bag of NER entities
by traversing the XLE output (in a depth-first manner) to
construct a query tree. Each logical connector (i.e. and, not,
or) traversed is converted into an internal node. Each entity
is converted to a leaf node, and attached to the most recent
internal node traversed (see Figure 3). For compactness, an

Figure 3: Left: Logical Form (LF) produced by XLE based
on NER output for the utterance: “movies with tom cruise or
nicole kidman”. isa clauses denote NER entities, and ?Xn
are entity IDs. Right: Query tree constructed from LF.

and or or node with one child is removed, and its child is
attached to its parent node. SQE uses this tree in the next
step to generate nested-queries and to connect them.

SQE then maps each entity type into a SQL fragment: a
3-tuple of the form < T,A,C > where T is the database
table to include in the from clause of the query, A are rele-
vant attributes from T to include in the select clause, and C
is a set of constraints to include in the where clause. Each
constraint is a 3-tuple of the form (A′, V,Op) where A′ is
the constraint attribute from T , V is the constraint value on
A′, and Op is the constraint operator (e.g. equality, mem-
bership, etc.). We manually define these mappings based on
our target EPG database. Canonicalizer results (see above)
associated with the entity are also added to C. For exam-
ple, the tuple for tom cruise (an Actor type) and associated
canonical is:

< credit, name, {(type, ‘Actor′,=), (id, 30914,=)} >

Based on these mappings, SQE finds the shortest join path
between the tables in each fragment pair via a breadth-first
search over possible joins in the database. SQE also ob-
serves the structure of the query tree, and greedily merges
fragments with overlapping database elements (i.e. tables
and attributes).

Finally, SQE checks the type of the utterance produced by
XLE. If the type is a WH-question, then SQE includes the
table and attribute associated with the question type in the
from and select clause of the query respectively, and extracts
the return value as the answer. This strategy is sufficient
because many WH-questions can be answered by applying
the appropriate facet over the set of results satisfying the
question constraints. The resulting SQL query is executed
against the EPG.

Natural Language Response Generation
The Natural Language Generation (NLG) component gener-
ates responses across three categories:

1. Confirmation Prompts: A restatement of the constraints
requested by the user. With noisy ASR and NER, con-
firmations let the user know whether his/her request was
understood correctly. In cases where no results are found,
the system will also indicate this.

2. Answers: Presentation of possible answers found for
WH-questions posed by the user. Additional processing,

3013

such as converting the time represented in the EPG to lo-
cal time, are performed based on the question type.

3. Exception Responses: Responses to inform the user of
exception conditions, e.g. NER did not detect any entities,
no answers were found for a question, etc.

This component uses templates, the SimpleNLG pack-
age of (Gatt and Reiter 2009), and transformation heuris-
tics to generate concise prompts. SimpleNLG allows us to
more easily enforce common grammatical constraints such
as number, noun-verb, and article-noun agreement. We pre-
define a set of SimpleNLG syntax tree templates, and our
system selects the appropriate one based on the slots and
values that need to be expressed in the prompt. The selected
template is instantiated appropriately, and relevant transfor-
mations (e.g. suppressing portions of the template) are ap-
plied based on the context (e.g. number of results, result
type, etc).

For example, if the NLG component is asked to gener-
ate a prompt for the slot-value tuple (genre = ”romantic
comedy”, type = ”movie or tv show”), it will suppress the
type slot (if the result includes both movies and TV shows)
to generate the concise response “romantic comedies”. A
pure template-based approach will generate the more ver-
bose response “romantic comedy movies or tv shows” . This
strategy allows our system to better handle variation, brevity,
and fluency of natural English.

Evaluation
We present a joint user study with Nuance’s Usability & In-
teraction Design group to assess the performance of our ap-
plication.

Experiment Design
We used the following experiment design to answer three
key questions:

1. How satisfied is the user with the application?

2. How effective is the application at finding results match-
ing the user’s intent?

3. What is the response time of the application?

We sourced 16 subjects from a third party staffing agency
for this study. These subjects represent target users of our
application: users between the ages of 18 and 55, mix of
males and females, and half have technical backgrounds (the
other half do not).

For each subject, a moderator first gave the subject a high-
level overview of the application and the experiment envi-
ronment – i.e. a simulated living room with a TV that can
be controlled by our application (see Figure 4).

The moderator then gave the subject instructions for a
practice trial. The subject was informed of a stack of maga-
zines in the living room, and asked to relax as if he/she is at
home. While the subject is relaxing, he/she was told to flip
through these magazines for inspiration on what to watch on
TV. The subject was then told to tell the application what
they wanted to watch. Based on the results returned, the
subject was asked to:

Figure 4: Picture of the simulated living room taken through
a one-way mirror from the adjacent moderator room.

• Rate their overall satisfaction on a 7-point Likert scale.
• Assess the effectiveness of the application by scoring the

trial as a success or failure. A trial is successful if: 1) at
least one of the results on the first page matched the sub-
ject’s intent or 2) the application correctly gave no results
when no program matching the subject’s intent is showing
on TV.

The application also logged the time spent to process the
request.

After the practice trial, the moderator instructed the sub-
ject to perform ten additional trials following the same in-
structions as above. During these trials, the moderator ob-
served the subject in an adjacent room through a one-way
mirror, and only interacted with the subject if he/she had
any questions (or experienced any technical issues).

This design is unintrusive (putting the subject at ease), and
limits the introduction of biases. Subjects were not exposed
to example utterances, which may bias their requests. They
came up with requests entirely on their own.

Results
A total of 160 trials were completed (10 per subject). Two
raters reviewed each trial to determine those that are out-of-
scope – e.g. requests in adjacent domains such as music or
unsupported requests such as showing trailers of upcoming
movies. A total of 39 trials – where both raters agreed as out-
of-scope – were removed. 5 additional trials were removed
because the moderator had to intervene due to technical is-
sues, and 13 trials where the subject incorrectly recorded
his/her ratings were removed as well. The remaining 103
trials were used to compute the results.

Figure 5 shows the user satisfaction ratings. The average
rating is 4.81 on a 7 point scale with a standard deviation of
1.69. This result is encouraging given the in-the-wild nature
of the trials – i.e. subjects were allowed to pose any request
that came to mind to the application. Moreover, this result
is statistically significant compared with a random baseline
that assumes an uniform expected frequency over the ratings
(p < 0.01 for the chi-square goodness-of-fit test, df = 6).

3014

Failure Type Description # Trials
Incorrect NER NER spoke incorrectly detected an entity (i.e. wrong phrase boundary or type). 17
Missed NER NER spoke missed an entity critical to processing an utterance. 11
Incorrect ASR ASR component produced incorrect text output for speech input. 6
Failed DB Mapping SQE spoke failed to map an entity required to formulate correct SQL query. 4
Incorrect LF XLE spoke produced a LF that prevented the generation of correct a SQL query. 3

Table 3: Top five failure types, and number of affected trials. A trial can have multiple failures.

Figure 5: User rating distribution over a 7 point scale in
response to the question: “The system was able to provide
the information I was looking for.”

Successful # Failed Accuracy (%)
64 39 62.14%

Table 4: Number of successful vs. failed trials, and overall
task accuracy. We define task accuracy as the number of
successful trials over the total number of trials.

Table 4 shows the number of successful vs. failed tri-
als. Again, these results are encouraging given the in-the-
wild nature (and hence difficulty) of the trials. We also
found a strong positive correlation between the percent-
age of successful trials and the average satisfaction rating
per subject (p < 0.005 for the Spearman rank correlation,
ρ = 0.8338, n = 16). This positive correlation supports the
validity of the satisfaction ratings.

Finally, the average response time of our application
across all trials is 828.41ms (sd = 1097.77ms). None of
the subjects expressed concerns over the response time dur-
ing the evaluation, but this is an area that can be improved
upon.

Failure Analysis
We performed an analysis of the failed trials to better un-
derstand the cause. For each failed trial, we identified the
spoke that caused the failure, and categorized the nature of
the failure. Table 3 shows the top-five failure categories.

From this analysis, we identified the NER spoke as the
top source of failure. Incorrect or missed NER accounted for
28 of 39 failed trials. The primary reason for these failures

is that the combination of real and synthetically generated
training examples did not fully cover the breadth of user re-
quests and linguistic phenomena that occurred in practice,
resulting in an under trained NER model.

Further analysis confirmed that 24 of these trials would
have been successful had the NER performed correctly, in-
creasing the number of successful trials from 64 (62.14%)
to 88 (85.44%). Hence, we are actively investigating ways
to improve the performance of this spoke.

Another interesting failure is Failed DB Mapping, which
occurs when a subject refers to a database element at a differ-
ent level of granularity. For example, a subject may want to
watch a show in the “home decorating” genre, but the EPG
only encodes the more generic genre of “home & garden”.
This granularity mismatch may be resolved using logical in-
ferences (e.g. subsumption), which we are investigating.

Conclusion and Follow-On Efforts

In this paper, we presented a speech-driven second screen
application for TV program discovery. Our application has
several unique features such as the use of a common on-
tology across the different components, support for a wide
range of expressive natural language utterances, and operat-
ing at scale (i.e. enabling TV program discovery over “live”
EPG data that covers the entire U.S. and Canada). We also
presented a user study along with a detailed failure analysis.
The results were encouraging given the in-the-wild nature
of the evaluation. Moreover, our failure analysis helped us
identify key components of the application to target for im-
provement.

Further enhancements and investigation, however, are
needed before our system can be made available to a large
user population. First, we are actively addressing the top
failure types from our failure analysis. For example, we
can achieve a significant performance lift by improving the
robustness of the NER. We are also developing additional
enhancements to our application – such as user preference
modeling, rich user conversation, etc. – to further improve
the end-user experience. We plan to evaluate the practi-
cal utility of these enhancements, as they become available,
through additional user studies. Finally, we are actively in-
vestigating possible ways in which our system could be em-
bedded within existing mobile virtual assistant capabilities
and solutions to support rich user requests (and interactions)
in the TV domain. We plan to report on these efforts as
progress is made.

3015

Acknowledgment
The authors would like to thank Ronald M. Kaplan for his
encouragement, guidance, and support on this project. The
authors would also like to thank the anonymous reviewers
for their helpful feedback and suggestions for improving the
paper.

References
Bobrow, D.; Condoravdi, C.; Crouch, R.; Kaplan, R.; Kart-
tunen, L.; King, T. H.; de Paiva, V.; and Zaenen, A. 2005. A
basic logic for textual inference. In Proceedings of the AAAI
Workshop on Inference for Textual Question Answering.
Borthwick, A.; Sterling, J.; Agichtein, E.; and Grishman, R.
1998. Exploiting diverse knowledge sources via maximum
entropy in named entity recognition. In Proceedings of the
Sixth Workshop on Very Large Corpora, 152–160.
Crouch, D., and King, T. H. 2006. Semantics via f-structure
rewriting. In Proceedings of the LFG06 Conference, 145–
165.
Cycorp. 2013. Research Cyc.
http://www.cyc.com/platform/researchcyc.
Gatt, A., and Reiter, E. 2009. SimpleNLG: A realisation
engine for practical applications. In Proceedings of ENLG-
2009, 90–93.
Kate, R. J.; Wong, Y. W.; and Mooney, R. J. 2005. Learning
to transform natural to formal languages. In AAAI, 1062–
1068.
Liu, J.; Cyphers, S.; Pasupat, P.; McGraw, I.; and Glass,
J. 2012. A conversational movie search system based on
conditional random fields. In INTERSPEECH.
Maxwell, J., and Kaplan, R. 1993. The interface be-
tween phrasal and functional constraints. Computational
Lingusitics 19(4):571–589.
Miller, G. A. 1995. WordNet: A lexical database for english.
Communications of the ACM 38(11):39–41.
Popescu, A.-M.; Etzioni, O.; and Kautz, H. 2003. Towards
a theory of natural language interfaces to databases. In IUI,
149–157.
Ratnaparkhi, A. 1996. A maximum entropy model for part-
of-speech tagging. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing, 133–142.
Zelle, J. M., and Mooney, R. J. 1996. Learning to parse
database queries using inductive logic programming. In
AAAI/IAAI, 1050–1055.

3016

