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Abstract

To dissuade reckless driving and mitigate accidents,
cities deploy resources to patrol roads. In this paper, we
present STREETS, an application developed for the city
of Singapore, which models the problem of comput-
ing randomized traffic patrol strategies as a defender-
attacker Stackelberg game. Previous work on Stackel-
berg security games has focused extensively on counter-
terrorism settings. STREETS moves beyond counter-
terrorism and represents the first use of Stackelberg
games for traffic patrolling, in the process providing a
novel algorithm for solving such games that addresses
three major challenges in modeling and scale-up. First,
there exists a high degree of unpredictability in travel
times through road networks, which we capture using
a Markov Decision Process for planning the patrols of
the defender (the police) in the game. Second, mod-
eling all possible police patrols and their interactions
with a large number of adversaries (drivers) introduces
a significant scalability challenge. To address this chal-
lenge we apply a compact game representation in a
novel fashion combined with adversary and state sam-
pling. Third, patrol strategies must balance exploitation
(minimizing violations) with exploration (maximizing
omnipresence), a tradeoff we model by solving a bi-
objective optimization problem. We present experimen-
tal results using real-world traffic data from Singapore.
This work is done in collaboration with the Singapore
Ministry of Home Affairs and is currently being evalu-
ated by the Singapore Police Force.

Introduction
Traffic safety is a significant concern in cities throughout the
world. Of the large number of people injured or killed in traf-
fic accidents, a vast majority of these casualties are a direct
result of reckless driving. It is for this reason, that the Singa-
pore Police Force and their counterparts in other cities use
traffic patrols to persuade drivers to comply with traffic laws
through the threat of citations and fines. Such patrols must
be randomized to avoid predictability and provide adequate
coverage of different areas of a city. Yet, lack of random-
ization is a well-known problem in human patrol scheduling
(Tambe 2011) and when such randomization must also take
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into account speed-distance calculations, potential traffic de-
lays, and historical data on traffic violations to ensure appro-
priate coverage of different areas in a city like Singapore, it
presents a very difficult challenge for human schedulers.

Stackelberg security games (SSG) have become an in-
creasingly popular paradigm for modeling security pa-
trolling problems. In SSGs, the defender (i.e., the security
agency) commits to a mixed strategy that the adversary (i.e.,
criminal, terrorist, or in our domain, reckless driver) is able
to first observe and then best respond (Korzhyk, Conitzer,
and Parr 2010; Basilico, Gatti, and Amigoni 2009). This
mixed strategy represents a probability distribution over the
possible patrol schedules. Research on SSGs has resulted in
several real-world systems deployed to protect transporta-
tion infrastructure such as airports, ports, and train stations
(Tambe 2011). These systems have focused predominantly
on counter-terrorism domains. Of the few applications that
have branched out from counter-terrorism, e.g., TRUSTS
(Yin et al. 2012), none have focused on traffic patrolling.

The purpose of this paper is to introduce a new game-
theoretic application, STREETS (STrategic Randomization
with Exploration and Exploitation in Traffic patrol
Schedules), which we developed to assist the Singapore
Ministry of Home Affairs (MHA) in scheduling random-
ized traffic patrols on the Singapore road network. We model
this problem as a Stackelberg game with one defender (the
police) and multiple adversaries (drivers). STREETS rep-
resents a novel application of Stackelberg games and re-
quired addressing several research challenges. First, road
networks are complex and dynamic systems, with unpre-
dictable delays associated with congestion, traffic signals,
etc. The presence of this type of uncertainty complicates
the process of planning traffic patrols. Second, the game be-
ing played at the heart of STREETS is massive in scale in
terms of both the number of possible patrol strategies as well
as the number of adversaries representing the thousands of
drivers who use the Singapore road network. Third, the re-
peated nature of the traffic patrolling domain results in an
abundance of data on traffic, accidents, citations, etc. How-
ever, this data is collected when the defender issues citations
and thus is inherently available only for patrolled locations.
Therefore, it is important to avoid confirmation bias (Nick-
erson 1998) from over relying on the data, which can lead to
self-reinforcing behavior and undesired consequences.
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No previous work on SSGs has addressed these chal-
lenges in combination, and in fact none has addressed the
challenge of avoiding confirmation bias – leading us to in-
troduce a new concept of exploration versus exploitation in
SSGs. Therefore, STREETS required us to develop a new
SSG game model and an entirely new algorithm combining
three key features. First, to capture the inherent stochastic-
ity of a road network, we use a Markov Decision Process
(MDP) to model the defender’s patrol scheduling problem.
Second, to formulate a game with an exponential number
of patrol strategies and a large number of adversaries, we
adopt a compact game representation which converts the de-
fender’s strategy space to a network flow through a transi-
tion graph. Additionally, we use two sampling approaches
that improve efficiency by considering only a subset of ei-
ther adversary types or game states when solving the game.
Third, while we exploit all available data to improve patrol
effectiveness, to prevent overfitting this data, we introduce
an entropy-based approach. The idea being that the defender
should patrol all areas of the road network with at least some
probability to avoid confirmation bias and to give the per-
ception of omnipresence to drivers. This creates a tradeoff
between exploitation (minimizing reckless driving by fo-
cusing on high violation areas) and exploration (maximiz-
ing omnipresence by dispersing patrols). We explicitly for-
mulate this tradeoff as a bi-objective optimization problem.
Rather than having one optimal patrol strategy, the patrolling
agency can now choose from the space of optimal tradeoff
strategies located on the Pareto frontier.

STREETS was developed in collaboration with the Singa-
pore Ministry of Home Affairs. STREETS is currently being
evaluated by Singapore Police Force.

Domain
Traffic safety is a significant concern in cities throughout
the world. Of the large number of people injured or killed
in traffic accidents, a vast majority of these casualties are a
direct result of reckless driving. For example, Singapore ex-
perienced 7,188 injury accidents in 2012, resulting in 168
fatalities. Perhaps just as alarming is the 330,909 traffic vi-
olations recorded during that same period for a vehicle pop-
ulation of only 965,192 (SPF 2013). It is sobering statistics
like these that compel the Singapore Traffic Police (TP) and
their counterparts in other cities to use traffic patrols to en-
force traffic laws through the threat of citations and fines.

Since the number of roads and highways is typically very
large, it is not possible to have enough resources to patrol
every road and highway at every time. Therefore, a major
challenge for TP is to compute patrol strategies on when
and where different groups have to patrol so as to reduce
the number of violations and accidents.

Due to our collaboration with the Future Urban Mobility
(FM) 1 center in Singapore, we are able to obtain both the
traffic volumes, violations, and accidents occurring on all
the major roads and highways across Singapore. By using
this data, we construct models of traffic behavior on various

1FM is part of the Singapore MIT Alliance for Research and
Technology (SMART) initiative.

roads and then using the techniques developed in the next
section, we generate randomized patrol strategies.

Model
We formally model the interaction between the police and
drivers as a defender-attacker Stackelberg game. This game
played by the defender and the adversaries takes place on a
graph which models a road network where vertices represent
intersections and edges represent road segments. The graph
features a temporal dimension, where traversing a road seg-
ment takes some (non-deterministic) amount of time. The
defender has a maximum patrol duration of h hours. The de-
fender (the police) commits to a randomized patrol strategy,
which is used to generate daily patrol schedules for each of
the r resources. A daily patrol schedule consists of a trajec-
tory through the graph, i.e., a sequence of road segments to
patrol and the times they are to be patrolled.

The adversaries (drivers) also follow a schedule but we
assume this trajectory through the graph is fixed on a daily
basis (travelling to work, school, etc.). Adversaries are able
to observe the presence (or lack thereof) of police patrols
over a period of time, in the process obtaining an accurate
estimation of the probability of encountering the police on
any given day. To construct the graph for the road network
in the Singapore Central Business District (CBD), shown in
Figure 1, we used data from OpenStreetMap (OSM)2.

A normal form representation of this game, as used in
the original work on Stackelberg security games (Paruchuri
et al. 2008), would require us to explicitly enumerate pure
strategies for the defender (patrol schedules) as well as for
all of the adversaries (obey or violate decisions). This would
be an extremely large number of player actions, even for
small instances of our traffic patrolling domain. Therefore,
we need a technique that allows us to scale up.

Achieving Scaleup
We adopt a compact representation in the form of a transition
graph, which converts the game, from the defender’s per-
spective, into a spatio-temporal flow problem. Rather than
computing a probability distribution over full patrol sched-
ules, the defender now has to compute the optimal flow
through the transition graph. Such a flow can be interpreted
as a marginal coverage vector. These marginals can then be
used to reconstruct daily patrol schedules for the defender.

This transition graph formulation is similar to the ap-
proach used in TRUSTS which modeled patrolling a train
line. However, the traffic patrolling domain features a num-
ber of complexities that make our use of a transition graph
within a Stackelberg game novel. One of the biggest com-
plexities is the continuous nature of traffic patrolling. Not
tied to following predetermined transportation schedules
(e.g. train schedules in TRUSTS), a traffic patroller, gen-
erally speaking, can be almost anywhere within the road
network at any given time. To avoid having to adopt a
continuous-time model, and the associated computational
overhead, we discretize time to a granularity of m minutes.
Therefore, a vertex is added to the transition graph for every

2http://www.openstreetmap.org/
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Figure 1: Singapore OSM Graph
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Figure 2: Toy MDP Example

intersection in the road network every m minutes until the
patrol duration of h hours is reached.

Defender Model In reality, there may be unexpected de-
lays that disrupt the defender’s daily patrol schedules. In
a road network, a patroller can be delayed from its sched-
ule due to a variety of factors including congestion or traf-
fic signals. The defender must account for stochasticity in
traffic delays when planning patrols. Therefore, we now de-
fine an MDP �S,A, T,R� to represent the defender’s patrol
scheduling problem:
• S is a finite set of states. Each state s ∈ S is a tuple (l, τ),

where l is the current location (i.e., intersection in the road
network) of the defender and τ is the current time.

• A is a finite set of actions. The set of actions available
from a given state s=(l, τ), A(s), is the set of road seg-
ments which originate from location l.

• T (s, a, s�) is the probability of ending up in the state s�

after performing action a in state s.
• R(s, a, s�) is the immediate reward for the defender from

ending up in state s� after performing action a in state
s. However, our main focus is on the game-theoretic re-
ward (i.e., expected number of violations) as a result of
the defender patrolling strategy. Thus, for the remainder
of this paper, we assume, without loss of generality, that
R(s, a, s�)=0, ∀s, a, s�.

Figure 2 shows a toy example of the MDP with three lo-
cations (A,B,C) and three time periods (5,10,15). The solid
black arrows indicate the transitions available from each ver-
tex. The dashed arrows represent uncertainity in the domain,
e.g., anticipating going from (B, 5) → (A, 10) but being
delayed and ending up in (A, 15). The defender strategy is
represented by the probability placed on each edge in the
MDP rather than over whole patrols.

Adversary Model The set of adversaries consists of the
drivers using the road network, who are assumed to always
violate the law in the absence of police presence. A driver
type is defined for each state-action pair s, a in the MDP and
we refer to this type as <s, a>. This formulation represents
the driver entering the transition graph (road network) at a
specified vertex (intersection) and time, traversing an edge
(road segment), and then exiting at the destination vertex at
a later time. Thus, the trajectory of each driver type in the
game is modeled as a single road segment. The reasoning
being that a driver may change their behavior for different
roads, choosing to violate the law on some road segments

and comply with the law on others. Thus, if the decision
to violate or not is made on a road-by-road basis and the
decision for one road segment does not affect the decision
at another, then there is no need to model driver types with
trajectories with multiple road segments.

Given a fixed trajectory consisting of a single road seg-
ment, the only decision made by each individual driver type
is the frequency with which they will obey the law as op-
posed to violate the law. This decision is influenced by the
defender’s patrol strategy, which we assume to be known to
the drivers. If the perceived likelihood of encountering a po-
lice officer is high, then the driver will choose to obey the
law more frequently (Koper 1995). More precisely, we de-
fine a coverage threshold t(s, a) for driver type <s, a> that
represents the probability of encountering a patroller above
which the driver will always obey the law. Starting from al-
ways violating in the absence of police patrols, we model
that the probability of violating the law decreases linearly as
the frequency patrols increases until the threshold t(s, a) is
reached and driver type <s, a > no longer violates.

We use v(s, a) to denote the average daily traffic volume
along the road segment during the time range [τ, τ + m).
Similarly, we use c(s, a) to denote the yearly violation / ci-
tation count along the road segment during the time range
[τ, τ + m). We combine the traffic volume and violation
count data to define the prior associated with type <s, a> as
p(s, a) = c(s,a)

365×v(s,a) . This provides the defender with a dis-
tribution over all the adversary types in the game. Through
the Future Urban Mobility (FM) research centre, we were
able to obtain traffic volume and violation count data for
the Singapore CBD. We processed this data and utilized it
to populate the values of v(s, a), c(s, a), and p(s, a) which
serve as input in our game.

Generating Randomized Patrols
Remember that the defender is trying to achieve two objec-
tives simultaneously: (1) minimize violations; and (2) maxi-
mize omnipresence. These objectives are conflicting as they
drive the defender towards different patterns of behavior.
The desire to minimize violations incentivizes the defender
to exploit the traffic data and patrol only in areas where vio-
lations have occurred before. Meanwhile, the desire to max-
imize omnipresence incentivizes exploration so that all ar-
eas of the road network are patrolled at least occasionally.
Given two conflicting objectives, some tradeoff between ex-
ploration and exploitation must be made.

We borrow from work on randomized MDPs (Paruchuri et
al. 2006) to formalize the tradeoff between exploration and
exploitation. For discrete probability distributions, we know
that entropy provides a useful measure of randomness. The
MDP policy which maximizes entropy is a uniform random
policy π̂. Given this, one way to evaluate the level of explo-
ration achieved is to determine the ratio of randomness com-
pared to π̂. To do this, we introduce a parameter β = [0, 1].
An MDP policy π is said to be β-random if the following
condition holds π(s, a) ≥ βπ̂(s, a) ∀s, a. Thus, fixing a β
value can be thought of as placing constraints on π, forcing
it to perform a certain amount of exploration.
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Variable Definition
c(s, a) yearly violation count for type <s, a>
v(s, a) daily traffic volume for type <s, a>
p(s, a) prior for type <s, a> set to c(s,a)

365×v(s,a)

t(s, a) coverage threshold for type <s, a>
o(s, a) probability of type <s, a> obeying the law

π̂ uniform Markov policy (maximizes entropy)
β tradeoff parameter between violations / entropy

Figure 3: LP formulation definitions.

However, it is difficult to know a priori how to balance
the objectives. Therefore, our approach is to generate a set of
optimal compromise solutions which form the Pareto fron-
tier using the tradeoff parameter β, where β = 0 represents
full exploitation and β = 1 represents full exploration. We
present a bi-objective linear program which takes β as input
and can be solved to generate a point on the Pareto fron-
tier. Different points on the Pareto frontier can be generated
by varying the value of β. The Pareto frontier can then be
presented to the end user, who selects their desired solution
based any qualitative or quantitative measures they choose.

LP Formulation
We can construct a linear program (LP) to solve the MDP
formulation of the defender’s problem. Let x(s, a, s�) de-
note the marginal probability of the defender reaching state
s, executing action a, and ending up in state s�. Similarly, let
w(s, a) be the marginal probability of the defender reaching
state s and performing action a. The probability of adversary
type <s, a> obeying the law which is denoted by o(s, a).

We define the bi-objective linear program as follows:

min
w, x

�

s,a

p(s, a) [1− o(s, a)] (1)

s.t.x (s, a, s�) = w (s, a)T (s, a, s�) , ∀s, a, s� (2)
�

s�, a�

x (s�, a�, s) =
�

a

w (s, a) , ∀s (3)

�

a

w(s+, a) = r (4)

�

s, a

x(s, a, s−) = r (5)

w(s, a) ≥ 0, ∀s, a (6)

o(s, a) ≤ w(s, a)

t(s, a)
, ∀s, a (7)

0 ≤ o(s, a) ≤ 1, ∀s, a (8)

w(s, a) ≥ βπ̂(s, a)
�

a�

w(s, a�), ∀s, a (9)

Equation 1 is the objective function which minimizes the
total expected number of violations in the system. This is
a zero-sum game where each violation has the same utility
and thus our goal of minimizing the total expected violations
means that the minimax defender strategy is also the Strong
Stackelberg Equilibrium (SSE) strategy. Constraints 2-6 are

flow constraints, which combine to enforce that x and w rep-
resent feasible patrolling strategies with respect to the tran-
sition function T . Constraints 2 and 3 define the relationship
between x and w, while Constraints 4 and 5 ensure the flow
out of the dummy source state s+ as well as into the dummy
sink state s− are equal to r. Constraint 7 computes o(s, a)
as the ratio between the coverage placed on the road seg-
ment w(s, a) and the coverage threshold of adversary type
< s, a >, t(s, a). For 0 ≤ w(s, a) ≤ t(s, a), adversary type
<s, a> will obey the law a fraction of the time, specifically
w(s, a)/t(s, a). Constraint 8 is used to ensure that o(s, a)
represents a valid probability, i.e., o(s, a) ∈ [0, 1], when
w(s, a) > t(s, a). (This places no restrictions on w(s, a),
as Constraint 7 is an inequality constraint.)

Given β and π̂ as input, Constraint 9 ensures that the pa-
trolling strategy achieves at least a fraction (i.e., β) of the
randomness of the maximal entropy policy, π̂, which is a
uniform random policy. For example, if two actions a1 and
a2 are available from state s, then π̂(s, a1) and π̂(s, a2)
would both be 0.5. For β = 0.2, Constraint 9 specifies that
at least 10% (0.5×0.2) of the flow coming out of state s, i.e.,�

a w(s, a), must be directed to each action available from
s, in this case a1 and a2. This constraint allows for a tradeoff
between two objectives: (1) minimizing violations (β = 0),
and (2) maximizing entropy (β=1). The Pareto frontier can
be generated by solving the LP for different values of β.

Additional Scaleup
For longer patrol lengths, the resulting linear program can
grow quite large. To address this challenge we used con-
straint and state sampling (De Farias and Van Roy 2004).

Driver Type Sampling One approach for using constraint
sampling in our problem is driver type sampling. Sampling
a subset of the driver types reduces the size of the LP, as
only the constraints (i.e., Constraints 7 and 8) and variables
(i.e., o(s, a)) associated with the sampled driver types are
considered. Evaluation becomes more complicated after in-
troducing constraint sampling as we can no longer just look
at the objective value obtained by solving the sampled LP, as
it only accounts for violations committed by sampled driver
types. However, the defender may still implicitly influence
the behavior of unsampled driver type < s, a > by placing
coverage on the road segment associated with <s, a> in or-
der to position themselves to interact with the sampled driver
types. Thus, we use Monte Carlo simulation to sample patrol
schedules from the Markov strategy computed for the sam-
pled LP and evaluate the schedules against all driver types.

State Sampling We can also improve efficiency by only
considering a sampled subset of states obtained in a prin-
cipled manner by using a coarser time granularity. For ex-
ample, doubling the time granularity m cuts the size of the
state space in half. However, some extra steps are required
when generating patrol schedules or evaluating the patrol
strategy generated from the state-sampled LP on the origi-
nal MDP using Monte Carlo sampling. In either case, if a
state s = (l, τ) is reached which does not exist in the set
of sampled states, then a look up is performed for the pol-
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Figure 4: Effect of Parameters on Expected Violations.

icy from state s� = (l, τ �), where s� is the state in the set of
sampled states closest in time to s with the same location l.

Evaluation
To evaluate STREETS, we conducted a set of simulations
using actual traffic volume and violation count data from
the Central Business District of Singapore provided to us
by the Singapore LTA. For each simulation, we compute the
Pareto frontier with an granularity of 0.2 on the β parameter
which controls the tradeoff between minimizing violations
and maximizing omnipresence. The Pareto frontier allows us
to compare a fully game-theoretic approach with β =0 (all
exploitation) against a uniform random approach with β=1
(all exploration), as well as everything in between. Unless
otherwise specified, the default experimental setup features
a patrol length of 240 minutes, a 5 minute time granularity,
1 defender resource, and a coverage threshold t(s, a) of 0.1
for all drivers. All results are averaged over 30 simulations.

Analysis of Tradeoffs
Defender Resources In Figure 4a, we evaluate the ef-
fect on the number of expected violations as we vary the
number of defender resources r. The x-axis is the value
of β used when solving the LP formulation, while the y-
axis is the total expected number of violations in the game,
i.e.,

�
s,a p(s, a) [1− o(s, a)], achieved by the defender’s

(Pareto) optimal patrol strategy. As a baseline, we can use
these experiments to compare a game-theoretic approach
(β=0) against a uniform random approach (β=1).

From these results, we observe three general trends. First,
increasing r leads to a reduction in the expected number of
traffic violations in the road network. Second, the benefit of
each additional defender resource diminishes as r increases.
Third, as β increases, so does the number of expected viola-
tions. This makes sense, as the defender is moving closer to
a uniform random strategy and farther away from optimizing
based on the violations data. It is interesting to see that β=1
yields almost the same number of expected violations for all
values of r because a uniform random strategy does not al-
low for coordination (even implicitly) between resources.

Coverage Threshold In Figure 4b, we evaluate the ef-
fect on the number of expected violations as we test three
different values for driver coverage threshold, t(s, a). For
t(s, a)=1, we observe the highest level of violations as well
as minimal difference between the performance of the full
game-theoretic strategy (β = 0) and the full uniform ran-
dom strategy (β = 1). This seems reasonable given that for

0
10
20
30
40
50
60
70

0 0.2 0.4 0.6 0.8 1

R
un

tim
e 

(s
ec

on
ds

)

Beta

2 hours
3 hours
4 hours
5 hours
6 hours

Figure 5: Effect of Patrol Duration on Runtime.

t(s, a) = 1 it is difficult to dissuade drivers, who are fully
deterred from violating only if their road segment is pa-
trolled with probability 1. Decreasing t(s, a) to 0.1, yields
a similar level of violations for β = 1, but with β = 0, the
game-theoretic approach, which is very deliberate in how it
allocates it patrols, results in a reasonable decrease in vio-
lations. Finally, at t(s, a) = 0.01, essentially any amount of
patrolling on a road segment will convince the driver types
to obey. As a result, the game-theoretic strategy leads to an
even greater reduction in the expected number of violations.

Patrol Duration In Figure 5, we evaluate the effect on
runtime as we vary the patrol duration between 2 and 6
hours. Once again the x-axis is β, but now the y-axis is the
runtime needed to solve the LP formulation. Intuitively, the
results show that the runtime increases as the patrol dura-
tion is increased. Additionally, as β is varied, we observe
significantly reduced runtimes at the two extremes (β = 0
and β = 1), as in both cases, the LP is a single objective
optimization problem where the other objective is ignored.

Scalability
STREETS is currently focused on generating randomized
traffic patrols for the Singapore CBD. However, the even-
tual goal for STREETS is to scale to the entire city. There-
fore, we evaluate two scaleup approaches to project how
they would perform on larger problem sizes.

Driver Type Sampling In Figure 6a, we evaluate the ef-
fect on runtime for different orders of magnitude of sam-
pled driver types. The original game contains 10346 driver
types. Reducing the number of driver types to 1000 via uni-
form random sampling results in a reasonable decrease in
runtime. Further decreasing the number of sampled driver
types to 100 and 10 only marginally improves the runtime.
Meanwhile, in Figure 6b, we evaluate the effect on solution
quality as we vary the number of sampled driver types. For
the smallest number of sampled types, the game-theoretic
strategy performs only as well as the uniform random strat-
egy which ignores information about the driver types. Fur-
thermore, the number of violations goes down as the num-
ber of sampled types goes up. However, the modest runtime
improvements combined with the non-negligible loss in so-
lution quality suggests there are limitations on driver type
sampling as a technique for improving scalability.

State Sampling In Figure 7a, we evaluate the effect on
runtime as we vary the time granularity m between 2 and 6
minutes. The x-axis is the time granularity and the y-axis is
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Figure 6: Effect of Driver Type Sampling.
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Figure 7: Effect of State Sampling.

the runtime need to solve the LP formulation for β = 0.5.
We observe an exponential decay in runtime as m is in-
creased. This results in an almost order-of-magnitude run-
time decrease by going from m=2 to m=6. Meanwhile, in
Figure 7b, we evaluate the effect on solution quality as we
vary m. The x-axis is still the time granularity m, but the
y-axis is now the expected violations of the state-sampled
strategy when evaluated on the MDP for m= 2. We chose
to evaluate on m= 2 as it was the smallest value of m that
we could solve exactly without any sampling. Despite in-
creasing m, the number of expected violations is virtually
unchanged. The combination of these runtime and solution
quality results are a clear sign that state sampling via adjust-
ing the time granularity can provide the type of scalability
needed to handle patrolling over entire cities.

Related Work and Conclusion
In this paper we presented STREETS, a application which
we developed to assist the Singapore MHA in scheduling
randomized traffic patrols in the Singapore CBD. STREETS
is currently in the process of being evaluated by the Singa-
pore Police Force. We have already discussed how this work
introduces novelties (MDP formulation, compact game rep-
resentation, exploration / exploitation) over previous game-
theoretic approaches for patrolling domains (Tambe 2011).
There is a body of literature examining how to allocate traf-
fic patrols (Adler et al. 2013; Lee, Franz, and Wynne 1979;
Koper 1995) as well as how to influence driver behavior
(Ritchey and Nicholson-Crotty 2011). That work has estab-
lished the relation between traffic patrols and their impact
on improving traffic safety, which is the basis off which
STREETS is built. Much of the related research is prescrip-
tive in nature, offering guidelines and suggestions, but stop-
ping short of providing an implementable approach for pa-
trolling. Our work presents a new perspective on the problem
by modeling the interaction between the police and drivers

as a game. Importantly, we provide a principled approach
for generating randomized schedules.
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