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Abstract

Machine learning techniques have been successfully ap-
plied to Chinese character recognition; nonetheless, au-
tomatic generation of stylized Chinese handwriting re-
mains a challenge. In this paper, we propose Stroke-
Bank, a novel approach to automating personalized Chi-
nese handwriting generation. We use a semi-supervised
algorithm to construct a dictionary of component map-
pings from a small seeding set. Unlike previous work,
our approach does not require human supervision in
stroke extraction or knowledge of the structure of Chi-
nese characters. This dictionary is used to generate
handwriting that preserves stylistic variations, including
cursiveness and spatial layout of strokes. We demon-
strate the effectiveness of our model by a survey-based
evaluation. The results show that our generated char-
acters are nearly indistinguishable from ground truth
handwritings.

Introduction
In today’s digital age, virtually all text-based information is
transmitted electronically. As a consequence, the uniform-
looking typeset characters have lost a personal touch as com-
pared to their handwritten counterparts. Hence, personalized
handwriting generation has an untapped potential in many
applications as it incorporates one’s unique style into the
digital information. In this paper, we propose a novel method
to learn personalized Chinese handwritings from a few ex-
amples and to automatically generate personalized hand-
writings.

We focus on Chinese characters due to their rich struc-
ture and atomicity. The complex structure of characters
yields great variations. In Chinese culture, stylized varia-
tion is deemed to reflect a writer’s emotion and personal-
ity. Besides, in contrast to phonological languages (English,
French, etc.), each Chinese character is a visual symbol (lo-
gograph) representing a word. This allows us to process each
character independently.

Machine learning techniques have been widely applied
to recognizing Chinese handwritings over the past few
decades (Stallings 1976; Amin, Kim, and Sammut 1997;
Ma and Liu 2008). Nonetheless, automatic generation of
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Figure 1: System pipeline. We construct the StrokeBank
(purple) that is used to generate handwriting for a test char-
acter in standard font (green).

Chinese characters remains a challenge. Some attempts have
been made to generate Chinese handwritings (Xu et al. 2012;
2009). Most works rely on the hierarchical structure of Chi-
nese characters to decompose each character into a set of
simple strokes. Though the results are promising, their sys-
tems need input of expert knowledge of the structure of Chi-
nese characters, yet they fail to handle cursive characters
that are greatly distorted, displaced, and sometimes indis-
tinguishable. In reality, daily handwriting tends to produce
more cursive and thus continuous strokes.

In this paper, we propose a novel approach to Chinese
handwriting generation by building a collection of compo-
nents called StrokeBank. By means of the hierarchical nature
of Chinese characters, our model decomposes Chinese char-
acters into a tree of components, where each component be-
comes an element in the bank. In this way, the model builds
a ground truth StrokeBank using a standard Chinese font.
When learning personalized handwriting styles, our model
decomposes characters into their components. We utilize a
similarity-based method to establish the mapping from stan-
dard font components in StrokeBank to their handwritten
counterparts. The mapped StrokeBank can be considered as
a dictionary of character components used for new charac-
ter generation. To preserve the stylistic variations in hand-
writing, we further use a probabilistic approach to captur-
ing inter-component spatial layouts. Our experiment results
show that the generated characters resemble the ground truth
characters in handwritings of two calligraphists with very
different degrees of cursiveness, stroke characteristic and
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component layout. Fig. 1 shows our system pipeline.
Our major contributions to Chinese handwriting genera-

tion are twofold: 1) components instead of simple strokes
are used to capture the cursiveness of handwriting charac-
ters; 2) a semi-supervised framework is introduced to con-
struct StrokeBank with minimum human supervision.

Related Work
Handwriting generation is an active research field in the last
decade. In this section, we briefly introduce recent works in
handwriting synthesis in other languages, and discuss works
in Chinese handwriting generation in greater detail.

Handwriting Generation
Researchers have made efforts in handwriting generation in
various languages. The majority of existing algorithms fo-
cus on English (Lin and Wan 2007; Graves 2013), where the
cursiveness and spatial layout are relatively simple, while
only a few attempts have been made to synthesize lan-
guages (e.g. Indian languages, Korean, Arabic) with more
complex characters (Jawahar and Balasubramanian 2006;
Lee and Cho 1998; Dinges et al. 2011). However, most mod-
els deal with characters with relatively simple structure and
with limited cursiveness. On the other hand, the complex
layouts and variations in Chinese characters demand a more
elaborate model to generate handwritings with high fidelity.

Chinese Handwriting Generation
Research in Chinese handwriting generation has largely fo-
cused on the automatic synthesis of artistic calligraphy (Xu
et al. 2005). The most related work to ours is from (Xu et
al. 2009), which uses a shape grammar rule to decompose
words into a hierarchical representation. It then generates
stylized characters by maximizing a likelihood estimate that
captures personalized handwriting characteristics. However,
there are three major drawbacks to the model: 1) it makes
strong assumptions on the structure of handwriting char-
acters, which do not hold for joined-up writing, where the
strokes are largely cursive and connected; 2) expert knowl-
edge is required to design a complete set of shape grammars;
3) human supervision is needed to correctly extract strokes
so the shape grammars can be applied.

In contrast, our model aims to construct a StrokeBank
with little human supervision. Instead of applying expert
knowledge to decompose Chinese characters, we propose an
automatic approach to extracting component and building a
StrokeBank for handwriting generation.

Stroke Extraction
Stroke extraction is usually the first step in analyzing Chi-
nese characters. A model to utilize degree information and
stroke continuation property was proposed to perform stroke
segmentation (Cao and Tan 2000). This model addresses
two major problems in stroke extraction: identifying primary
strokes and resolving ambiguities at intersection points.
(Liu, Kim, and Kim 2001) proposed a model-based algo-
rithm to extract strokes and inter-stroke relations by match-
ing them with a reference character described in an at-
tributed relational graph.

The StrokeBank Model
Problem Formulation
We propose a component-based model to tackle the Chinese
handwriting generation problem. We first build a Stroke-
Bank containing a collection of components in a standard
Chinese font mapped to handwritten components. During
generation, our StrokeBank is used as a dictionary to retrieve
handwritten components from the standard font.

Stroke Extraction
We use a stroke extraction approach similar to (Cao and Tan
2000). For each character pixel in the bitmap, we calculate
the orientation distances, the boundary-to-boundary distance
on a line that passes through the pixel. We quantize the ori-
entation space [0, π) for each pixel into 40 bins. Given the
distribution of orientation distances, we find all crests by tak-
ing the mean of all distances as a threshold. Each crest rep-
resents a possible orientation of the stroke. For example, for
a pixel in the character一 (Yi), it has one crest; for a pixel
at the intersection in character十 (Shi), it has two crests.

Finally, we merge all the possible orientations into a bi-
nary 3D space called ρ-space. Each element (x, y,m) is 1
iff the orientation m is in one of the crests of pixel (x, y).
An example of a ρ-space is shown in Fig. 2. By looking for
connected components in the ρ-space, we are able to find all
the strokes of a Chinese character.

Figure 2: ρ-space and strokes of character 于 (Yu). Color
indicates orientation (z-axis): blue for 0 and red for π.

Component Tree Generation
After stroke extraction, we build a tree representing the
structure of the character at different decomposition levels.
Since it is possible to decompose the character in different
ways, for each character we generate a forest consisting of
variations of trees. Each tree is constructed bottom-up, with
leaves being the most finely decomposed strokes. Strokes
are grouped together based on simple heuristics, for exam-
ple, when they cross each other, share the same joint, or lie
in close proximity with one another. Finally, the root of a
tree is the whole character itself. Fig. 3 shows a tree learned
from decomposing a Chinese character说 (Shuo).

Feature Extraction
We extract two features from each component in the tree.
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Figure 3: A tree of components obtained from one possible
decomposition of a Chinese character说 (Shuo).

Directional element feature (DEF) The directional ele-
ment feature vector is well suited to describe stroke-based
characters (Kato et al. 1999), such as those in Chinese and
Japanese. Similar to the procedure proposed by Kato et al.,
the contour of a component is computed (Fig. 4). Then for
each black pixel centered in a 3×3 mask, we assign a direc-
tion or a combination of directions. We only consider four
spatial orientations: horizontal, vertical, left- and right di-
agonals. To improve robustness against spatial dislocation,
we perform spatial pooling (Fig. 4) by counting the number
of each orientation assigned to the black pixels in a subre-
gion. If we denote the feature vector of each subregion by
x1, . . . , x4 where xi is the count of black pixels assigned
with direction i, we compute xi as

xi = x
(A)
i + 2x

(B)
i + 3x

(C)
i + 4x

(D)
i , i = 1, . . . , 4. (1)

As we use 49 subregions, the final DEF feature vector has
196 dimensions.
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Figure 4: Left: the contour of a character黄 (Huang) placed
in an 8 × 8 grid. Right: the schema for spatial pooling of
direction elements in each subregion (Kato et al. 1999).

Fourier spectra The second feature is constructed from
the Fourier spectra of the component bitmap. Inspired by
the application of Fourier spectra in face recognition (Spies
and Ricketts 2000), we build a 2k dimensional vector using
both the real and imaginary parts of the top k most variant
frequencies from the lower quadrant. The DC component is
set to zero in order to minimize the negative effect of spatial
displacement. We adopt k = 20 in our model.

The final representation is the concatenation of DEF and
Fourier spectra vectors. The full feature vector therefore has
196 + 40 = 236 dimensions.

Automatic Component Mapping
Given two collections of component trees (i.e. two forests)
generated for a standard Chinese font and a particular hand-
writing, we would like to automatically learn a mapping
function between components in the standard font and its
handwritten counterparts. We solve the mapping problem in
a semi-supervised framework (Zhu 2005). A small set of
manual mapping is used with a large amount of unlabeled
data to learn a robust and reliable mapping function.

Mapping of the DEF vector The DEF vector captures the
stroke orientation information of a component. Here, we as-
sume that the DEF vector of handwritings can be approxi-
mated by an affine transform of the DEF vector of the stan-
dard font. This assumption is reasonable, especially for com-
ponents consisting of strokes that have little curvature. As a
simple example, the character 十 (Shi) usually has a per-
fectly horizontal and a perfectly vertical stroke in the stan-
dard font. However, in most handwritings, the horizontal
stroke is tilted but the vertical stroke remains perfectly ver-
tical. An affine transform is capable of capturing this rota-
tional variation. Though for more complicated components,
this assumption does not capture all the nuances in the map-
ping from standard font to a handwriting, in practice our
model performs well.

We adopt a multivariate linear regression model to learn
the affine transform. Given a standard font component X(i)

and its mapped handwritten component Y (i), let f(X(i))
and f(Y (i)) be the DEF feature vectors. Our hypothesis says
f(Y (i)) = θf(X(i)), and the closed form solution is:

θ = (µI + f(X )T f(X ))−1f(X )T f(Y) (2)

where µ is the regularization parameter and I is the identity
matrix. X and Y represent the collection of all labeled com-
ponents in the standard font and a particular handwriting.
Thus, the i-th row in f(X ) represents f(X(i)); the same for
f(Y). During training, we use cross-validation to choose the
appropriate value of µ. We set µ ∼ ||f(X )T f(X )||F , where
|| · ||F stands for the Frobenius norm.

Weighted affinity of the full feature vector Successful
automatic mapping heavily relies on a good affinity mea-
sure between the full feature vectors including both DEF and
Fourier spectra.

One naı̈ve way is to compute a distance measure (e.g. Eu-
clidean and χ-square) between the affine transformed fea-
ture of standard font component and the feature of hand-
written component. However, this approach performs poorly
due the varying dimensions and scales of different features
in the concatenation. Methods in combining multiple types
of features have been recently proposed (McFee and Lanck-
riet 2011; Song and Zhu 2013; Wang et al. 2014). Here, we
propose an optimization approach that learns weights w for
each feature dimension.

Let φ(X(i)) and φ(Y (i)) be the full feature vectors ofX(i)

and Y (i). As discussed, the first 196 dimensions of φ(·) is
the DEF vector f(·) and the rest is the Fourier spectra vector.
Let Θ be the affine transform operator as discussed in the
previous subsection. Note that Θ only operates on the DEF
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vector while leaving the Fourier spectra vector unchanged.
In matrix representation,

Θ =

[
θ 0
0 I

]
. (3)

Let the weighted distance metric between any pair of
components in the standard font X and a handwriting Y be

dist(Θ(X), Y ) =
d∑
j=1

wj |(Θφ(X))j − φ(Y )j | (4)

where d is the dimension of the full feature vector and
wj , (Θφ(X))j and φ(Y )j are the j-th component in the
vector. dist(Θ(X), Y ) can also be written as wTD(X,Y ),
where D(X,Y ) = |(Θφ(X))j − φ(Y )j |, j = 1, 2, . . . d.

If X(i) and Y (i) correspond to the same compo-
nent, we want dist(Θ(X(i)), Y (i)) to be smaller than
dist(Θ(X(i)), Y ),∀Y 6= Y (i). Therefore, we formulate the
learning problem in the following quadratic programming
(QP) scheme:

w∗ = arg min
w,ξ

λ

2
wTw +

∑
i

ξi (5)

such that

wTD(X(i), Y (i))− wTD(X(i), Y ) ≥ 1− ξi, ∀Y 6= Y (i)

and ξi ≥ 0, ∀i
where λ is the regularization parameter, ξi is the slack vari-
ables for handling soft margins, and i goes through all the
labeled mappings. The optimization problem in Eq. (5) is
equivalent tow∗ = arg minw,ξ

λ
2w

Tw+R(w), whereR(w)
defines a hinge loss function:

R(w) =
∑
i

max(0, R(i)(w)), where

R(i)(w) = max
Y 6=Y (i)

[
1+wT

(
D(X(i), Y (i))−D(X(i), Y )

)]
The optimization problem is convex and we solve it with an
off-the-shelf solver (Do 2009). Table 1 compares the error
rates of our automatic mapping before and after using the
weights w∗. The improvement is clear.

Table 1: Mapping Error Rate

without w∗ 4.63%
with w∗ 0.77%

Interpretation of the weighted affinity A larger weight
in w∗ corresponds to a more discriminative feature dimen-
sion. One interesting observation is that the average weight
w∗outskirt for DEF features in the outskirt of a character is
much larger than that in the core area w∗core, where core and
outskirt regions are labeled in Fig. 5. The larger weight dis-
tribution towards the outskirt agrees with the finding of pre-
vious work (Kato et al. 1999) and agrees with theories of

Hui Gong Grid, which were developed by a famous Chi-
nese calligraphist Weiguo Yang to better visualize the struc-
ture of Chinese characters. Specifically, strokes extending to
the outskirt define the overall aesthetics of the character, and
contribute more to its defining characteristics. On the other
hand, strokes in the core region are more compact and sub-
ject to deformation, hence adding more noise to the DEF
feature and getting less weight.

160 pixel�
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l�
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Outskirt�

Figure 5: Labeled outskirt and core regions of a character恕
(Shu). Two bold borders resemble Hui Gong Grid.

Handwriting Generation
Once we have the mapping dictionary, we are able to gen-
erate new personalized handwriting. Given an input char-
acter, we first decompose it into a set of components
{Z(1), Z(2), . . . , Z(m)}. Since each component consists of
a set of basic strokes S, let S(i) be the set of basic
strokes Z(i) covers. We want to find a set of components
{Z(a1), Z(a2), . . . , Z(an)} such that S = S(a1) ∪ S(a2) ∪
· · · ∪ S(an) and S(ai) ∩ S(aj) = ∅ for i 6= j. We mea-
sure the similarity from Z(k) to an entry in the dictionary
(X(i), Y (i)) as:

s(Z(k), X(i), Y (i))

= e−||f(Z(k))−f(X(i))||2+e−dist(Θ(X(i)),Y (i))+ν|S(k)|

where f(·) is the DEF vector, |S(k)| is the cardinality of
the set S(k) and ν is a positive constant. The ν|S(k)| term
models the desired behavior that if we manage to find a
well matched component that consists of many strokes in
the dictionary, we bias towards using this larger component.
This biased selection will be robust against cursive hand-
writing for which substituting individual strokes would re-
sult in a disconnected, unnatural character as a whole. For-
mally speaking, the bias preserves more correlation such as
relative spatial position, size, and orientation between indi-
vidual strokes. We adopt ν = 0.2 in our experiment.

The generation problem is reduced to finding a valid set
A = {a1, a2, . . . , an} such that

∑n
j=1 s(Z

(aj), X(i), Y (i))
is maximized. Solving the exact inference problem is NP-
hard; we adopt an efficient greedy forward search approach.
Once we retrieve these handwritten components, we align
them based on the centroid of the original component.
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Hu Ru Yi Ye Chun Feng Lai Qian Shu Wan Shu Li Hua Kai

(a) An excerpt from a Tang poem “˝Ç�⌧%ŒeC⌘⌥⌘®±�”.

Shan Bu Zai Gao You Xian Ze Ming Shui Bu Zai Shen You Long Ze Ling

(b) An excerpt from an famous essay Lou Shi Ming: “q�(ÿ Ÿ⇡�4�(Ò ô⇡u”.

Figure 6: Generated handwritten characters using our StrokeBank approach, as compared to the ground truth. In both (a) and
(b), the 1st and 2nd rows are written in Xing, and 3rd and 4th rows in Shou Jin. For each font, the first line is generated while the
second line is the ground truth. Phonetic labels are shown at the bottom of each column.

almost all components, (x, y) is clustered around (xo, yo)
in very close proximity; we thus model P as a multivariate
Gaussian independent from F .

We train P by observing the positions of the same radical
that appears in different characters of the same handwriting.
Radicals are chosen because they are generally located in the
same position despite drastic variations in other parts of the
character. A standard deviation of roughly 2 pixels in either
x- or y-direction is obtained, which is applied to aligning
the centroid of a retrieved component away from its standard
position according to P .

Evaluations

Datasets

We use Kai, a publicly available font, as our standard font
because it is widely seen in presswork and official docu-
ments. Two handwriting styles, Xing and Shou Jin, are used
for evaluation. Xing is cursive, while Shou Jin is notable for
the unique endpoints in its strokes. The characters we used
in Xing and Shou Jin are based on handwritings of Jinsheng
Qiu and Yingzhang Tian respectively; both are well-known
calligraphists. Xing and Shou Jin are chosen because they
represent very different handwriting styles in terms of cur-
siveness, stroke characteristics, and component layouts.

Metric
Since the exact quality of computer-generated characters is
hard to measure, we conduct a survey-based method to quan-
titively evaluate the effectiveness of our model. We invited
20 well-educated Chinese scholars to distinguish generated
characters from ground truth handwritten characters. The re-
spondents are first given 20 sample ground truth handwriting
characters of each style as reference. They are then shown a
sheet of 100 characters, mixing ground truth and generated
ones. They are asked to judge whether a character is gen-
erated. We measure the identification accuracy of the k-th
person as:

Ak =
# correct decisions made by k

# total decisions made by k
, k = 1, 2, .., 20 (6)

We then calculate the mean identification accuracy hAi. We
expect hAi to be close to 50%, which is the expected value
if the respondent performs uniform random guessing.

Results
We present a few generated samples here. Figure ?? shows
two famous excerpts written in generated handwriting based
on the StrokeBank approach, as compared to the ground
truth. Based on visual inspection, our generated characters
share similar structure and cursiveness with the ground truth.
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Modeling stylistic variations The same character written
by the same person can vary in shape from time to time due
to intrinsic uncertainties in human handwriting. We capture
this slight variation in styles by learning the probability dis-
tribution of the position of a component in the character. For
a particular component, let P(x, y|xo, yo,F) be the proba-
bility of it being written at position (x, y), given the standard
position (xo, yo) and some generic features of the compo-
nent F , such as the combined DEF and Fourier spectra vec-
tor. All positions refer to the coordinates of the centroid. For
almost all components, (x, y) is clustered around (xo, yo)
in very close proximity; we thus model P as a multivariate
Gaussian independent from F .

We train P by observing the positions of the same radical
that appears in different characters of the same handwriting.
Radicals are chosen because they are generally located in the
same position despite drastic variations in other parts of the
character. A standard deviation of roughly 2 pixels in either
x- or y-direction is obtained, which is applied to aligning
the centroid of a retrieved component away from its standard
position according to P .

Evaluations
Datasets
We use Kai, a publicly available font, as our standard font
because it is widely seen in presswork and official docu-

ments. Two handwriting styles, Xing and Shou Jin, are used
for evaluation. Xing is cursive, while Shou Jin is notable for
the unique endpoints in its strokes. The characters we used
in Xing and Shou Jin are based on handwritings of Jinsheng
Qiu and Yingzhang Tian respectively; both are well-known
calligraphists. Xing and Shou Jin are chosen because they
represent very different handwriting styles in terms of cur-
siveness, stroke characteristics, and component layouts.

Metric
Since the exact quality of computer-generated characters is
hard to measure, we conduct a survey-based method to quan-
titively evaluate the effectiveness of our model. We invited
20 well-educated Chinese scholars to distinguish generated
characters from ground truth handwritten characters. The re-
spondents are first given 20 sample ground truth handwriting
characters of each style as reference. They are then shown a
sheet of 100 characters, mixing ground truth and generated
ones. They are asked to judge whether a character is gen-
erated. We measure the identification accuracy of the k-th
person as:

Ak =
# correct decisions made by k
# total decisions made by k

, k = 1, 2, .., 20 (6)

We then calculate the mean identification accuracy 〈A〉. We
expect 〈A〉 to be close to 50%, which is the expected value
if the respondent performs uniform random guessing.
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Results
We present a few generated samples here. Fig. 6 shows
two famous excerpts written in generated handwriting based
on the StrokeBank approach, as compared to the ground
truth. Based on visual inspection, our generated characters
share similar structure and cursiveness with the ground truth.
Since there is no cursiveness in the standard font, the gener-
ated cursive character in Xing is a result of our component-
based model that captures cursiveness in the dictionary map-
ping. Examples of generated cursive characters include 来
(Lai) in Fig. 6a (1st row) and深 (Shen) in Fig. 6b (1st row).

Our survey results are shown in Table 2. For both hand-
writing styles, the mean identification accuracy 〈A〉 ∼ 50%,
which is the mean accuracy of random guess. Despite very
different styles in cursiveness, stroke characteristics, and
component layouts between Xing and Shou Jin, our model
performs well in both, indicating its robustness in large vari-
ations in handwritings.

For Shou Jin, 〈A〉 = 49.6%, which is remarkably close to
50%, indicating that our generated characters very closely
resemble the actual handwriting. For certain generated char-
acters in Xing, such as 深 (Shen), 千 (Qian), 无 (Wu) and
梨 (Li), more than 90% of the respondents identified them
as the ground truth.

Table 2: Survey results of 20 Chinese scholars

〈A〉 Amin Amax
Xing 0.585 0.380 0.870

Shou Jin 0.496 0.360 0.620

For 〈A〉 and Amax, Shou Jin has a much better perfor-
mance than Xing. This is because for Xing, we cannot reli-
ably make two disconnected strokes in the standard charac-
ters cursively connected in the generated ones. One example
is刂 in character则 (Ze) in Fig. 6b (1st and 2nd rows). This
is because all nodes in our component tree are connected
bitmaps. During generation, we search for the two individ-
ual strokes in 刂 instead of 刂 itself in the dictionary. This
reduces the degree of cursiveness in generated Xing charac-
ters in certain cases, but can be remedied in future work if
we use proximity information to include nodes with discon-
nected bitmaps in the component tree.

Conclusion
We have presented a novel approach to Chinese handwrit-
ing generation based on StrokeBank, a dictionary that maps
components in standard font to a particular handwriting. The
model does not need expert input about the structure of Chi-
nese characters or human supervision in stroke extraction,
yet it is able to capture cursiveness, spatial correlation be-
tween strokes, and other font characteristics through com-
ponent mapping based on weighted features. The generated
characters resemble the actual handwritings in both struc-
ture and cursiveness. Our survey results also suggest that
our generated characters are almost indistinguishable from
ground truth handwritings. Future work would include ex-
tending this pipeline to other languages and deploying it to

applications such as artistic font design and handwritten in-
stant messaging.
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