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Abstract 
We report on Shallow Blue (SB), an autonomous chess agent 
constructed by a small group of faculty and undergraduate 
students at Canisius College.  In addition to pushing the limits of 
consumer grade components at low cost, SB is a focal point for 
interdisciplinary student projects spanning computer science, 
engineering, and physics.  We demonstrate that undergraduate 
students can engage in rich, long-term robotic design and 
applied Artificial Intelligence (AI) from both hardware and 
software perspectives.  Student outcomes of SB include senior 
theses, conference presentations, peer-reviewed publications, 
and admission to graduate programs.  Students who participated 
also report substantial development in skills and knowledge 
applicable to their post-undergraduate education and careers. 

 Introduction and Background   

Canisius College is a small primarily undergraduate 
institution located in upstate New York whose 
quantitative science degree programs include computer 
science, physics and pre-engineering.  The latter is a two 
or three year program targeted toward transfer to a 
university with a full engineering program.  The general 
education curriculum at Canisius is extensive, reflecting 
the liberal arts and Jesuit traditions of the institution.  All 
three programs have small enrollments, with 
approximately 5 students per year in physics and 
engineering and 10-15 in computer science.  These factors 
constrain STEM programs in terms of the breadth of 
courses and upper division electives that can be offered.  
Nonetheless, through the combination of a required senior 
project in physics, the strong interest of graduate school 
bound students across these disciplines, and faculty desire 
to meld meaningful student mentoring with research, it 
has been possible to create a thriving interdisciplinary AI 
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group working on low-cost solutions to embodied AI 
problems.   To date, the group has worked on two robotic 
platforms: Shallow Blue (SB), an embodied chess player, 
with full vision and assembly cost below $800; and Jim, a 
puppet-like humanoid head with capabilities for gestural 
and spoken emotional output.  We report primarily on SB 
and outcomes for its student development team.  
 There are two goals for this project, one technical the 
other pedagogical.  The technical goal is the design of a 
novel, low-cost embodied AI platform for both classroom 
and research use.  The pedagogical goal is to provide a set 
of significant design and implementation tasks for 
students interested in careers in engineering, AI, and 
robotics.  Engaging all three groups of students allows for 
a broader range of project themes than traditional AI 
approaches.  This style of collaborative project is 
possible, if not preferable, at institutions with smaller CS, 
physics, and engineering groups. 
 The remainder of this section discusses the SB project 
in relationship to other undergraduate AI and robotics 
projects and courses, and addresses the reasons for and 
ramifications of the decision to use Lego as a primary 
medium for hardware development.  In the following 
section, we provide an overview of SB, examining the 
design relative to other embodied chess agents in terms of 
cost, hardware and software sub-systems, and the 
composition of the design team.  Following this overview, 
details of ongoing system upgrades and ancillary projects 
are given.  The paper concludes with a discussion of 
student outcomes, directions for development of 
additional AI systems, and the extension of the 
collaboration beyond traditional STEM fields.   

Related Work 
Touretzky (2013) cites the need for robotics education 
that gets at real problems rather than simply providing an 
embodied platform for implementing existing algorithms 
and covering old ground.  He highlights the importance of 
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connecting mathematics to real world problem solutions 
in a way that is often neglected in the CS curriculum.  
However, he feels that Lego is not sufficient in terms of 
support and hardware for deep college-level innovation.  
On the other hand, Klassner and McNally (2007) argue 
for the sufficiency of the Lego Mindstorms platform in AI 
education, citing their use of MatLab code that enables 
robust machine learning using the NXT platform.  Sklar et 
al. (2007) employ robots in a variety of classes including 
AI, but switch from Lego to the AIBO for complex AI 
applications.  Panadero et al. (2010) discuss a number of 
different classroom experiences with Mindstorms.  Most 
relevant to this paper are observations regarding the 
positive impact of robotics experiences on student 
abilities in the areas of group work and problem solving.  
Specifically, they observed that the real world interactions 
and issues that arise with robot projects enhance problem 
solving skills, both individual and group; that students 
learn to carry out more robust testing; and that students 
are able to work iteratively on improving the performance 
of their computational artifacts.  Akin et al. (2013) 
describe the use of Lego Mindstorms in a robotics course 
in a way that echoes the reasons we use the platform: it 
allows students to pursue fairly sophisticated explorations 
of hardware and software interactions in addition to 
teaching them about real world constraints and noise 
without requiring machining and electronics skills.  
Klassner et al. (2012) use sophisticated software and 
algorithms in a machine learning class with all programs 
running directly on the Lego brick.  We made a decision 
to use Bluetooth for communication in order to avoid 
running complex software directly onto the brick, 
choosing instead to run the system on a laptop that 
communicated simple commands to the bricks. Tradeoffs 
such as these abound once a decision to use Lego is made.  
Kitts (2007) discusses projects that are very close to ours 
in spirit and practice, specifically undergraduate capstone 
projects on multi-robot systems that have involved many 
of the same features, including entry into competitions 

and creation of enduring artifacts.  Departments with a 
capstone project requirement such as those within 
engineering schools already have a mechanism for 
building skills and experiences that may be less readily-
available to a liberal arts CS major.  
 
Why use Lego? 
 The decision to use Lego as the mechanical basis for 
SB was driven by three related factors.  First, we had a 
pre-existing stockpile of Lego robotics equipment and a 
student population with some Lego robotics experience.  
Our introduction to engineering course and one of our 
CS0 courses utilize Lego robotics as a core curricular 
tool, as does an honors course and the upper-level AI 
course.  In the engineering class, students engage in 
design and development of a single robot for a 
competition, while the computer science course uses robot 
programming as a means to motivate learning of control 
structures and algorithm design.  Leveraging student 
familiarity with and enjoyment of Lego robotics, as well 
as the pre-existing parts collection greatly eased startup.  
Second, Lego provides a reasonably flexible means for 
hardware design with a limited investment in equipment 
and rapid learning curve.  Students using Lego do not 
need to develop machining skills, do complex strength 
calculations, or wait for expensive custom parts.  There is 
an obvious tradeoff: the strength of Lego is limited, as is 
the ultimate range of options for both actuation and 
structural elements.  However, it is suitable as a bridge for 
students who might later learn the engineering or 
machining skills needed to engage in professional-grade 
robotics.  Third, Lego provides sufficient onboard 
computing power, particularly ample for slaved 
mechanical control, which can be coupled with an off-
board master to provide both higher level AI capability 
and opportunities to learn inter-device communication 
techniques.  In particular, we discuss the latter two 
advantages in terms of claw development and Bluetooth 
communication between the NXT control bricks and PC.   
   

The SB Platform and Chess 
 

Compared with the other autonomous agents described 
in Table 1, SB is both the least expensive and the only 
one designed by a team reliant upon undergraduate 
students.   The industrial arms, KukaMonster and 
ChessKA were designed to showcase industrial robotics.  
Maxwell, Gambit, Chiara, and SB were all designed for 
the AAAI small object manipulation challenge (2010, 
2011).  SB performed reasonably well at 2011 AAAI, 
with significant bugs limiting performance during the 
actual competition.  By the end of the conference, 
however, thanks to intensive work on the code and 
physical system issues by the students and faculty, SB 
was capable of playing reliably, albeit without operational 

Figure 1.  The mechanical hardware systems of SB. 
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vision, vs. Maxwell on a single board and in a robot vs. 
human demonstration match.  Performance the following 
year at the 2012 AAAI Robotics Fair was robust, with the 
robot fully operational as discussed below.   

The SB platform can be roughly considered as five 
coordinated subsystems: the physical infrastructure 
(Hardware), the Master Control Program (MCP), the 
image processing system (Vision), the motion controllers 
(Movement), and chess decision making (Houdini).  Of 
these, the first four were student-designed and coded.  
Houdini required a custom interface which meant students 
had to handle I/O issues such as parsing and string 
formatting as well as inter-process communication.  

 
The SB physical architecture is tightly constrained by 

three concerns: Lego structural and motor limitations, the 
geometry of chess, and difficulty of motion control.  To 
best satisfy these constraints, the students chose a 
Cartesian crawler design, as shown in Figure 1.  For the 
purposes of this paper, hardware can be thought of 
primarily in terms of the bridge and rail system for 
translation across the board and the tower and claw 
system for lifting and manipulating pieces.  Vision related 
equipment is external to the board assembly.  A complete 
description of SB’s design and operation can be found in 
(Lanighan et al. (2011), Burhans et al. (2014)). 

A bridge rolls across two fixed rails to reach the rows 
of the chessboard.  Atop the bridge, a tower rolls across 
the columns and raises and lowers a gripping claw to 
manipulate chess pieces. Motion of the bridge is enabled 
by motorized gear wheels traversing Lego gear racks 
mounted on the side rails.  While the initial plan was to 
utilize wheel-mounted rotation sensors to track position 
across the grid, it became readily apparent that 
accumulated sensor error would lead to large motional 
inaccuracies after a small number of chess moves.  
Instead, a series of white position marks were affixed 
along the bridge and rails at desired stop points, and color 
sensors used to count stripes to track position.  The tower 
rides along the rail, and carries a retractable claw, which 
is raised and lowered via pulley.  A guide shaft is used to 
keep it in alignment with the tower.  Pieces must be lifted 
high enough to pass over the tallest impediments on the 
board (kings).  The height constraint and position mark 
system combine to require the claw shaft to sit alongside 
the main body of the tower, pushing the center of mass to 
the lead end of the bridge, and resulting in the oscillation 
problem discussed below.  The position mark system also 
results in a lack of freedom to fine tune the pickup and 
dropoff points for a chess piece; the claw must cover a 
full square on pickup, and return the piece to a near 
centered position on drop off.   

Robot Morphology Cost Speed Perception System Design team info 
The Turk Humanoid with arm High Standard Magnetic board and 

hidden human operator  
Wolfgang von Kempelen 

Chiara Hexapod walker ~$2.5k Standard Onboard camera for 
occupancy change 

Tekkotsu lab/chess as a 
master’s thesis 

Gambit Arm  ~$18k Standard Kinect.  Piece recognition 
functional 

U of Washington and Intel 
collaboration 

Maxwell Mobile manipulator Mid to low Standard Kinect.  Piece recognition 
under development 

Faculty and Masters’ students 

Kuka 
CHESSka 

Industrial arms High Blitz Full vision mechanism 
unavailable 

Industrial robotics firms 

SB Cartesian translator ~$800 Standard Still image comparisons 
for occupancy change. 

2 Faculty and 2 
undergraduate students  

Table 1.  A partial list of chess-playing robots.  Only the industrial arms are capable of blitz play.  SB is the only agent to rely solely on faculty 
and undergraduate students.  Two platforms were adapted for chess as Masters’ degree projects; one is academic-industry collaboration.  

 
Figure 3.  Two versions of the claw.  The early prototype (left) was 
replaced with an improved claw (right).   Note that the improved claw 
opens left-right, while the prototype opened front-back.   

Figure 2.  SB hardware schematic. 
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The claw and iterative hardware design 
SB’s piece manipulator is a two-fingered claw, with only 
one of the two fingers capable of motion.  It represents the 
endpoint of an iterative hardware development cycle that 
was clearly enabled by the Lego platform, indicating the 
deeper engineering process allowable within this 
framework.  Initial ideas for the claw involved a three or 
four-fingered pincer with each pincer finger controlled by 
a single motor and a set of gears.  The students prototyped 
a few gear systems for control and found that the gearing 
was too cumbersome for the space requirements of SB’s 
tower.  The second and third versions were each more 
successful, and are shown in Figure 3.  Both of these 
claws use two fingers to clamp a piece in a single 
direction.  This way, the piece can only be centered along 
one dimension of the chess square, a compromise relative 
to the fully centering pincer.  Claw version two had two 
movable fingers, which allowed for a wider grip; however 
play within the gears did not allow for reliable gripping.  
Shortly before the competition, the students redesigned 
the claw to use a single mobile finger and added 
rubberized pads to increase friction.  This claw is robust.  

The claw design process required students to carefully 
weigh and balance tradeoffs in design optimization: 
centering capability and dexterity were exchanged for 
reliable closure and grip strength.  Furthermore, the 
students were able to engage in part prototyping and 
manufacture.  Here it is instructive to compare the process 
to three alternative approaches to embodied AI 
instruction.  In case 1, a mostly predesigned platform is 
used such as the Finch, Scribbler, or Create 
(www.finchrobot.com, parallax.com, www.irobot.com).  

While excellent for projects with a predominantly 
software focus, a prefabricated platform does not allow 
students to address hardware issues in as much detail as 
can be accomplished with Lego. In case 2, component 
parts are purchased and assembled, as with the ER-1 
(Evolution Robotics, no longer manufactured).  In this 
mode, students have some freedom to solve hardware 
problems, but mostly in the context of assembling 
component sub-systems.  Case 3 requires prototype 
design and machining or 3-d printing of parts.  For 
example, this approach was used by Maxwell (Ferguson 
et al. 2011).  In terms of design practice, it is the richest 
and most powerful paradigm, however, the skill and cost 
investment, even for 3-D printing, exceeds that which is 
often available for small group undergraduate projects.  
Thus, Lego provides an intermediate case: students can 
experience task specific hardware design and refinement 
without investing more time than is available during a 
typical undergraduate schedule.   
Software development: The MCP and communication  
The MCP carries out control and coordination functions 
for SB, issuing motion orders to Movement, querying 
vision for updates on changes in chessboard state, and 
accessing Houdini for chess decisions.   An outline of the 
MCP algorithm is presented in Figure 4. 

The vision subsystem is written in C++ and uses 
OpenCV to process board images.  Initially, a blank board 
image is taken in order to set corner points for board 
squares and to store color histogram information about 
central regions of interest (ROIs) in board squares.  After 
the initialization step, still images of the board following 
each opponent move are analyzed and compared to 
previous board images using OpenCV.  A detailed 
description of the vision code and algorithms can be 
found in (Burhans et al. 2014).  Both top-down rules 
about chess play and bottom-up image information are 
combined to determine the best possible candidate for the 
move made by the opponent.  This move is checked for 
validity with Houdini.  

Communication with Houdini is accomplished through 
the use of several methods, including ��������	
�, 
����	
�, �����	
�, and �����.  All of these 
methods take as a parameter �	
����	����, a 
string containing all of the completed moves of the game 
encoded in the format specified by the Uniform Chess 
Interface (UCI).  The vision system calls ��������	
� 
with its proposed move for the opponent appended to 
�	
����	���� to see whether the completed moves 
followed by this new move represent a valid game.  If so, 
the vision system concludes that this move is in fact the 
move made by the opponent.  

An abstract class, ����������e, specifies what is 
needed to interact with a chess engine in general, and 
contains both abstract and non-abstract methods including 
a constructor.  In particular, the methods for sending and 

Figure 4.   Outline of the MCP algorithm. 
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receiving messages to and from a chess engine along with 
commands to execute that chess engine are included here.  
For SB this class is extended by �	�������������
which contains methods and data structures that pertain 
specifically to Houdini.  Note that Houdini was not our 
initial choice for a chess engine due to the fact that it is a 
Windows-based program.  We were using Linux for other 
robotics projects and planned initially to use it for SB. 
With this in mind we also did initial system development 
with Stockfish 2.0.1, the other top-rated chess engine that 
was UCI-based. Houdini was selected primarily because it 
was the strongest chess engine available at the time. We 
parameterized Houdini to play at the level of 
approximately 2987 (Grand Master). The desire to plan 
for using other chess engines and other platforms led to 
the flexible, hierarchical design of the software.  Using a 
different UCI-based chess engine would require the 
creation of a new subclass of ����������e that 
provides engine-specific functionality, but the rest of the 
system would remain unchanged.  Our code is also 
capable of using and parsing FEN (Forsyth-Edwards 
Notion) enabling upgrades to allow a mid-game start. 

An important and interesting aspect of the development 
of the system architecture involved communication with 
and computation on board the two Lego bricks.  As in 
many real world projects, there are important tradeoffs 
about where best to locate processing tasks.  The bricks 
run Lejos programs that receive start and stop signals 
from the laptop.  Initially, the bricks ran complex 
programs that handled the tasks of translating chess 
moves to motions as well as tracking sensor data and 
motor control.  During design, an alternative arose: to 
treat the bricks as slaves that would return information 
about the world through their associated sensors and carry 
out simple movement commands sent by the laptop.  
After several iterations of design it was decided to opt for 
the latter system.  

This decision required the development of a hardware 
independent communication protocol to transmit signals 
from the laptop to the motion controllers.   For SB this 
meant creating mapping behaviors onto a set of integer 
codes that could be easily transmitted and quickly 
interpreted by the bricks. Grappling with these 
possibilities developed new skills for the students.  

To enable Bluetooth communication it is necessary to 
reset the bricks each time the MCP is restarted to run a 
send/receive initialization routine, but once a game is in 
process communication proceeds smoothly.  Finding 
information about using Bluetooth with the bricks was a 
challenge which required the students to seek and modify 
preexisting software in a manner exceeding typical 
classroom projects.  

 
Motion and hybrid Software/Hardware solutions 
Motion control problems with early versions of SB 
illustrate a third strength of the Lego approach to 

embodied AI: coupling of hardware and software 
solutions to a design problem.  Much professional 
embodied AI work involves mechanical systems and their 
control.  In order to best achieve reliable motion, it is 
often necessary to iteratively co-develop the software and 
mechanical hardware used for an agent as challenges 
arise.  In the case of SB, one challenge arose during long 
distance motion of the bridge across the rails.  Due to the 
high center of mass and off-center weighting of the tower, 
it routinely oscillated front-to-back across the bridge, 
resulting in torsion of the mechanical systems and motion 
of the color sensors relative to the position stripes.  This 
in turn caused misreading of position, and failure of the 
tower and bridge to stop at appropriate points.  Under 
traditional pre-packaged approaches to undergraduate 
robotics, the problem would have been solved prior to 
student engagement, or addressed by students solely 
through software.  Our use of Lego allowed for modes of 
problem solving more akin to those encountered in 
research and industrial settings.  

The students identified three major causes of the 
oscillation problem: rapid acceleration and deceleration of 
the tower, an unbalanced load on the tower due to the 
offset claw, and the overall high center of mass of the 
tower relative to its width.  The latter of these three 
problems could not be addressed, as range of travel of the 
claw was required to be slightly larger than the height of a 
king.  The tower thus needed to be tall enough to support 
that motion.  Instead, the students struck upon solutions 
addressing the other two causes of oscillation.  First, the 
claw was counterbalanced by 250g of mass hanging from 
the opposite side of the tower.  This placed the center of 
mass closer to the horizontal center of the tower.  Second, 
a set of guide rails were added to the bridge and a hook 
added to the tower.  The hook engages the rails, limiting 
tipping motions.  Finally, a stepped deceleration routine 
was added to the control software: a few position markers 
short of the final location, the bridge motors begin 
reducing speed, producing a gentler final stop.  The 
hardware and software solutions were each insufficient on 
their own to resolve the oscillation problem.  It was only 
by coupling partial solutions that used both software and 
hardware that students were able to correct the problem.  

Long-term development experiences 
An additional benefit of the SB project was the 
opportunity for students to engage in relatively long term 
development and redevelopment of a system.  Project-
based learning within a course allows for initial design 
and implementation, but projects within a course usually 
conclude at the end of the semester.  Similarly, the 
physics senior thesis project is a one-semester activity, 
carried out at the end of the curriculum.  SB, through the 
touchstone of AAAI robotics activities, provided a venue 
for ongoing student engagement with an extended project. 
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Participation in this kind of activity has better prepared 
students for post-graduation work and educational 
opportunities.  SB was presented twice by students at 
AAAI: version 1 was brought to AAAI 2011 and version 
2 to AAAI 2012.  Four major issues surfaced in 2011 that 
necessitated revision of the system, including the 
following:  vision failed due to the extremely dim lighting 
conditions; the paper marking strips that indicated the 
locations of the rows and columns of the chess board 
wore off and tore; the rails required realignment at each 
set up, namely, they needed to be clamped to a table 
surface with exacting and difficult spacing requirements; 
and the interface from the MCP to Houdini periodically 
failed.  In addition, during the competition the system had 
problems with piece movement and placement.  By the 
end of the 2011 conference the bugs in the MCP/Houdini 
interface were eliminated, the movement problems were 
fixed, the strips were temporarily improved, and the rails 
were effectively placed.  Unfortunately, the vision system 
would not function under sub-optimal lighting conditions. 

Following AAAI 2011 the vision problem was solved 
by adding a studio light system with diffusing umbrella to 
the set up.  Additionally, the vision routines were 
upgraded and fine-tuned, as discussed in Burhans et al. 
(2014).  The stripes were found to wear out from passage 
of the bridge and tower, resulting both in degradation of 
position detection and the presence of adhesive in the 
racks used to guide motion.  Both resulted in misread of 
final position and cases of the bridge twisting and binding 
as it moved.  New stripes were printed on vinyl and 
installed.  Finally, it had been necessary each time SB 
version 1 was set up to align the rails parallel to each 
other and clamp them in place.  This process was time 
consuming and prone to error.  Even slight misalignment 
could result in torsion and binding of the bridge as it 
moved across the rails.  The rails were subsequently 
permanently mounted on a single plywood board, 
obviating the need for on-site realignment.  As a result, 
set up time was reduced to less than 15 minutes, with 
most of the effort involved in unpacking and placing the 
vision equipment.        

When SB was brought to AAAI 2012, it participated in 
two full-length exhibition chess matches against Dr. 
Kenneth Regan, an international master rated chess player 
and known computer scientist and commentator on 
tournament-level chess.  Against Dr. Regan, SB played 
autonomously, with full vision, chess reasoning, and 
motional capabilities. SB played additional matches 
against passersby, with human opponents often making a 
few moves and then turning play over to the next 
opponent.  The upgraded version was able to complete 
multiple games during the conference.   Importantly, both 
students attended this conference and were able to see the 
results from their significant investments in SB. 
 
 

Ongoing Project Development 
 
While the students involved in the creation of SB are no 
longer undergraduates, we continue to pursue areas of 
development and applied research using the SB platform 
with new undergraduates and faculty.  These include 
upgrades to the vision system necessary for 
implementation of detection of a mid-board game state, 
which would allow SB to begin play from a midgame 
position or to solve chess puzzles; and an exploration of 
the experience of playing against SB, which involves 
collaboration with social scientists.  
 To date, SB has played against a small number of 
human opponents.  Primary human opposition has been 
members of the project team (Sikorskyj, Selkowitz) and 
Dr. Regan. It is noteworthy that Dr. Regan actively 
dislikes playing onscreen chess against computers, as well 
as online chess against human opponents.   

All three players report a sense of connection to the 
robot during play, which approximates that between two 
human players more closely than does play versus an 
onscreen computer opponent.  Notably, Dr. Regan found 
himself talking to and about SB as if it were human, 
referring to “his creativity” and complementing “him” on 
good plays. Dr. Regan does not express this same 
humanization of Houdini (“it”) onscreen, and this 
humanization gives rise to a distinct pleasure in playing 
against SB. We suspect that the experience of playing 
versus a robot can be a closer approximation of in-person 
human-vs-human chess than is human-vs.-human 
onscreen play, and are currently undertaking a detailed 
study of the phenomenon in collaboration with social 
science faculty and students.  This sort of problem 
suggests one way in which AI can be more closely related 
to the Liberal Arts goal of holistic, humanistic education. 
 

Student Outcomes 
  
Student outcomes from the SB project fall into two 
related categories: closure of curricular gaps and 
development of critical design and problem solving skills.  
In particular, the computer science curriculum at Canisius 
College is constrained by institutional requirements and a 
small faculty and student body.  Aspects of the SB 
project, including programming for simultaneous usage of 
multiple computing devices, management of projects 
requiring multiple programming languages, and scripting 
for input/output devices are rarely covered in the 
curriculum in small CS departments, yet these are 
valuable knowledge areas for computing professionals. 
The students who have worked on the project have 
benefited in many ways from their participation. 

One of the original team members is currently 
employed full time working in IT Services at a major 
university.  He is also engaged in a startup that has 
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already garnered considerable attention from major 
players in the field.  His thoughts on the project (private 
communication) are as follows: 
 

“Working on SB improved my ability to work on 
larger projects, particularly the kind that have a 
well-defined goal, but with very little details or plan 
on how to get there.   Coupled with a high degree of 
freedom to plan the roadmap, it was good 
preparation for functioning as a project manager 
and technical lead in my current work as an IT 
developer.  I found it inspiring to work on a project 
in which the espirit de corps was “it had to get 
done”.  This aspect in particular, was foundational 
for my own thinking and cultural formation of my 
current social video startup company.” 

 
The other original team member is currently a PhD 

student working in a perceptual robotics group.  He 
received an Honorable Mention in the NSF Graduate 
Research Fellowship Competition, in part due to his 
background working on SB. His work with SB provided 
him with several advantages.  First, he gained sufficient 
robotics experience to decide to pursue the field in 
graduate school.  He also gained a sense of the scope and 
depth of work required for a practical robotics project.  
Finally, the experience of attending and publishing at 
AAAI enhanced his interest in and desire to join the 
culture of academic AI and robotics.   

There are currently three students engaged in the 
upgrades to SB discussed above.  A second group of 
students is working on Jim, another Lego-based project in 
the area of affective robotics.  Both projects will be 
deployed in the AI course going forward, with each 
serving as a platform for project-based lab exercises with 
the potential to become longer term projects for interested 
students.   

 
Conclusion 

 
The students and faculty working on SB and other Lego-
based projects have been drawn from Computer Science 
and Physics/Engineering programs. It is interesting to 
note that all of the students and faculty involved in the 
hardware design portions of these projects have taken 
calculus-based physics and at least two semesters of 
calculus.  This sets them apart from most Computer 
Science students at our institution.  We believe that 
engaging with physics or engineering students and faculty 
is a key part of this style of embodied AI project.  While 
this approach may not be necessary at institutions with 
large CS departments, it can be invaluable for smaller 
programs.   

In addition to these projects we participate in an 
interdisciplinary electronics-oriented research group with 
other students from CS and Physics as well as faculty 
from Music and Digital Media.  Our most vigorous 

interdisciplinary connections in our liberal arts setting 
have a definite hardware orientation, and the mix of 
faculty and projects continues to attract students.  Our 
goal is to continue to provide rich experiences to 
undergraduates that build upon their classroom projects 
and allow them to develop critical skills for moving on to 
graduate school or into the work force. These types of 
projects, involving both hardware and software, have led 
to an increase in the number of physics students choosing 
to major or minor in CS and a large increase in the 
popularity of our introductory programming sequence.   
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