

Shallow Blue: Lego-Based Embodied AI as a

 Platform for Cross-Curricular Project Based Learning

Robert I. Selkowitz* and Debra T. Burhans+�
Canisius College Departments of Physics* and Computer Science+

2001 Main Street, Buffalo, NY 14208
{selkowir,burhansd}@canisius.edu

�
�
�

Abstract
We report on Shallow Blue (SB), an autonomous chess agent
constructed by a small group of faculty and undergraduate
students at Canisius College. In addition to pushing the limits of
consumer grade components at low cost, SB is a focal point for
interdisciplinary student projects spanning computer science,
engineering, and physics. We demonstrate that undergraduate
students can engage in rich, long-term robotic design and
applied Artificial Intelligence (AI) from both hardware and
software perspectives. Student outcomes of SB include senior
theses, conference presentations, peer-reviewed publications,
and admission to graduate programs. Students who participated
also report substantial development in skills and knowledge
applicable to their post-undergraduate education and careers.

 Introduction and Background

Canisius College is a small primarily undergraduate
institution located in upstate New York whose
quantitative science degree programs include computer
science, physics and pre-engineering. The latter is a two
or three year program targeted toward transfer to a
university with a full engineering program. The general
education curriculum at Canisius is extensive, reflecting
the liberal arts and Jesuit traditions of the institution. All
three programs have small enrollments, with
approximately 5 students per year in physics and
engineering and 10-15 in computer science. These factors
constrain STEM programs in terms of the breadth of
courses and upper division electives that can be offered.
Nonetheless, through the combination of a required senior
project in physics, the strong interest of graduate school
bound students across these disciplines, and faculty desire
to meld meaningful student mentoring with research, it
has been possible to create a thriving interdisciplinary AI

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

group working on low-cost solutions to embodied AI
problems. To date, the group has worked on two robotic
platforms: Shallow Blue (SB), an embodied chess player,
with full vision and assembly cost below $800; and Jim, a
puppet-like humanoid head with capabilities for gestural
and spoken emotional output. We report primarily on SB
and outcomes for its student development team.
 There are two goals for this project, one technical the
other pedagogical. The technical goal is the design of a
novel, low-cost embodied AI platform for both classroom
and research use. The pedagogical goal is to provide a set
of significant design and implementation tasks for
students interested in careers in engineering, AI, and
robotics. Engaging all three groups of students allows for
a broader range of project themes than traditional AI
approaches. This style of collaborative project is
possible, if not preferable, at institutions with smaller CS,
physics, and engineering groups.
 The remainder of this section discusses the SB project
in relationship to other undergraduate AI and robotics
projects and courses, and addresses the reasons for and
ramifications of the decision to use Lego as a primary
medium for hardware development. In the following
section, we provide an overview of SB, examining the
design relative to other embodied chess agents in terms of
cost, hardware and software sub-systems, and the
composition of the design team. Following this overview,
details of ongoing system upgrades and ancillary projects
are given. The paper concludes with a discussion of
student outcomes, directions for development of
additional AI systems, and the extension of the
collaboration beyond traditional STEM fields.

Related Work
Touretzky (2013) cites the need for robotics education
that gets at real problems rather than simply providing an
embodied platform for implementing existing algorithms
and covering old ground. He highlights the importance of

Proceedings of the Fifth Symposium on Educational Advances in Artificial Intelligence

3037

connecting mathematics to real world problem solutions
in a way that is often neglected in the CS curriculum.
However, he feels that Lego is not sufficient in terms of
support and hardware for deep college-level innovation.
On the other hand, Klassner and McNally (2007) argue
for the sufficiency of the Lego Mindstorms platform in AI
education, citing their use of MatLab code that enables
robust machine learning using the NXT platform. Sklar et
al. (2007) employ robots in a variety of classes including
AI, but switch from Lego to the AIBO for complex AI
applications. Panadero et al. (2010) discuss a number of
different classroom experiences with Mindstorms. Most
relevant to this paper are observations regarding the
positive impact of robotics experiences on student
abilities in the areas of group work and problem solving.
Specifically, they observed that the real world interactions
and issues that arise with robot projects enhance problem
solving skills, both individual and group; that students
learn to carry out more robust testing; and that students
are able to work iteratively on improving the performance
of their computational artifacts. Akin et al. (2013)
describe the use of Lego Mindstorms in a robotics course
in a way that echoes the reasons we use the platform: it
allows students to pursue fairly sophisticated explorations
of hardware and software interactions in addition to
teaching them about real world constraints and noise
without requiring machining and electronics skills.
Klassner et al. (2012) use sophisticated software and
algorithms in a machine learning class with all programs
running directly on the Lego brick. We made a decision
to use Bluetooth for communication in order to avoid
running complex software directly onto the brick,
choosing instead to run the system on a laptop that
communicated simple commands to the bricks. Tradeoffs
such as these abound once a decision to use Lego is made.
Kitts (2007) discusses projects that are very close to ours
in spirit and practice, specifically undergraduate capstone
projects on multi-robot systems that have involved many
of the same features, including entry into competitions

and creation of enduring artifacts. Departments with a
capstone project requirement such as those within
engineering schools already have a mechanism for
building skills and experiences that may be less readily-
available to a liberal arts CS major.

Why use Lego?
 The decision to use Lego as the mechanical basis for
SB was driven by three related factors. First, we had a
pre-existing stockpile of Lego robotics equipment and a
student population with some Lego robotics experience.
Our introduction to engineering course and one of our
CS0 courses utilize Lego robotics as a core curricular
tool, as does an honors course and the upper-level AI
course. In the engineering class, students engage in
design and development of a single robot for a
competition, while the computer science course uses robot
programming as a means to motivate learning of control
structures and algorithm design. Leveraging student
familiarity with and enjoyment of Lego robotics, as well
as the pre-existing parts collection greatly eased startup.
Second, Lego provides a reasonably flexible means for
hardware design with a limited investment in equipment
and rapid learning curve. Students using Lego do not
need to develop machining skills, do complex strength
calculations, or wait for expensive custom parts. There is
an obvious tradeoff: the strength of Lego is limited, as is
the ultimate range of options for both actuation and
structural elements. However, it is suitable as a bridge for
students who might later learn the engineering or
machining skills needed to engage in professional-grade
robotics. Third, Lego provides sufficient onboard
computing power, particularly ample for slaved
mechanical control, which can be coupled with an off-
board master to provide both higher level AI capability
and opportunities to learn inter-device communication
techniques. In particular, we discuss the latter two
advantages in terms of claw development and Bluetooth
communication between the NXT control bricks and PC.

The SB Platform and Chess

Compared with the other autonomous agents described
in Table 1, SB is both the least expensive and the only
one designed by a team reliant upon undergraduate
students. The industrial arms, KukaMonster and
ChessKA were designed to showcase industrial robotics.
Maxwell, Gambit, Chiara, and SB were all designed for
the AAAI small object manipulation challenge (2010,
2011). SB performed reasonably well at 2011 AAAI,
with significant bugs limiting performance during the
actual competition. By the end of the conference,
however, thanks to intensive work on the code and
physical system issues by the students and faculty, SB
was capable of playing reliably, albeit without operational

Figure 1. The mechanical hardware systems of SB.

3038

vision, vs. Maxwell on a single board and in a robot vs.
human demonstration match. Performance the following
year at the 2012 AAAI Robotics Fair was robust, with the
robot fully operational as discussed below.

The SB platform can be roughly considered as five
coordinated subsystems: the physical infrastructure
(Hardware), the Master Control Program (MCP), the
image processing system (Vision), the motion controllers
(Movement), and chess decision making (Houdini). Of
these, the first four were student-designed and coded.
Houdini required a custom interface which meant students
had to handle I/O issues such as parsing and string
formatting as well as inter-process communication.

The SB physical architecture is tightly constrained by

three concerns: Lego structural and motor limitations, the
geometry of chess, and difficulty of motion control. To
best satisfy these constraints, the students chose a
Cartesian crawler design, as shown in Figure 1. For the
purposes of this paper, hardware can be thought of
primarily in terms of the bridge and rail system for
translation across the board and the tower and claw
system for lifting and manipulating pieces. Vision related
equipment is external to the board assembly. A complete
description of SB’s design and operation can be found in
(Lanighan et al. (2011), Burhans et al. (2014)).

A bridge rolls across two fixed rails to reach the rows
of the chessboard. Atop the bridge, a tower rolls across
the columns and raises and lowers a gripping claw to
manipulate chess pieces. Motion of the bridge is enabled
by motorized gear wheels traversing Lego gear racks
mounted on the side rails. While the initial plan was to
utilize wheel-mounted rotation sensors to track position
across the grid, it became readily apparent that
accumulated sensor error would lead to large motional
inaccuracies after a small number of chess moves.
Instead, a series of white position marks were affixed
along the bridge and rails at desired stop points, and color
sensors used to count stripes to track position. The tower
rides along the rail, and carries a retractable claw, which
is raised and lowered via pulley. A guide shaft is used to
keep it in alignment with the tower. Pieces must be lifted
high enough to pass over the tallest impediments on the
board (kings). The height constraint and position mark
system combine to require the claw shaft to sit alongside
the main body of the tower, pushing the center of mass to
the lead end of the bridge, and resulting in the oscillation
problem discussed below. The position mark system also
results in a lack of freedom to fine tune the pickup and
dropoff points for a chess piece; the claw must cover a
full square on pickup, and return the piece to a near
centered position on drop off.

Robot Morphology Cost Speed Perception System Design team info
The Turk Humanoid with arm High Standard Magnetic board and

hidden human operator
Wolfgang von Kempelen

Chiara Hexapod walker ~$2.5k Standard Onboard camera for
occupancy change

Tekkotsu lab/chess as a
master’s thesis

Gambit Arm ~$18k Standard Kinect. Piece recognition
functional

U of Washington and Intel
collaboration

Maxwell Mobile manipulator Mid to low Standard Kinect. Piece recognition
under development

Faculty and Masters’ students

Kuka
CHESSka

Industrial arms High Blitz Full vision mechanism
unavailable

Industrial robotics firms

SB Cartesian translator ~$800 Standard Still image comparisons
for occupancy change.

2 Faculty and 2
undergraduate students

Table 1. A partial list of chess-playing robots. Only the industrial arms are capable of blitz play. SB is the only agent to rely solely on faculty
and undergraduate students. Two platforms were adapted for chess as Masters’ degree projects; one is academic-industry collaboration.

Figure 3. Two versions of the claw. The early prototype (left) was
replaced with an improved claw (right). Note that the improved claw
opens left-right, while the prototype opened front-back.

Figure 2. SB hardware schematic.

3039

The claw and iterative hardware design
SB’s piece manipulator is a two-fingered claw, with only
one of the two fingers capable of motion. It represents the
endpoint of an iterative hardware development cycle that
was clearly enabled by the Lego platform, indicating the
deeper engineering process allowable within this
framework. Initial ideas for the claw involved a three or
four-fingered pincer with each pincer finger controlled by
a single motor and a set of gears. The students prototyped
a few gear systems for control and found that the gearing
was too cumbersome for the space requirements of SB’s
tower. The second and third versions were each more
successful, and are shown in Figure 3. Both of these
claws use two fingers to clamp a piece in a single
direction. This way, the piece can only be centered along
one dimension of the chess square, a compromise relative
to the fully centering pincer. Claw version two had two
movable fingers, which allowed for a wider grip; however
play within the gears did not allow for reliable gripping.
Shortly before the competition, the students redesigned
the claw to use a single mobile finger and added
rubberized pads to increase friction. This claw is robust.

The claw design process required students to carefully
weigh and balance tradeoffs in design optimization:
centering capability and dexterity were exchanged for
reliable closure and grip strength. Furthermore, the
students were able to engage in part prototyping and
manufacture. Here it is instructive to compare the process
to three alternative approaches to embodied AI
instruction. In case 1, a mostly predesigned platform is
used such as the Finch, Scribbler, or Create
(www.finchrobot.com, parallax.com, www.irobot.com).

While excellent for projects with a predominantly
software focus, a prefabricated platform does not allow
students to address hardware issues in as much detail as
can be accomplished with Lego. In case 2, component
parts are purchased and assembled, as with the ER-1
(Evolution Robotics, no longer manufactured). In this
mode, students have some freedom to solve hardware
problems, but mostly in the context of assembling
component sub-systems. Case 3 requires prototype
design and machining or 3-d printing of parts. For
example, this approach was used by Maxwell (Ferguson
et al. 2011). In terms of design practice, it is the richest
and most powerful paradigm, however, the skill and cost
investment, even for 3-D printing, exceeds that which is
often available for small group undergraduate projects.
Thus, Lego provides an intermediate case: students can
experience task specific hardware design and refinement
without investing more time than is available during a
typical undergraduate schedule.
Software development: The MCP and communication
The MCP carries out control and coordination functions
for SB, issuing motion orders to Movement, querying
vision for updates on changes in chessboard state, and
accessing Houdini for chess decisions. An outline of the
MCP algorithm is presented in Figure 4.

The vision subsystem is written in C++ and uses
OpenCV to process board images. Initially, a blank board
image is taken in order to set corner points for board
squares and to store color histogram information about
central regions of interest (ROIs) in board squares. After
the initialization step, still images of the board following
each opponent move are analyzed and compared to
previous board images using OpenCV. A detailed
description of the vision code and algorithms can be
found in (Burhans et al. 2014). Both top-down rules
about chess play and bottom-up image information are
combined to determine the best possible candidate for the
move made by the opponent. This move is checked for
validity with Houdini.

Communication with Houdini is accomplished through
the use of several methods, including ��������	
�,
����	
�, �����	
�, and �����. All of these
methods take as a parameter �	
����	����, a
string containing all of the completed moves of the game
encoded in the format specified by the Uniform Chess
Interface (UCI). The vision system calls ��������	
�
with its proposed move for the opponent appended to
�	
����	���� to see whether the completed moves
followed by this new move represent a valid game. If so,
the vision system concludes that this move is in fact the
move made by the opponent.

An abstract class, ����������e, specifies what is
needed to interact with a chess engine in general, and
contains both abstract and non-abstract methods including
a constructor. In particular, the methods for sending and

Figure 4. Outline of the MCP algorithm.

3040

receiving messages to and from a chess engine along with
commands to execute that chess engine are included here.
For SB this class is extended by �	�������������
which contains methods and data structures that pertain
specifically to Houdini. Note that Houdini was not our
initial choice for a chess engine due to the fact that it is a
Windows-based program. We were using Linux for other
robotics projects and planned initially to use it for SB.
With this in mind we also did initial system development
with Stockfish 2.0.1, the other top-rated chess engine that
was UCI-based. Houdini was selected primarily because it
was the strongest chess engine available at the time. We
parameterized Houdini to play at the level of
approximately 2987 (Grand Master). The desire to plan
for using other chess engines and other platforms led to
the flexible, hierarchical design of the software. Using a
different UCI-based chess engine would require the
creation of a new subclass of ����������e that
provides engine-specific functionality, but the rest of the
system would remain unchanged. Our code is also
capable of using and parsing FEN (Forsyth-Edwards
Notion) enabling upgrades to allow a mid-game start.

An important and interesting aspect of the development
of the system architecture involved communication with
and computation on board the two Lego bricks. As in
many real world projects, there are important tradeoffs
about where best to locate processing tasks. The bricks
run Lejos programs that receive start and stop signals
from the laptop. Initially, the bricks ran complex
programs that handled the tasks of translating chess
moves to motions as well as tracking sensor data and
motor control. During design, an alternative arose: to
treat the bricks as slaves that would return information
about the world through their associated sensors and carry
out simple movement commands sent by the laptop.
After several iterations of design it was decided to opt for
the latter system.

This decision required the development of a hardware
independent communication protocol to transmit signals
from the laptop to the motion controllers. For SB this
meant creating mapping behaviors onto a set of integer
codes that could be easily transmitted and quickly
interpreted by the bricks. Grappling with these
possibilities developed new skills for the students.

To enable Bluetooth communication it is necessary to
reset the bricks each time the MCP is restarted to run a
send/receive initialization routine, but once a game is in
process communication proceeds smoothly. Finding
information about using Bluetooth with the bricks was a
challenge which required the students to seek and modify
preexisting software in a manner exceeding typical
classroom projects.

Motion and hybrid Software/Hardware solutions
Motion control problems with early versions of SB
illustrate a third strength of the Lego approach to

embodied AI: coupling of hardware and software
solutions to a design problem. Much professional
embodied AI work involves mechanical systems and their
control. In order to best achieve reliable motion, it is
often necessary to iteratively co-develop the software and
mechanical hardware used for an agent as challenges
arise. In the case of SB, one challenge arose during long
distance motion of the bridge across the rails. Due to the
high center of mass and off-center weighting of the tower,
it routinely oscillated front-to-back across the bridge,
resulting in torsion of the mechanical systems and motion
of the color sensors relative to the position stripes. This
in turn caused misreading of position, and failure of the
tower and bridge to stop at appropriate points. Under
traditional pre-packaged approaches to undergraduate
robotics, the problem would have been solved prior to
student engagement, or addressed by students solely
through software. Our use of Lego allowed for modes of
problem solving more akin to those encountered in
research and industrial settings.

The students identified three major causes of the
oscillation problem: rapid acceleration and deceleration of
the tower, an unbalanced load on the tower due to the
offset claw, and the overall high center of mass of the
tower relative to its width. The latter of these three
problems could not be addressed, as range of travel of the
claw was required to be slightly larger than the height of a
king. The tower thus needed to be tall enough to support
that motion. Instead, the students struck upon solutions
addressing the other two causes of oscillation. First, the
claw was counterbalanced by 250g of mass hanging from
the opposite side of the tower. This placed the center of
mass closer to the horizontal center of the tower. Second,
a set of guide rails were added to the bridge and a hook
added to the tower. The hook engages the rails, limiting
tipping motions. Finally, a stepped deceleration routine
was added to the control software: a few position markers
short of the final location, the bridge motors begin
reducing speed, producing a gentler final stop. The
hardware and software solutions were each insufficient on
their own to resolve the oscillation problem. It was only
by coupling partial solutions that used both software and
hardware that students were able to correct the problem.

Long-term development experiences
An additional benefit of the SB project was the
opportunity for students to engage in relatively long term
development and redevelopment of a system. Project-
based learning within a course allows for initial design
and implementation, but projects within a course usually
conclude at the end of the semester. Similarly, the
physics senior thesis project is a one-semester activity,
carried out at the end of the curriculum. SB, through the
touchstone of AAAI robotics activities, provided a venue
for ongoing student engagement with an extended project.

3041

Participation in this kind of activity has better prepared
students for post-graduation work and educational
opportunities. SB was presented twice by students at
AAAI: version 1 was brought to AAAI 2011 and version
2 to AAAI 2012. Four major issues surfaced in 2011 that
necessitated revision of the system, including the
following: vision failed due to the extremely dim lighting
conditions; the paper marking strips that indicated the
locations of the rows and columns of the chess board
wore off and tore; the rails required realignment at each
set up, namely, they needed to be clamped to a table
surface with exacting and difficult spacing requirements;
and the interface from the MCP to Houdini periodically
failed. In addition, during the competition the system had
problems with piece movement and placement. By the
end of the 2011 conference the bugs in the MCP/Houdini
interface were eliminated, the movement problems were
fixed, the strips were temporarily improved, and the rails
were effectively placed. Unfortunately, the vision system
would not function under sub-optimal lighting conditions.

Following AAAI 2011 the vision problem was solved
by adding a studio light system with diffusing umbrella to
the set up. Additionally, the vision routines were
upgraded and fine-tuned, as discussed in Burhans et al.
(2014). The stripes were found to wear out from passage
of the bridge and tower, resulting both in degradation of
position detection and the presence of adhesive in the
racks used to guide motion. Both resulted in misread of
final position and cases of the bridge twisting and binding
as it moved. New stripes were printed on vinyl and
installed. Finally, it had been necessary each time SB
version 1 was set up to align the rails parallel to each
other and clamp them in place. This process was time
consuming and prone to error. Even slight misalignment
could result in torsion and binding of the bridge as it
moved across the rails. The rails were subsequently
permanently mounted on a single plywood board,
obviating the need for on-site realignment. As a result,
set up time was reduced to less than 15 minutes, with
most of the effort involved in unpacking and placing the
vision equipment.

When SB was brought to AAAI 2012, it participated in
two full-length exhibition chess matches against Dr.
Kenneth Regan, an international master rated chess player
and known computer scientist and commentator on
tournament-level chess. Against Dr. Regan, SB played
autonomously, with full vision, chess reasoning, and
motional capabilities. SB played additional matches
against passersby, with human opponents often making a
few moves and then turning play over to the next
opponent. The upgraded version was able to complete
multiple games during the conference. Importantly, both
students attended this conference and were able to see the
results from their significant investments in SB.

Ongoing Project Development

While the students involved in the creation of SB are no
longer undergraduates, we continue to pursue areas of
development and applied research using the SB platform
with new undergraduates and faculty. These include
upgrades to the vision system necessary for
implementation of detection of a mid-board game state,
which would allow SB to begin play from a midgame
position or to solve chess puzzles; and an exploration of
the experience of playing against SB, which involves
collaboration with social scientists.
 To date, SB has played against a small number of
human opponents. Primary human opposition has been
members of the project team (Sikorskyj, Selkowitz) and
Dr. Regan. It is noteworthy that Dr. Regan actively
dislikes playing onscreen chess against computers, as well
as online chess against human opponents.

All three players report a sense of connection to the
robot during play, which approximates that between two
human players more closely than does play versus an
onscreen computer opponent. Notably, Dr. Regan found
himself talking to and about SB as if it were human,
referring to “his creativity” and complementing “him” on
good plays. Dr. Regan does not express this same
humanization of Houdini (“it”) onscreen, and this
humanization gives rise to a distinct pleasure in playing
against SB. We suspect that the experience of playing
versus a robot can be a closer approximation of in-person
human-vs-human chess than is human-vs.-human
onscreen play, and are currently undertaking a detailed
study of the phenomenon in collaboration with social
science faculty and students. This sort of problem
suggests one way in which AI can be more closely related
to the Liberal Arts goal of holistic, humanistic education.

Student Outcomes

Student outcomes from the SB project fall into two
related categories: closure of curricular gaps and
development of critical design and problem solving skills.
In particular, the computer science curriculum at Canisius
College is constrained by institutional requirements and a
small faculty and student body. Aspects of the SB
project, including programming for simultaneous usage of
multiple computing devices, management of projects
requiring multiple programming languages, and scripting
for input/output devices are rarely covered in the
curriculum in small CS departments, yet these are
valuable knowledge areas for computing professionals.
The students who have worked on the project have
benefited in many ways from their participation.

One of the original team members is currently
employed full time working in IT Services at a major
university. He is also engaged in a startup that has

3042

already garnered considerable attention from major
players in the field. His thoughts on the project (private
communication) are as follows:

“Working on SB improved my ability to work on
larger projects, particularly the kind that have a
well-defined goal, but with very little details or plan
on how to get there. Coupled with a high degree of
freedom to plan the roadmap, it was good
preparation for functioning as a project manager
and technical lead in my current work as an IT
developer. I found it inspiring to work on a project
in which the espirit de corps was “it had to get
done”. This aspect in particular, was foundational
for my own thinking and cultural formation of my
current social video startup company.”

The other original team member is currently a PhD

student working in a perceptual robotics group. He
received an Honorable Mention in the NSF Graduate
Research Fellowship Competition, in part due to his
background working on SB. His work with SB provided
him with several advantages. First, he gained sufficient
robotics experience to decide to pursue the field in
graduate school. He also gained a sense of the scope and
depth of work required for a practical robotics project.
Finally, the experience of attending and publishing at
AAAI enhanced his interest in and desire to join the
culture of academic AI and robotics.

There are currently three students engaged in the
upgrades to SB discussed above. A second group of
students is working on Jim, another Lego-based project in
the area of affective robotics. Both projects will be
deployed in the AI course going forward, with each
serving as a platform for project-based lab exercises with
the potential to become longer term projects for interested
students.

Conclusion

The students and faculty working on SB and other Lego-
based projects have been drawn from Computer Science
and Physics/Engineering programs. It is interesting to
note that all of the students and faculty involved in the
hardware design portions of these projects have taken
calculus-based physics and at least two semesters of
calculus. This sets them apart from most Computer
Science students at our institution. We believe that
engaging with physics or engineering students and faculty
is a key part of this style of embodied AI project. While
this approach may not be necessary at institutions with
large CS departments, it can be invaluable for smaller
programs.

In addition to these projects we participate in an
interdisciplinary electronics-oriented research group with
other students from CS and Physics as well as faculty
from Music and Digital Media. Our most vigorous

interdisciplinary connections in our liberal arts setting
have a definite hardware orientation, and the mix of
faculty and projects continues to attract students. Our
goal is to continue to provide rich experiences to
undergraduates that build upon their classroom projects
and allow them to develop critical skills for moving on to
graduate school or into the work force. These types of
projects, involving both hardware and software, have led
to an increase in the number of physics students choosing
to major or minor in CS and a large increase in the
popularity of our introductory programming sequence.

Acknowledgements

 The authors acknowledge the hard work and dedication
of Jerod Sikorskyj and Michael Lanighan in designing
and implementing the SB platform.

References
Akin, H. L., Meriçli, C., Meriçli, T. 2013. Introduction to
Autonomous Robotics using Lego Mindstorms NXT, Computer
Science Education, 23(4), 368-386.
Burhans, D., Selkowitz, R., Sikorskyj, J., and Lanighan, M.
2014. Shallow Blue: A low-cost platform for embodied chess
play. Proceedings of IEEE 2014 TePRA, IEEE, 138-143.
Ferguson, M., Gero, K., Salles, J., and Weis, J. 2011. Playing
chess with a human-scale mobile manipulator, Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence,
AAAI Press.
Kitts, C. 2007. Undergraduate Capstone Projects on Multi-
Robot Systems. Robots and Robot Venues: Resources for AI
Education, Papers from the AAAI Spring Symposium
(Technical Report SS-07-09), AAAI Press.
Klassner, F., and McNally, M. 2007. Demonstrating the
capabilities of Mindstorms NXT for the AI curriculum.
Proceedings of the American Association for Artificial
Intelligence Conference. AAAI Press.
Klassner, F., Peyton-Jones, J.C., Lehmer, K. 2012. Genetic
Algorithms with Lego Mindstorms and Matlab. Proceedings of
the Twenty-Fifth International Florida Artificial Intelligence
Research Society Conference.
Lanighan, M., Sikorskyj, J., Burhans, D., and Selkowitz, R.
2011. Lego plays chess: a low-cost, low-complexity approach
to intelligent robotics, Proceedings of the American Association
for Artificial Intelligence Conference. AAAI Press.
Panadero, C. F., Román, J.V., Kloos, C. D. 2010. Impact of
Learning Experiences Using LEGO Mindstorms® in
Engineering Courses. Proceedings of EDUCON 2010 (Madrid),
IEEE, 503-512.
Sklar, E., Parsons, S., and Azhar, M.Q. 2007. Robotics Across
the Curriculum. AAAI Spring Symposium: Semantic Scientific
Knowledge Integration. AAAI Press.
Touretzky, D. S., 2013. Robotics for Computer Scientists:
What’s the Big Idea? Computer Science Education, 23(4), 349-
367.

3043

