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Abstract
Detection of fraud, waste, and abuse (FWA) is an im-
portant yet difficult problem. In this paper, we de-
scribe a system to detect suspicious activities in large
healthcare claims datasets. Each healthcare dataset is
viewed as a heterogeneous network of patients, doctors,
pharmacies, and other entities. These networks can be
large, with millions of patients, hundreds of thousands
of doctors, and tens of thousands of pharmacies, for
example. Graph analysis techniques are developed to
find suspicious individuals, suspicious relationships be-
tween individuals, unusual changes over time, unusual
geospatial dispersion, and anomalous networks within
the overall graph structure. The system has been de-
ployed on multiple sites and data sets, both government
and commercial, to facilitate the work of FWA investi-
gation analysts.

Introduction
Healthcare expenditures in the United States exceed $2 tril-
lion a year. Driven by the market size, healthcare has become
an important and fast growing application domain for data
analytics. McKinsey’s influential report on Big Data Ana-
lytics (McKinsey Corp 2012) lists healthcare as the most
promising application domain. One significant problem of
healthcare is the loss of healthcare expenditures to fraud,
waste, and abuse (FWA). The Institute of Medicine (IOM)
estimates the annual loss to FWA in the healthcare domain
to be $75 Billion (PWC 2012). Healthcare-related programs
such as Medicaid, Medicare, and Medicare Part C and D
contribute significantly, representing more than half of the
total. The magnitude of the fraud problem has attracted
many efforts from the healthcare industry, the data analytics
industry, and research communities to develop fraud detec-
tion systems.

Despite the substantial financial significance, the fraud
detection problem is still far from being solved. While the
vast amount of healthcare data (insurance claims, health
records, clinical data, provider information, etc.) offers tan-
talizing opportunities, it also poses a series of technical chal-
lenges. From a data representation view, healthcare datasets
are often large and diverse. Furthermore, they evolve dynam-
ically over time. The complexity of the problem calls for a
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rich set of techniques to examine healthcare data from mul-
tiple perspectives.

Traditional fraud detection approaches start from domain
knowledge to design a set of fraud detection rules and watch
out for violations of these rules. This methodology works
well, but its performance is inherently limited by subject
matter expert knowledge, which can be inaccurate and in-
complete. Furthermore, new fraud patterns are constantly
invented to circumvent the built-in fraud detection rules. A
different alternative, thriving due to the recent advances of
machine learning and big-data infrastructure, is the data-
driven methodology that identifies normal patterns from real
data and detects deviations from the norm. This approach
is more flexible, but computationally intense, as the search
space for fraud is vast. We advocate a combined approach,
where domain knowledge is used to guide the search, while
data-driven machine learning methods do the rigorous com-
puting to improve upon expert intuition to achieve better ac-
curacy and flexibility.

To develop our overall system and the graph analysis
algorithms described here we work with collaborators in
Medicaid organizations and Xerox Services (which pro-
vides review and auditing services to a number of govern-
ment healthcare programs and private sector health insur-
ance companies). Our tool, known as the Xerox Program
Integrity Validator (XPIV), has been deployed on multiple
sites and is in use by fraud analysts in their investigation
practice. The tool provides two broad categories of func-
tionalities: (1) Automated Screening, which enables an an-
alyst to focus attention on a small list of suspect providers,
as opposed to a prohibitively large set, and (2) Interactive
Drill-down, where the analyst starts from a suspicious indi-
vidual or activity (as singled out by the automated screen-
ing components) and interacts with the system to navigate
through data items and collect evidence to build an inves-
tigation case. The two categories have quite different tech-
nical foci: Automated Screening (1) focuses on algorithmic
design for detecting diverse forms of anomalies, and Inter-
active Drill-down (2) focuses on database indexing/caching
for fast data retrieval and user interface design for intuitive
user-system interaction. For the conciseness of this paper,
we do not attempt to describe the complete XPIV system,
but only describe a particular subset of techniques, namely
graph analysis, to detect suspicious activities and relation-
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ships. Other components of XPIV, such as outlier detection,
temporal analysis, duplicate detection, and Interactive Drill-
down are left out of the scope of this paper and may be dis-
cussed in follow-up publications.

Our graph analytic techniques fall into the category of Au-
tomated Screening tools, which augment analysts’ abilities
by helping them focus on a concise list of suspect providers.
In particular, the proposed graph analytic techniques were
designed with input from fraud analysts in order to detect
providers whose behavior is suspect with respect to their in-
teraction with other providers and beneficiaries in the claims
database. Our graph analytic methods are the first of their
kind that allow fraud analysts to detect network based fraud.
Detecting network based fraud was not previously possible,
because earlier systems in use by our analysts were limited
to SQL-like rule-based queries.

Currently, we are moving toward more rigorous quantita-
tive measures of system performance. However, we note that
performance metrics are extremely hard to develop for real
deployed systems of this size, due to the compounding ef-
fect of two factors: the significant cost of investigation, and
the extreme class imbalance in which a few fraud cases are
buried in the sea of regular cases. For this reason, in this pa-
per, we resort to empirical validation, reporting cases of find-
ings and ball-park recovery dollar amounts. As future work,
we will be working with our collaborators to integrate user
feedback, such as confirmation or dismissal of red-flagged
cases. This will enable us to report more accurate estimates
of system performance in the deployed environment. How-
ever, despite the fact that we have limited precision/recall
results, our system is being widely used by the analysts for
the reasons mentioned in the previous paragraph. This un-
derlines the value of the network analytics methods that are
presented in this paper.

Focus: Graph Analysis: In this paper, we describe our
research effort on building graph analysis techniques. Each
dataset is represented as a large and heterogeneous graph,
where nodes represent millions of patients, hundreds of
thousands of providers such as doctors, hospitals, and phar-
macies, and edges represent billions of claimed services,
medications and supplies involving multi-entity relation-
ships among them. We apply graph analysis techniques to
this dataset. Graph analysis, originally rooted in network
science and graph theory, has been extended to a vari-
ety of applications such as communication networks, bio-
informatics, and operations research. The recent decade has
seen a rapid adoption of graph-based techniques to analyze
large scale social interactions such as the World Wide Web
(WWW) and social media such as Facebook, Twitter, and
LinkedIn. We demonstrate that the very same set of tech-
niques can be extended to analyze healthcare data for the
detection of FWA.

We look for four types of anomalies in the graph:

• Suspicious individuals. We examine each individual entity
(patient, provider, pharmacy, etc) based on its attributes.

• Suspicious relationships in the graph. While the previous
type focuses on individual attributes, this type focuses on
pairwise relationships. While individuals may appear per-

fectly normal, each out-of-norm relationship warrants a
red flag.

• Anomalous temporal changes and geospatial character-
istics in the graph. Our analysis couples graph analysis
with temporal and geospatial analysis to look for unusual
temporal changes or unusual geospatial distributions.

• Structures in the graph. Graph techniques can reveal
structure, including clusters of doctors referring to each
other or a heavily-connected group of individuals associ-
ated with narcotics transactions. We use graph structure
analysis techniques to identify anomalous structures.

The sections to follow provide a few concrete examples
of graph analysis techniques for FWA detection. Loosely
speaking, graph analysis techniques fall under two cate-
gories. The first category, known as the ego-net approach,
focuses on individual nodes and distills features from a
node’s local neighborhood. Features include for instance
degree and entropy of local connectivities. We have de-
veloped ego-net approaches to examine narcotics relation-
ships and temporal/spatial characteristics of patient flow be-
tween pharmacies/providers. The second category analyzes
the global structure of the healthcare relation network and
looks for communities sharing a common abnormal prac-
tice, or tight-knit communities that are anomalous in their
aggregated statistics. The structural approach can identify
fraud networks such as collusion networks and/or organized
crime. The two categories combined together encompass
both the local and the global characteristics.

Due to HIPAA restrictions (HIPAA 1996) and other busi-
ness constraints, we cannot disclose full details such as per-
sonal health information (PHI) and business identities. In-
stead we present a high-level description, with all sample
results anonymized.

Analysis of Narcotics Relationship Graphs
In this section, we illustrate graph analysis methods to de-
tect suspicious individuals and suspicious relationships us-
ing a concrete example of narcotics use/prescription/sales.
Narcotics is of concern because of the growing abuse of the
medication and illicit drug trafficking. In recent years, nar-
cotics have grown to be used recreationally by large parts of
the population, and they are highly addictive (Epstein 1989).
Despite federal efforts to restrict narcotics prescriptions, nar-
cotics abuse continues to be a problem. In addition, narcotics
can be illegally sold at a very high value because of the
high demand and limited supply. Many people who abuse
narcotics illicitly obtain them from patients with legitimate
prescriptions (Radnofsky and Walker 2014), so it is impor-
tant to track the individual patients that are obtaining large
amounts of narcotics, as well as the doctors and pharmacies
that are facilitating such diversion.

Our dataset consists of three types of entities: patient,
doctor, and pharmacy. It is equivalent to a heterogeneous
graph with three types of nodes. For each pairwise relation-
ship (patient-doctor, patient-pharmacy, doctor-pharmacy),
we produce a bipartite graph. Figure 1 visualizes doctor-
pharmacy relationships in a real-world healthcare dataset.
Red nodes are doctors, and blue nodes are pharmacies. To
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Figure 1: Bipartite graph visualizing the doctor-pharmacy rela-
tionship regarding narcotics prescription and sales.

avoid over-crowding the graph, we only visualize the top
3,000 nodes and the top 5,000 edges in terms of their nar-
cotics amount. We use Fruchterman-Reingold, a physics-
based layout, to reveal clusters of doctors and pharmacies
who are connected together by heavy narcotics transactions.
The graph exhibits clear patterns. For instance, it has long
been suspected by fraud analysts that doctors with question-
able narcotics prescription practice gravitate towards phar-
macies bad at gate-keeping. In the graph, we clearly see
this pattern in the provider clustering. While the system
computes and displays the graph almost instantaneously, it
would take an analyst many hours to perform this kind of
analysis manually.

Approach: To automate detection of suspicious entities,
we have designed a set of features, associated with aggre-
gated statistics in the bipartite graphs. Given a node n and
its 1-hop neighborhood N , we have
• degree: |N |, the number of nodes in the neighborhood;
• weight: the aggregated total number or total amount of

claims that a node is associated with;
• entropy ratio: how evenly the node associates with entities

in its neighborhood, in terms of total number of claims or
total amount. Mathematically

ERn =
1

log(|N|)

∑
k∈N

pk log
1

pk
,

where pk is the percentage of node n’s business with
neighbor k out of its total business. The summation term
is the empirical entropy, measuring the dispersion of n’s
business among its neighborhood N . The entropy is fur-
ther divided by log(|N |) to normalize to the range [0, 1].
If n evenly distributes its business among N , the entropy
ratio is 1. If in contrast, n does most of its business with
one neighbor, the dispersion is very skewed, resulting in
an entropy ratio close to 0.
Figure 2 lists the different anomalies that we look for

in the relation graph. The anomalies fall into three cate-
gories: individual-level anomalies (labeled as “I”), anoma-
lies at the relationship (edge) level (labeled as “R”), and
anomalies with unexplainable medical behavior (labeled as
“B”). They are shown in red, green, and blue fonts respec-
tively. Individual-based anomalies of interest include: (I1)

Pharmacy 

Doctor Patient 
Who are the  
heavy consumer  
of narcotics?  where  
do they get drugs from? Patient going to multiple doctors to 

get narcotics (the shopping patient)?  

Doctors prescribing narcotics to a 
very small percentage of patients?  

Unusually high volume  
edge between doctor and 
pharmacy?  

Pharmacies with most 
narcotics revenue from a 
small patient population?  

Doctors  
prescribing 
an unusually 
high amount 

Pharmacies with significant 
narcotics revenue 

Are there patients who 
consume nothing but 
narcotics? 

Patient/doctor relationship 
focused on narcotics  

Figure 2: Anomalies in a narcotics relation graph

who are the heavy consumers of narcotics, and where do
they get their drugs from; (I2) which doctors prescribe a lot
of narcotics and to whom; (I3) which pharmacies sell a lot of
narcotics and to whom. These questions are easy to answer
based on degree and weight features.

Anomalous relationships may include: Unusually focused
relationship such as (R1) where a pharmacy’s narcotics sales
come from an unusually small number of patients and pre-
scribing doctors; (R2) a doctor directs heavy narcotics sales
to several pharmacies; and (R3) a doctor prescribes narcotics
to only a few patients. High concentration between nodes
can be interpreted as potential collusion. The Entropy ratio
feature can be used here.

A consequence of this analysis is the ability to quickly de-
tect fraudulent characteristics that are of interest to our users.
For example, our users commonly look for (R4) “shopping
patients”, i.e. a patient visits a large number of doctors in
order to get narcotics prescriptions. By sifting through mil-
lions of beneficiaries our algorithm can save analysts hours
of manual search time.

Behavioral anomalies are those that are not justified by
medical practice. These include (B1) if a patient consumes
nothing but narcotics; and (B2) whether a patient/doctor re-
lationship is focused on narcotics alone. In order to quantify
these metrics, we also incorporate the patient and doctors
claims outside of narcotics, and find the percentage of nar-
cotics by dollar amount and number of total claims.

Anonymized cases under investigation: Our dataset
contains medical and pharmacy claims from a state Medi-
caid program. It consists of roughly 64 million claim lines
from 5.2 million patients, over 52,000 doctors, and nearly
9,000 pharmacies. We focus on Schedule II narcotics de-
fined by the US Controlled Substances Act (CSA 1970). Ex-
amples of Schedule II drugs include Morphine, Oxycodone,
and Fentanyl. Within the dataset, our graph analysis tech-
niques have identified numerous suspicious activities. All
findings are currently being investigated by the State’s Pro-
gram Integrity analysts. Here we give a few examples.

Patient P36641 is the top narcotics consumer in 2013, to-
taling an amount exceeding $400,000. He/she gets Fentanyl
prescriptions entirely from Doctor D25542. Doctor D25542
is also the top prescribing doctor for narcotics. He/she is cur-
rently under active investigation by Medicaid’s Program In-
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tegrity Office. The same analysis on 2012 data points to a
top prescribing doctor who is now convicted.

Patient P96274 visits 26 different doctors for prescrip-
tions of Methadone, Hydromorphone, and Fentanyl. The to-
tal is less than $10,000, but street value can be 50X higher.

Pharmacy RX13230 has annual narcotics sales of
$220,000, out of which $161,000 comes from a single doctor
(Doctor D19848) for a single patient P90594. This unusually
strong relationship is under investigation.

The detection of narcotics diversion can be extended to
other diversion problems in healthcare with a high re-sale
value, such as durable medical equipment and diabetes sup-
plies. The same anomaly detection techniques, described
here, are applicable in these domains.

Temporal/Geo-spatial Reasoning
Temporal Analysis: Interesting insights can be obtained
by exploring the dynamic property of a healthcare graph.
We analyzed graph’s temporal characteristics to find sev-
eral types of anomalies. These anomalies include sink ver-
tices, source vertices, and heavy links. Sink vertices rep-
resent providers who attract patients from other providers
at unusually high rates. Source vertices are providers who
can’t keep their own patients. Heavy links are graph edges
where unusually strong business relationships occur. Note
that these types of anomalous providers are currently manu-
ally detected by healthcare investigators. This approach will
automate that effort and aid investigators to systematically
search for these outliers.

We analyze the temporal characteristics by representing
claims as a discrete time sequence of providers for each pa-
tient and computing transitional probabilities using Maxi-
mum Likelihood Estimation (Lee, Judge, and Zellner 1968).
By comparing these transition probabilities to a baseline, we
can identify source, sink, and heavy links. In this analysis,
we consider the time sequence for pharmacies separately
from the time sequence for physicians. Figure 3 demon-
strates the computation of transitional (forward and back-
ward) matrices from data using a simplified example. Fig-
ure 3 (a) shows the raw input data, which translates into tran-
sition counts in Figure 3 (b). By normalization with respect
to the from- or the to- of the transition, one gets the forward
and backward transition probabilities (Figure 3 (c,d)).

Figure 3: Sample Computation for Transition Matrices.

Anonymized cases under investigation: Our analysis
shows that most patients return to the same pharmacy re-
peatedly and rarely deviate from their pattern. More than
80% of prescriptions are filled at the same pharmacy where
the previous prescriptions are filled. By comparison to this
baseline, two different types of source are detected by our
algorithms. The first type of source tends to lose patients to
another specific pharmacy. For example, our analysis iden-
tified two pharmacies where 85% of the source’s business
is later transferred to the sink. This is particularly unusual
given that these two pharmacies are 500 miles apart. An
example of this kind is worth further investigation to de-
termine if the business relationship between the source and
sink represent truly fraudulent behavior. Interestingly, some
pharmacies with prior fraud convictions have shown up to
be anomalous again for this analysis. The second type of
source consists of pharmacies who spread their patients to
many different pharmacies. These source pharmacies may
not necessarily be involved in FWA activities, but could be
losing customers due to poor quality of service.

Geospatial Analysis: Geo-spatial data are another use-
ful source of information for anomaly detection. We assume
that most patients visit physicians and pharmacies in their
local cities. Note there are many benign but infrequent rea-
sons why patients might visit providers far from home, e.g.,
a) sickness or injury during travel, and b) visiting specialists
like a surgical oncologist for special treatment. We focus on
outlier detection methods using aggregated statistics as fea-
tures to help remove the effect of these rare events.

We compute the geographical distance between the
physician-pharmacy pair and derive an empirical cumula-
tive distribution function (cdf) (Mason 1982). Typically the
empirical cdf increases sharply over distance. For example,
a pharmacy or physician’s business relationships are 50%
within a 10-mile radius, 80% within a 20-mile radius, 90%
within a 30-mile radius, and so on. The dashed lines in Fig-
ure 4 show a set of cdfs at different percentiles. We apply
DBSCAN (Ester et al. 1996), a clustering algorithm, to the
empirical distributions to define the baseline. Cdfs that devi-
ate drastically from the norm are identified as anomalies.

Anonymized cases under investigation: The thick black
line in Figure 4 shows an anomalous cdf of a pharmacy,
where 42% of its business comes from a physician over 400
miles away. In addition to the long distances traveled by vis-
iting patients, the fact that all long distance prescriptions
come from this single physician is abnormal, which could
be an interesting finding in its own right.

Discovering Latent Networks of Providers
Sharing Anomalous Practices

In this section we discuss the discovery of heterogeneous
provider communities that share anomalous business prac-
tices. In particular, we consider extracting communities
of prescribing providers that are participating in anoma-
lous drug sales. Within such a community, each individual
provider’s specialty will determine the kinds and quantity of
the prescriptions they write. A cardiologist’s prescriptions
will be composed of a high proportion of heart disease re-
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Figure 4: Example of Geospatial Anomaly

lated medications whereas an oncologist will tend to pre-
scribe a high proportion of chemotherapy drugs. We aim
to simultaneously discover provider types while detecting
when the prescription behaviors of heterogeneous provider
communities are anomalous. For instance, a hypothetical
cardiologist and oncologist may be interacting with a phar-
macy to sell narcotics to addicted patients. While the major-
ity of their individual prescription sales are consistent with
their types, composed of heart disease and chemotherapy
drugs respectively, the narcotics sales represent a shared de-
viation from those types. In order to find these communi-
ties we need a concrete definition of a provider’s type and
a means of exploiting this type definition to find anomalous
communities in our graph.

Approach: We model providers as documents and em-
ploy Latent Dirichlet Allocation (LDA) to extract a set of
business topics (Blei, Ng, and Jordan 2003). The basic gen-
erative process is illustrated in Figure 5. Each provider in
the network is a document wp composed of a bag of words.
Each word in a provider document is one of several Hierar-
chical Ingredient Code List (HICL) codes that identify the
compounds of drugs prescribed by a provider. We define the
count of a word within a document to be the total reimburse-
ment amount. Given a set of documents our goal is to extract
a set of business profiles, or topics, that explain the kinds of
prescription combinations that are typical across providers.
LDA defines a joint distribution over the set of provider doc-
uments and was used to infer the set of business topics. The
distribution of provider documents is defined to be,

P (wp|α, β) =

∫
P (θp|α)

 ∏
v∈V

Nv∏
n=1

∑
zv,n

P (zv,n|θp)P (wv,n|β, zi,j)

 .

Here the parameter θ encodes the mixture proportions
over topics, β is the collection of prescription topics, zp,v,n
indicates which topic generated wordwp,v,n, and α is a prior
parameter controlling the sparsity of θ. We have slightly
modified the typical expression for LDA to explicitly specify
the word types v and their corresponding countsNv . We will
exploit this later when introducing our community anomaly
score. By modeling provider documents as a mixture of top-
ics, LDA more easily models the distinct categories of bene-
ficiaries treated by specialists. We find this flexibility is inte-
gral to accurately modeling pharmacies which receive bene-
ficiaries from many different specialties.

Figure 5: A plate model depicting the distribution over P provider
documents. Each provider document decomposes into a set of
words wp,v,n which is the nth instance of word type v in provider
document p. Associated with each word is a variable zp,v,n indicat-
ing which topic βk ∈ β was responsible for generating the word.
The parameters θp are the topic proportions which determine how
frequently a provider uses a specific topic.

Given models of individual business practices we seek
to define a notion of community. We define a collection
of communities to be a decomposition of the graph into a
set of connected components. In order to differentiate com-
munities, we introduce the important concept of a commu-
nity “color”. The color of a community is a subset of word
types, represented by a sparse indicator vector, identifying
the community’s anomalous drug sales. To identify these
colors we begin by decomposing the provider documents
into two sets. One set contains the collection of prescrip-
tions made within the community. The second set contains
the prescriptions sent to members outside of the commu-
nity (within other connected components of the graph). De-
termining the community color is a problem of selecting
the optimal subset of within-community prescription events
that, once removed, maximize the community score. The
community score is defined simply to be the log-likelihood
of the community members after removing the indicated
words. This score is given by the following equation,

P (C|α, β,φ) =
∏
p∈C

∫
P (θp|α)

 ∏
v∈V

Nv−φiNc,p,v∏
n=1

∑
zp,v,n

P (zp,v,n|θp)P (wp,v,n|β, zp,v,n)

 ,

where we have introduced the indicator variables φv
and the within-community word counts Nc,p,v . Here Nc,p,v

refers to the number of times word type v was communi-
cated by provider p to members of the community. In order
to set the indicator variables we developed a simple greedy
procedure that selects the highest scoring indicator at each
step subject to a bound on the number of non-zero values.
The procedure removes the subset of words that are most
poorly modeled by the available topics.

Finding the optimal decomposition of the graph is a
computationally demanding task due to the large number
of possible graph colorings. Therefore, we propose a sim-
ple agglomerative clustering procedure that seeks to itera-
tively improve the joint likelihood score by merging adjacent
communities. To accomplish this we define a merge score
that compares the log-likelihood of the current communities
against the log-likelihood of the merged community. Using
this score we designed a simple greedy agglomeration pro-
cedure that is guaranteed to find a partitioning of the graph.
The result is an efficient search for an approximate solution
to the optimal community coloring problem. As output we
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Figure 6: Anomalous communities discovered by the analysis.

receive the collection of communities and their correspond-
ing colors for presentation to analysts.

Anonymized cases under investigation: In Figure 6 we
show example results generated by our community discov-
ery procedure. Given a network of approximately 74,000
providers with more than 900,000 prescription relationships
our algorithm discovers 900 communities of varying sizes.
In the figure we illustrate a subset of discovered commu-
nities with a particular outlier at the center of the star.
Each node in the depicted graph represents a community
discovered by our algorithm. The size of the node repre-
sents the degree of anomalousness where larger nodes are
communities with highly-anomalous shared behaviors (mea-
sured by the increase in the log likelihood after remov-
ing the indicated words). Each community is described by
its most anomalous drug sales. In this experiment we have
constrained the set of indicators such that only five words
can be selected during the search. We see that the central
community, composed of 17 medical providers, is respon-
sible for over $170,000 of anomalous narcotics sales (e.g.,
Hydrocodone, Codeine, Methadone, Tramadol, and Clon-
azepam). This fact is extracted directly from the high di-
mensional data set and represents valuable information for a
FWA analyst. The goal of the visualization is to make this in-
formation immediately accessible to the analyst and to high-
light the reason that the community stands out. Our experi-
ence shows that simple rankings of communities by scores is
not sufficient to promote analyst exploration whereas care-
fully designed interpretable outputs provide an accessible
representation of the analysis.

Discovering Anomalous Structure
in the Graph

In this section, we report our work-in-progress on a non-
parametric approach to discovering anomalous communities
in the medical network. We assume that we are given an
arbitrary input graph G with nodes being entities such as
providers, hospitals, pharmacies and patients, and the edge
attributes reflecting the strength of interaction between the
nodes. For concreteness, in this paper we consider the spe-
cific case of referral networks where the graph G is com-
prised of provider nodes, and the links between nodes a and
b represent the total number of referrals between providers
a and b. Figure 7 shows an example referral network from
a real-world dataset using the Group-in-a-Box visualization

Figure 7: An Example Referral Network using the Group-in-a-
Box to highlight communities.

(Rodrigues et al. 2011) to highlight communities.
Given this input graph G, we are interested in identifying

subsets of communities that are anomalous. We do this in a
three stage process:

1. Identification of communities in G

2. Extraction of features characterizing these communities

3. Identification of anomalous communities using these mul-
tivariate feature representations of these communities

We discuss each of these steps in detail in the sequel.
Community extraction: As a first step, we extract tight-

knit communities in the graph G. Community detection in a
graph is a widely studied problem in the network data min-
ing literature. However, most of the popular methods such as
graph partitioning, hierarchical clustering and spectral clus-
tering are concerned with partitioning the graph into disjoint
sets of tight-knit nodes (Fortunato 2010). These partitioning
methods however are not a good fit in our particular context
of medical networks for the reason that the entire graph G
need not be partitionable into tight-knit communities; rather
we expect a few pockets of tightly-knit communities inter-
spersed in the graph.

As a consequence of this observation, we developed an
agglomeration-based partitioning scheme that only identi-
fies the small pockets of tight-knit communities as opposed
to completely partitioning the set of nodes into disjoint sub-
sets. The proposed agglomeration scheme works by build-
ing communities one node at a time in a greedy fashion,
and adding nodes to the communities while ensuring that
the communities remain tightly-knit. We denote the set of
communities extracted from G by C̄ = {C1, C2, . . . , Ck}.

After extracting the set of communities C̄ via the pro-
posed agglomeration scheme, we check to see if any of the
extracted communities are anomalous. We do this in two
steps. As a first step, we check the case where the very exis-
tence of communities is anomalous. To check this case, we
compute the ratio of the total number of nodes in C̄ relative
to the total number of nodes in G. Conceptually this ratio is
similar to the well-known graph modularity metric proposed
by Newman (Newman 2006), except that this ratio is defined
based on nodes, and the graph modularity metric is defined
on edges. If the ratio is very small, it indicates that G is
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a network that is largely community-free, and we therefore
declare that all the discovered communities in C̄ are anoma-
lous. On the other hand, if the ratio of the number of nodes
in C̄ relative to G is moderate to large, then we conclude
that the presence of a community in G does not indicate that
the community is anomalous.

Feature extraction: In the event of the latter scenario be-
ing true, we extract several features that are of interest in
order to characterize each of these communities and subse-
quently we look for communities that are anomalous with
respect to the extracted feature sets. In this paper, we con-
sider the following sets of features to characterize any given
community Ci in the referral network:
• Community size: the number of nodes in Ci.
• Community density: the ratio of the total number of edges

in Ci relative to the number of nodes.
• Average dollar amount: the ratio of the total dollar amount

associated with the referral edges in Ci relative to the
number of nodes.

• Average anomaly score: Independent of network analyt-
ics, we compute anomaly scores for all providers based
on marginal statistics and compute the average anomaly
score of a community Ci as the average of the anomaly
scores of all providers in the community in order to detect
if a community has an abnormal concentration of anoma-
lous providers.
Anomaly detection: In our final step, we extract anoma-

lous communities using these features by feeding the fea-
tures through an off-the-shelf anomaly detection method for
multivariate data. In this paper, we use the iForest anomaly
detection algorithm (Liu, Ting, and Zhou 2008), which is
currently the state-of-the-art. The iForest method detects
anomalies based on the difficulty of isolating a point from
the rest of the points using randomly generated classifica-
tion trees. The intuition is that an outlier point is far easier
to isolate than normal points.

Anonymized cases under investigation: We applied the
described procedure to a referral network with about 60,000
providers. On running our agglomeration-based partition-
ing algorithm, we discovered a total of 2,432 communi-
ties. These 2,432 communities accounted for about 40,000
providers, or about 66% of the total nodes in the network.
Thus, the presence of communities in this network is not
anomalous.

Subsequently, we extract community size, density, aver-
age dollar amount and average anomaly score as features for
anomaly detection. On running iForest, we discovered a to-
tal of 34 anomalous communities. Five communities were
flagged because of their large size. Each of these commu-
nities had in excess of 200 providers/community, while a
majority of the communities had an average of about 10
providers. 10 other communities were flagged for high den-
sity, another 12 were flagged for high dollar amount and
the remaining 7 were flagged for high anomaly scores. An
interesting observation was that some of the communities
were anomalous with respect to more than one feature. For
instance, one particular community which had about 400
providers also had an abnormally high density.

Graph Analytics in Real-world FWA Detection
We have deployed our analytics system to support several
business applications to detect fraud, waste, abuse and other
kinds of inappropriate billing. These applications include
Provider Review, Cost Containment, Recovery Services, and
Pre-pay Detection.

The goal of Provider Review is to find providers (doc-
tors, hospitals, clinics, etc.) who are billing inappropriately
and who will be the most valuable to audit, judging by the
amount billed, the degree to which the billing is inappro-
priate, and other factors such as the extent to which patient
health is endangered. Analysis aims to maximize a value
function over providers or sets of providers.

The goal of Cost Containment is to find a proposed
change to the current claim payment rules that is likely to
result in increased efficiency, decreased cost, or improved
healthcare outcomes. These opportunities focus less on in-
dividual providers, patients, or claims and instead focus on
a set of these. Here analysis aims to find billing patterns that
are common and expensive but inappropriate.

The goal of Recovery Services is to find individual claims
where more money was paid than should have been and then
to contact the associated providers and get money back. For
example, a Recovery Services call center may ask a provider
to refund money if the provider was accidentally paid twice
for the same service, or if another insurance company should
have been billed first. Analytics for Recovery Services fo-
cuses on over-billing that can be proven easily and then tries
to find as many instances as possible.

The goal of Pre-pay Detection is to identify inappropri-
ate claims before the provider is paid for those claims. For
any given claim, a pre-pay algorithm determines if the claim
should be rejected, sent to a human analyst for further study,
or processed normally.

We work with teams that provide services organized
around the business applications mentioned above. In that
work, we use our deployed system to provide analytics re-
ports and interactive software that can be shared with an-
alysts performing provider reviews, cost containment, and
recovery. Our partner teams, through their interaction with
the deployed system, give us feedback on algorithms, re-
ports, and software, allowing us to improve them iteratively.
In addition, improvements made to support one team often
support others. Our analytics have already been used to find
many overpayments including Provider Review and Cost
Containment cases with a potential value of several mil-
lion dollars and recoverable claims with a potential value
of roughly a million dollars per month.

Our graph analytics support three of the four kinds of
service. For Provider Review, one way to find suspicious
providers is to look at the graph of relationships between
providers, such as patient referrals and shared patients. If
providers are colluding to defraud the system, that will
show up in this graph. Likewise, providers and patients
may collude to bill insurance payers for drugs or supplies
and then sell them on the street. In Cost Containment, a
provider billing too much for one patient will often bill too
much for other patients as well. Patterns in the provider-
patient network, then, can uncover systemic over-billing that
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can be addressed by a rule change. In Pre-pay Detection,
when making a decision about a new claim, the algorithm
can look at patient-provider, provider-provider, and patient-
patient relationships together with information about partic-
ular providers, patients, and claim features that have been
associated with over-billing in the past to recommend hu-
man review of some claims.

Evaluation Challenges
As we create our algorithms, we evaluate them against three
levels of benefit: (1) productivity benefits, (2) human-level
quality on results with a reduced detection time, and (3)
greater-than-human level quality on results. Our evaluations
run from informal, such as user testimonials, to formal, such
as calculation of precision in finding overpayments.

For example, one Xerox partner wrote “Using these tech-
nologies will improve the selection of audit targets which
has a direct impact to revenue on these contingency based
contracts.” Another Xerox partner wrote “Interesting flag. ...
So it has a high positive hit rate at first pass.” and also wrote
“In the first 5 minutes I identified a possible referral ...” and
also “Without [this tool], it would have been very difficult
and quite time consuming to do this research”.

On the more formal side, we have been fortunate to have
analysts who are willing to go through large results sets,
including thousands of flagged health care claims, to see
which are or are not recoverable. For example, after several
iterations of improving duplicate detection, we were able to
get 100 percent precision on a first result set based on cri-
teria set by the analysts. As these evaluations indicate, our
tools and algorithms have been able to improve user produc-
tivity and allow users to produce results that were difficult
or time-consuming to produce previously.

These statements speak to the impact of the system from
the point of view of analysts. As our program continues to
develop we plan to augment this analysis to include addi-
tional measurements of system quality. For instance, a cru-
cial measurement in fraud detection is the rate of case iden-
tification for individual analysts. An ideal system increases
this rate.

Our initial evaluations, though preliminary, suggest that
our tool successfully improves work flows. Our future effort
will determine the magnitude of this improvement. In addi-
tion, in coordination with our business partners we continue
to construct larger sets of ground truth data that are crucial
for preliminary evaluation of new analytics. We expect, in
coming years, to establish empirically the robustness of our
deployed system.

Conclusion
This paper presents our work on developing graph analy-
sis techniques and applying them to real-world healthcare
datasets to look for fraud, waste, and abuse activities. We
represent the healthcare relationship using heterogeneous
graphs and identifying anomalous individuals, relationships,
and communities by analyzing the local and global charac-
teristics of the graphs. Our work has identified investigation
targets totaling millions of dollars of potential recovery for
our collaborators at Xerox Services.

Our future work will take several forms. First, we plan
to extend our graph analysis techniques to scan incoming
claim streams fast enough to intercept suspicious claims be-
fore they are paid. This early detection requires the graph
analysis algorithms to be optimized for memory and compu-
tation, running quickly on large graphs. In addition, we plan
to add additional feedback loops to our system, so that ac-
tions taken by users of our technologies become input to the
algorithms. This will enable a rigorous performance evalu-
ation on the detection precision. At the same time, the al-
gorithms will learn from the suspicious activities that users
explore and mark, and the results of audits, investigations
and recoveries. Finally, we will allow users to configure the
analytics so that it is easy to tune them to the needs of spe-
cialists and repeat successful analyses on new data sets.
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