
 
 

 

Abstract 
PDS (Process Diagnosis System) is an expert system shell devel-
oped in the early 1980's.  It could handle thousands of sensor 
inputs and produce thousands of diagnostic messages with confi-
dence factors based on complex logic designed to mimic the 
thinking of human experts.  PDS went into commercial operation 
in 1985 to monitor seven power plant generators from a central-
ized diagnostic center at Westinghouse Power Generation head-
quarters. In the 1990’s the popularity of advanced technology gas 
turbines provided a renaissance in PDS utilization.  The software 
has undergone rewrites and improvements since its inception, and 
the current PCPDS now supports the Siemens Power 
Diagnostics® Center with centralized rule based monitoring of 
over 1200 gas turbines, steam turbines, and generators. 

 Introduction   
In 1981, Mark S. Fox, a Research Scientist and Director 

of the Intelligent Systems Laboratory of the Robotics Insti-
tute at Carnegie Mellon University (CMU) was invited by 
Westinghouse to give a seminar on Artificial Intelligence.  
After the seminar, a Westinghouse manager pulled Mark 
aside.  Westinghouse, at that time, manufactured steam 
turbines and generators (herein referred to as units) that 
were used in power generation plants around the world.  
The question that the Westinghouse manager asked was 
could Expert Systems technology be used to model their 
engineers' expertise to detect and/or predict the pending 
occurrence of a malfunction with sufficient advanced 
warning to allow the scheduling and execution of mainte-
nance to the extent that the malfunction and associated 
forced outage could be avoided.  By early diagnosis of a 
malfunction a reduction in both the repair costs and down-
time can be realized.  Thus began the story of PDS, origi-
nally known as Process Diagnosis System and today 
PCPDS, defined as Personal Computer Process Diagnosis 
System. PDS was launched as a production service in 1985 
and is still in use today monitoring over 1,200 turbines and 
generators around the world. 
In this paper we trace the authors’ recollections of the his-
tory of the development of PDS, both the expert systems 
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"engine" and knowledge base, and describe some changes 
in the global marketplace and their impact on PDS. 

In the Beginning at Westinghouse 
In the late 1970’s, Westinghouse concluded that the next 

major development in control systems would be in the area 
of diagnosing potential issues because turbine-generators 
in commercial power plants could take weeks to repair.  
Westinghouse produced a diagnostic algorithm with three 
inputs and three outputs based on conditional probabilities.  
Since there were no proven values for the probabilities, 
experts estimated the values. It was clear to Westinghouse 
that the algorithm would not scale to a larger number of 
sensors and potential issues characteristic of a steam tur-
bine generator system.  The challenge was to see if Expert 
Systems could solve the turbine-generator predictive diag-
nosis problem. 

Turbines and generators are large, complicated devices 
that are engineered to operate reliably for extended periods 
of time.  It is not uncommon to have over 1,000 sensors on 
this equipment measuring temperature, pressure, vibration, 
etc. to control and protect their operation. This instrumen-
tation was designed to generate readings (e.g. once a sec-
ond) on a continuous basis. The control system is designed 
to generate an alarm and/or interrupt equipment operation 
based on the sensor readings, for example, exceeding a 
threshold.  However, the control system had to do this 
without unduly hampering the operator so subtle changes 
in sensor readings were not its focus. The question that had 
to be answered was whether an analysis of sensor readings 
could detect subtle deviations in the sensor readings (prior 
to exceeding typical engineering designated thresholds) 
that could in turn be used to predict failures.  Mark Fox 
interviewed Westinghouse power systems experts to un-
derstand how they would diagnose power plant equipment 
based on the available sensor indications.  It was eventual-
ly determined that equipment failures could be predicted 
and diagnosed based on subtle deviations in sensor read-
ings. 

The knowledge engineering process revealed a number 
of interesting characteristics to the expert systems commu-
nity of that time: 
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1. The diagnosis system could be receiving over 1,000 

sensor readings per second per unit being monitored. 
2. The sensors fail more often than the unit itself.  They 

either degrade over time or randomly provide spurious 
data due to exogenous factors.  Hence, in addition to 
diagnosing the units, an effective system would need 
to also diagnose all of the sensors being used to diag-
nose the unit. 

3. A unit contains many redundant sensors.  Hence unit 
diagnosis may proceed even when it is known that a 
subset of sensors has failed.  The diagnosis has to take 
the sensor failures into account when deriving its con-
clusions. 

4. The knowledge used to diagnose a unit during "start-
up", a transient condition, is very different than during 
its operational phase, typically a steady-state condi-
tion. 

 
Based on the interviews, Fox derived a set of requirements: 
 
1. The goal of the system is to detect symptoms and 

make a diagnosis before equipment operation is im-
pacted.  Hence the system should detect symptoms 
which indicate a malfunction will eventually occur, as 
opposed to diagnosing the cause after the malfunction 
occurs. 

2. The expert system cannot operate by looking at the 
output of a single reading of the sensors, but must base 
its diagnosis on a series of sensor readings in order to 
detect subtle changes that occur over time. 

3. In order to detect sensor failures, it will need to incor-
porate sensor analysis techniques, including averaging, 
voting, and time series analysis. 

4. As sensors fail, the diagnosis process should continue 
to diagnose the unit with whatever information contin-
ues to be transmitted. 

5. The expert system will have to be context aware and 
use different knowledge based on the operating state 
of the unit. 

In 1981, there were two types of expert systems.  The 
first utilized the approach of backward chaining rules with 
a method for propagating belief / certainty (aka Certainty 
Factors).  MYCIN (Shortliffe, 1974), a medical diagnosis 
system, was the best known example.   The second utilized 
the approach of forward chaining rules, called Production 
Systems (Newell & Simon, 1972), with a number of exam-
ples documented in (Rychener, 1976).  Detecting unit fail-
ures is essentially a diagnosis task for which the MYCIN 
rule architecture and Certainty Factors were well suited.  
The difference from typical backward chaining expert sys-
tems being that PDS was not diagnosing the cause of a 
failure after it occurs, but attempting to predict a failure 
before it occurs.  Given the arrival of sensor data every 
second, Fox combined the forward chaining capabilities of 
production systems, with the rule architecture and Certain-
ty Factors of MYCIN.  The rule base was compiled into a 

network where sensor readings entered one end as sensor 
nodes, and certainty measures were propagated along arcs 
which represented rules to intermediate nodes (i.e., hy-
potheses) until all of the failure mode nodes were assigned 
a Certainty Factor.  Backward chaining and explanations 
were also implemented.  

In order to address the requirements, a number of unique 
features were introduced (Fox et al., 1983).  With each unit 
having over 1,000 sensors, rules were not constructed indi-
vidually to diagnose each sensor.  Instead, the knowledge 
representation language SRL (Wright & Fox, 1982), used 
to implement the system, represented classes of sensors 
and rules which were inherited by the instances.  A library 
of rules could be created for a type of unit and instantiated 
with little effort. 

All rules have associated with them a context that speci-
fies under what operating condition the rule is to be used.  
For example, if the unit is being started, only rules whose 
context is "start" would be active and used to predict a fu-
ture failure. 

Traditionally, sensor data is processed external to a mon-
itoring system with any suspect data either being modified 
or removed before the system sees it.  Time series analysis, 
such as data including rate of change, averaging, filtering 
and smoothing, is used.  It was felt that preprocessing sen-
sor data excluded information that may be valuable during 
the diagnosis process.  For example, if it was believed that 
a sensor is degrading but the readings it generated may still 
be useful, it might be desired to alter its role in other rules. 
Consequently, it was decided to process all sensor data 
within the rule base.  To support time series analysis, PDS 
was designed to provide the capability to store and analyze 
successive readings of sensors, or values of any other 
nodes in the rule network using "storage" nodes.  Storage 
nodes stored data over time and specified a function to 
analyze the data. 

Another type of rule, introduced with storage nodes, was 
a "reading-transform."  A reading-transform linked sensor 
nodes to storage nodes, providing the capability to trans-
form the data that passes through it.  Reading-transform 
rules were used to convert engineering units, scale num-
bers, etc. 

In addition to time series analysis provided by a storage 
node, PDS introduced a "composite-sensor" node that 
combined the readings of multiple, overlapping sensors. 
The node specified a set of sensors and/or reading-sets 
from which it was to read data, and combined it into a 
reading for a single virtual sensor.  Techniques such as 
voting and auctioneering were applied to the data. 

The final requirement was the handling by PDS of failed 
sensors while maintaining some level of prediction pro-
cess.  One approach to dealing with failing sensors in PDS 
is to set the Confidence Factor (CF), similar to the certain-
ty factor in MYCIN, of a sensor to zero when it is deter-
mined to be failing.  If the sensor is part of the left-hand 
side (LHS) of a rule, setting its CF to zero would have an 
unintended effect.  If the “fuzzy” AND (i.e., taking the 
minimum CF) is used to combine the evidence in the LHS 
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of the rule, then the rule's LHS CF would be zero, thereby 
eliminating any contribution by other evidence in the LHS.  
If a weighted combination of the evidence in the LHS of 
the rule was used it too would reduce the impact of the 
remaining evidence in the LHS of the rule because the 
weight of the CF of the failing sensor would remain the 
same.  The approach was to introduce the "parametric-
alteration" rule.  Once sensor diagnosis is complete, the 
parametric alternation rules are executed.  If sensors are 
found to fail, or are degrading slowly, the parametric alter-
ation rule would modify the weight of the failing sensors in 
the LHS of rules used to diagnose the unit. 

The above briefly describes the architecture of PDS.  
More details can be found in Fox et al. (1983).  It is this 
architecture that formed the core of the PDS product; a 
product designed to be robust enough to continue to pro-
duce results even with marginal sensor data quality. 

The LISP version of PDS that Mark Fox wrote was 
demonstrated to Westinghouse management on March 20, 
1982.  James Bellows and others were present at the meet-
ing. Bellows instantly recognized the potential of the sys-
tem.  They decided that, since Westinghouse’s Steam 
Chemistry Engineering section had considerable field data 
against which an expert system could be tested, a power 
cycle chemistry diagnostic system would be a good first 
project.  The result was seen as encouraging and the pro-
ject was continued.  

From Prototype to Product (1983-1985) 
In late 1983, after Westinghouse moved the Steam-

Turbine Generator headquarters to Orlando Florida from 
Pennsylvania, Craig Weeks (current Siemens CEO of the 
Power and Gas business unit) built the first diagnostic cen-
ter and gave the artificial intelligence product a visible 
nature.  Robert Osborne, manager of Diagnostics, Monitor 
and AI Development at Westinghouse Electric Corpora-
tion, describes this diagnostics center in detail in his paper 
titled “On-line Artificial Intelligence-Based Turbine Gen-
erator Diagnostics” from 1986.  Some 25 plus years before 
the age of “Big Data” and the “Internet of Things” the tre-
mendous value in acquiring sensor data from operating 
equipment for the purpose of analysis and diagnostics was 
recognized.  

Also in 1983, Bellows started writing a chemistry diag-
nostic system for a fossil fired power plant.  This product 
would eventually be called ChemAID (Chemistry Artificial 
Intelligence Diagnostics).  As recognized during the early 
development of PDS, one of the major issues was verifying 
the reliability of the plant instrumentation.  Instrumentation 
had to be diagnosed before conclusions about the plant 
could be drawn.  Storage nodes, reading-transforms, com-
posite sensors, parametric alteration rules and Confidence 
Factors had to be fully utilized to make effective diagno-
ses.   

Over several years, Bellows wrote multiple fossil diag-
nostic systems, improving each of the previous versions 
based on new experiences.  The penultimate system written 

by Bellows led to his first paper on a diagnostic system 
(Bellows, 1984).  In the process he noticed that many rules 
were duplicated, so PDS was given subsystems that could 
be instantiated multiple times with different suffixes on all 
the nodes and rules.  The trick was to then have nodes in 
the main system that had the same names as the nodes 
from the instantiated subsystems.  PDS would automatical-
ly recognize two nodes with the same name and merge 
them.  This technique was used to instantiate the mathe-
matics package as many as forty times.  It was also used to 
allow the modular construction of the rule base.  It was 
recognized that different boiler designs would need differ-
ent rule bases.  A once-through boiler subsystem rule base 
was written.  A drum boiler subsystem rule-base was also 
written.  The interfaces with other subsystems were de-
signed to make them interchangeable at the PDS level.  
Initially when a mathematical function or other special 
operation was needed, the rule writers had to request it 
from the PDS programmers.  Eventually the User Designed 
Operation (UDO) feature was created so that knowledge 
engineers could create their own operators.  In general, the 
chemistry development drove changes in PDS so that when 
a generator diagnostic rule base was written, all the neces-
sary operators were already in PDS.  That was not true for 
TurbinAID (Steam Turbine Artificial Intelligence Diagnos-
tics – a subsequent product) where some special functions 
were needed that had not been necessary in the other diag-
nostic systems. 

Two important style issues were developed in writing 
ChemAID.  First, Bellows, an expert chemist, wrote the 
rules so that only one thought operation occurred in a sin-
gle rule.  The diagnostic problem was written as if it were 
being thought through for the first time.  This style made 
modification significantly more straightforward because 
only one thing was modified at a time.  The second style 
point was a convention to name nodes descriptively and 
then to name the rules supporting them as the node name 
plus a rule number, as in boiler-sodium-high-r1, boiler-
sodium-high-r2, etc.  This naming convention made the 
rule base relatively readable and easier to modify if testing 
showed weaknesses in various diagnoses.  When 
ChemAID was applied to a commercial unit, substantial 
modification of the rules was required because the sensors 
were not as precise as the rule base had originally assumed.  
In effect, the rule base had to be “more flexible”. 

Although the chemistry diagnostic systems were the first 
to be written, the first commercial use of a PDS rule base 
was on generators.  A client with several large fossil plants 
running at maximum capacity had a goal of maintaining 
high reliability.  Therefore, they wanted to have all the 
information they could to help mitigate the risk of genera-
tor outages. GenAID (Generator Artificial Intelligence 
Diagnostics), designed to diagnose many potential genera-
tor issues using PDS, was installed. 

In March 1985, the Westinghouse Diagnostic Operation 
Center (DOC) went live with real time diagnostics driven 
by PDS and 24/7 staffing by engineers.  Real time in this 
case was about 98% of the diagnoses returning to the pow-

3930



er plant displays, from the DOC, within 2 minutes of the 
data transmission from the power plant.  Data transmis-
sions, from the power plant to the DOC, occurred within a 
minute of power plant alarms, or about every 15 minutes 
for routine data.  Seven generators from one client were 
monitored, with the main goal of identifying cracked stator 
strands. 

The 24/7 engineers were also tasked with developing 
their own section of the rule base, and maintaining custom-
er satisfaction with their assigned sites.  There was daily 
contact with plant operators, and a considerable comfort 
level was established so that either party could call the oth-
er with questions or to discuss an issue.  This seemed to be 
especially true at night when plant operators knew that 
there was someone else with generator knowledge that was 
already awake and available as a resource.  VAXmail pro-
vided text communications before the age of email.  In 
many cases, a close relationship developed between West-
inghouse and plant personnel. 

Rule base development was originally done on the LISP 
version of PDS, which had some challenges.  These chal-
lenges led to the decision to rewrite PDS in VAX C, which 
was expected to dramatically increase processing speed. 

In 1986 as water cooled generator stators became more 
prevalent, new maintenance recommendations applied and 
a new stator temperature monitoring scheme was intro-
duced.  The generator rule base was ready as the new sta-
tors were commissioned with a patented stator temperature 
monitoring algorithm that was expected to be an improve-
ment on the standard alarming scheme of a high/low delta 
temperature.  Control systems at that time did not have the 
capability to implement this rule based algorithm, so it was 
only available to Diagnostic Center customers. 

Technical Upgrades (1986-1989) 
 

After the expansion of the group and the start of commer-
cial operation, the rule bases grew in scope and complexity 
with the experience gained from running the DOC and 
feedback from plant operators and generator engineering.  
The working relationship between the DOC crew and plant 
operators continued.  The link to the OEM (original 
equipment manufacturer) engineering knowledge was a 
substantial benefit. 
 
Not all the benefits of the diagnostic service were immedi-
ately apparent.  After a few years the management at one 
site travelled to the DOC in Orlando to evaluate the 
cost/benefit of the diagnostic service.  Unlike some other 
sites, there had been no major generator issues diagnosed, 
and the justification for the system at this site was therefore 
not fully apparent.  The DOC staff ultimately came up with 
an analysis of the windage loss curve for the generators.  It 
was calculated that a 1% increase in hydrogen purity in-
creased generator efficiency by an amount that justified the 
expenditure for the service.  There were dozens of diagno-

ses regarding regulator settings and flow adjustments, and 
the results of the analyses supported at least a 1% im-
provement in hydrogen purity as a result of the service 
performed by the DOC.  Just that one potential benefit of 
the Diagnostic Center apparently convinced the clients that 
the service was cost effective, as they ordered the service. 
 
Toward the end of the 1980’s the first units with generator 
(GenAID), steam turbine (TurbinAID), and steam chemis-
try (ChemAID) rule bases were added to the DOC.  All 
three systems combined for a rule base of over 10,000 
rules and hundreds of sensors.  The Diagnostic Operation 
Center and the 24 hour diagnostic services were showcased 
for almost every utility executive that visited the Orlando 
site, even if it was just the “10 minute tour”.  Hundreds of 
such tours occurred, and the utility executives seemed gen-
uinely impressed with the technology and accomplish-
ments they saw.  

The Lean Years (1990-1999) 
At the beginning of the 1990’s technical success with 

providing remote generator diagnostics, combined with 
improved engineering solutions for common power plant 
issues of the 1980’s appeared to have increased the relia-
bility of the DOC monitored units.   

With the deregulation of the electric utility market, many 
power companies postponed major service and cut costs to 
deal with the uncertainty of future business developments.  
The Westinghouse Power Generation business reacted ac-
cordingly. 

DOC contracts were phased out in the mid-1990’s.  With 
that came a customer request to purchase standalone sys-
tems that would reside at the site and have no yearly ser-
vice fee.  Agreement was reached and a PC based version 
of PDS was written in C to run on powerful Pentium I 
computers at the power plant site. PCPDS (Personal Com-
puter Process Diagnosis System) was born.  GenAID was 
subsequently implemented on the PCPDS platform.  Be-
cause of the way PCPDS was coded, it was even more 
flexible than the previous PDS.  Practically any statement 
could be put inside rule fields, making self-modifying me-
ta-rules easier to create. 

In 1998, Siemens Westinghouse Power Corporation ac-
quired this diagnostic business, along with other assets of 
the former Westinghouse Power Generation Business.  The 
Diagnostics group delivered a total of 13 standalone sys-
tems in the late 1990’s and early 2000’s. During this time, 
the group was consulted regarding monitoring of the grow-
ing gas turbine fleet, with the goal to continue to improve 
reliability and cost effectiveness of those gas turbines.   An 
attempt to replace PDS with a commercially available ex-
pert system shell that would not require software engineer-
ing support was made, but nothing was found that was 
considered capable of handling the complexity of the exist-
ing rule base.  This resulted in the continued evolution of 
the PDS, and a period of continual growth until today.  
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The Growth Years (2000-2013) 
The late 90’s were to see tremendous increases in the 

use of gas turbines for power production.  According to the 
US Energy Information Administration, more than 100 
new gas turbines were brought online between 1990 and 
1998. 

Internal blade cooling technology developed for aircraft 
turbines in the 1960s had made its way into stationary gas 
turbines by the late 1970s improving efficiency.  In the late 
1980s the development of combined-cycle plants yielded 
further efficiency gains and some specific emissions im-
provements.  In 1985, the expiration of the US Natural Gas 
Policy Act allowed natural gas to be used for power gener-
ation, while rapid discoveries of large natural gas reserves 
dropped the price of natural gas to just over $2 per million 
BTU.  The Energy Policy Act of 1992 further deregulated 
the power market, enabling wholesale electrical competi-
tion and the rise of energy trading companies.  The new, 
highly competitive energy market could no longer afford 
the decades-long lead time for constructing new coal 
plants, nor could it lose time waiting for the typically long 
power plant start-up times of steam turbines in the face of 
electrical power outages or blackouts.  Drivers such as the 
US Clean Air Act further led towards the sale of gas tur-
bines for power generation over steam plants. 

Unlike the 900°C operating temperatures in steam tur-
bines, the 1400°C turbine inlet temperatures in the ad-
vanced technology gas turbines are hot enough to melt 
parts unless design advancements (e.g. special coatings) 
were implemented.  The more abusive operating conditions 
that were introduced by the advanced technology gas tur-
bine designs introduced new challenges.   

Siemens Westinghouse introduced Long Term Programs 
(LTP) for their gas turbine customers.  These LTPs were 
intended to provide customers with numerous benefits and 
soon evolved to include remote monitoring and diagnostics 
as part of the contract. Starting with a willing customer and 
a dial-up modem, Siemens Westinghouse installed PC 
based data acquisition software at a handful of plants to 
collect data and periodically send it to the monitoring cen-
ter in Orlando.  The data files were in an undocumented 
binary format, so a vendor-supplied plotting tool was used 
to export the data as a comma-separated value (CSV) file 
that was then loaded into a database and analyzed using an 
“off-the-shelf” spreadsheet program.  This analysis was a 
manual effort and the decision to create a gas turbine rule 
base was made.  GTAID (Gas Turbine Artificial Intelli-
gence Diagnostics) was born. Thus started the rapid expan-
sion of the PCPDS “monitored fleet” and the creation of a 
department to perform this work called Power Diagnos-
tics®. 

GTAID required PCPDS to undergo some major rede-
velopment.  The plan was to monitor a fleet of hundreds or 
even thousands of gas turbines and generators. This consti-
tuted a greater number of plants than had been previously 
monitored.  The first step was to change PCPDS from an 
online monitoring system based on files to a batch pro-
cessing system whose inputs and outputs would be stored 

in a database.  A workflow system also needed to be de-
veloped to automatically detect the arrival of new data and 
feed it through the rule base system.  Shortly after the first 
version of database-enabled PCPDS was released a web 
portal was commissioned to give Monitoring Engineers 
access to the rule base results. 

A Rule Base Engineering Team was formed with the 
mission of taking the prototype gas turbine rule base and 
adapting it to analyzing a fleet.  To do so, it was necessary 
to first understand what state the turbine was in: was it on 
turning gear, or online producing power, or in some stage 
of a startup or shutdown.  This effort was challenging giv-
en three factors:  
 
1. the quality of the data received 
2. the variation in instrumentation from unit to unit 
3. the degree of customization on each unit 
 

Each time a new unit was brought into the monitored 
fleet, its rule base would have to be adjusted to reduce false 
positive and negative diagnoses.  The rule base logic for 
each unit would also need to be updated to take advantage 
of new sensors. 

As the rule base grew, managing the variability in the 
fleet configurations became more and more difficult.  As is 
often the case in such situations, the Rule Base Engineer-
ing Team first divided up the rules into groups with each 
group containing the logic necessary to analyze a compo-
nent or sub-system. The rule groups representing compo-
nents were then further divided into types.  For example, 
the combustion sub-system of the Westinghouse-design 
gas turbines had multiple combustion system designs (e.g. 
DF-42, DLN) available.  Furthermore, an ontology was 
defined that allowed a rule base engineer the ability to pick 
“off-the-shelf” rule groups to configure a unit-specific rule 
base containing only the rules needed to monitor that unit. 

A challenge facing rule base engineering that did not 
come from the sensors or the rule base itself was the fact 
that the behavior of units operating in the field changed 
over time.  Some of the unit behavior changes were due to 
upgrades and modifications to improve the equipment effi-
ciency and performance. Other equipment behavior chang-
es were due to changes in control strategies. This illustrat-
ed the importance of situational awareness on the part of 
the Monitoring Engineer and the advantage of coordinating 
with the rule base engineer. 

While the decision had already been made to move away 
from manual analysis in spreadsheets and create GTAID 
using the PCPDS expert system shell, not all of the capa-
bilities of the spreadsheet analysis could be replicated.  In 
particular, state estimation models: an implementation of 
support vector regression to estimate sensor values over 
time as a function of specific process drivers.  Power Di-
agnostics® personnel worked to develop a Support Vector 
Machine (SVM) system to create and maintain mathemati-
cal models scalable to a large fleet.  Importantly, this sys-
tem, called Power Monitor, could produce residuals – the 
difference between a measured value and an expected val-
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ue – and the residuals generated by this system were used 
as inputs into the rule base to aid in diagnosing turbines.  
This greatly expanded the existing pattern recognition ca-
pabilities of PCPDS by introducing a powerful, flexible 
empirical modeling tool to support the analysis of operat-
ing data.    

A review of Figure 1 explains why this section of the 
paper was titled “The Growth Years”.  During this period 
of time, the utilization of the PCPDS expert system shell to 
support the remote monitoring and diagnostics of turbines 
and generators grew from a mere handful of units to over 
1,200. 
 

 
Figure 1. 

PDS Today: PCPDS 
It has been 30 years since the product launch of PDS at 

Westinghouse. Today, Power Diagnostics® monitors over 
1,200 turbines and generators by processing in excess of 
5.5 million sensor-hours a day through the PCPDS rule 
base engine / expert system.  More than 16,000 unique rule 
base outputs have been developed, with 40% of these con-
figured to diagnose operational issues or hardware issues 
and 60% sensor issues. 

PDS has grown much since the 1980s.  At least five re-
writes of the rule engine itself have been done to accom-
modate increasing analysis and performance requirements 
as well as changes in computing hardware and infrastruc-
ture requirements.  Methods for managing the complexity 
of rule sets have also been created to scale the rules hori-
zontally to cover the number of unit and plant configura-
tions.  Finally, change management systems were intro-
duced to track changes to the rules themselves and to allow 
Monitoring Engineers to submit change requests and track 
their progress. 

The design of PDS is considered a unique rule-based 
expert system in its combination of confidence factors, 
incremental evidence, and parametric rules that modify 
their outputs based on the quality of the input data. With-
out this tool, the ability to monitor a fleet of 1,200 plus 
turbines and generators, to the extent which they are being 

monitored today, would not be possible without signifi-
cantly increasing the number of Monitoring Engineers 
which would basically make the cost of monitoring prohib-
itive.   

One area currently getting additional development atten-
tion is the processing speed of the expert system.  This is 
more related to the rule development/test process rather 
than the production monitoring environment.    Improving 
the speed of PCPDS is expected to shorten the rule devel-
opment cycle. 

Visibility into the rule base is another area currently get-
ting additional development attention.  Development in this 
area is focused on further improving the transparency of 
the knowledge encoded in the rule base for Monitoring 
Engineers.   

Disclaimer 
This paper is based mainly on the recollections of the au-
thors.  It reflects solely the opinion of the authors and no 
other party or entity.  No representation, whether as to the 
accuracy, adequacy, usefulness, completeness or otherwise 
are made. 
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