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Abstract

This paper addresses the problem of named entity
recognition (NER) in travel-related search queries. NER
is an important step toward a richer understanding of
user-generated inputs in information retrieval systems.
NER in queries is challenging due to minimal con-
text and few structural clues. NER in restricted-domain
queries is useful in vertical search applications, for ex-
ample following query classification in general search.
This paper describes an efficient machine learning-
based solution for the high-quality extraction of seman-
tic entities from query inputs in a restricted-domain
information retrieval setting. We apply a conditional
random field (CRF) sequence model to travel-domain
search queries and achieve high-accuracy results. Our
approach yields an overall F1 score of 86.4% on a held-
out test set, outperforming a baseline score of 82.0% on
a CRF with standard features. The resulting NER classi-
fier is currently in use in a real-life travel search engine.

1 Introduction

This paper investigates the application of named entity
recognition (NER) to search-query processing in the travel
domain. Given a query, the goal of the NER task described
in this paper is two-fold: (1) segment the input into seman-
tic chunks, and (2) classify each chunk into a predefined
set of semantic classes. For example, given the query ho-
tel in mountain view with pool, the desired output is hotel in
[LocATiON Mountain view] with [ameNITY pool], where the
class AMENITY represents a travel-related amenity, and the
class LOCATION is a geographic location or point of inter-
est. Note that throughout this paper, we expand the canoni-
cal definition of named entity to include any domain-related
semantic concept, such as an amenity.

NER in restricted-domain queries is potentially useful
in many applications. For example, domain-specific NER
could be used in general search following query classifi-
cation to verticals such as product search, people search,
or restaurant search. Alternatively, it could be used in
a domain-specific search application such as a natural-
language based travel search engine. Oftentimes, vertical
search applications are backed by a database. For example,

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3935

in travel search, the query hotel in mountain view with pool
might generate a system response that contains an ordered
set of relevant hotels stored as objects in a database. In such
settings, a system that can identify relevant semantic entities
(e.g., LOCATION = “mountain view”, AMENITY = “pool”)
can map text-based queries to database objects, and thereby
allowing the search engine to return more relevant results to
the user.

NER and other NLP tasks are acknowledged to be chal-
lenging in search applications. The most successful NER so-
Iutions have been developed with well-edited text such as
newswire (Ratinov and Roth 2009; McCallum and Li 2003;
Collins and Singer 1999). In contrast, search queries are
typically very short, e.g., 2-3 words (Spink et al. 2002),
and offer little contextual evidence for the interpretation of
terms. Furthermore, there is evidence that up to 70% of
search queries form noun phrases (Barr, Jones, and Regel-
son 2008) as opposed to full sentences. When existing NLP
tools trained on well-edited natural language text are directly
applied to queries, there is a strong distributional mismatch
between train and test data that results in poor performance.
In the case of NER, state-of-the-art methods for extracting
entities from well-edited text rely heavily on orthographic
features such as capitalization. However, casing is acknowl-
edged to be unreliable in queries (Riid et al. 2011), thereby
diminishing the utility of case-based features for NER in
queries and posing additional challenges for robust entity
extraction.

In this paper, we investigate the use of a linear-chain
conditional random field (CRF) model (Lafferty, McCal-
lum, and Pereira 2001) for the extraction of entities from
limited-domain search queries. We show that this approach
can achieve high-accuracy results when trained and tested on
search queries from the target domain. CRFs and other prob-
abilistic sequence models have proven to be highly effective
for NER when trained and tested on well-edited text (Finkel,
Grenager, and Manning 2005; McCallum and Li 2003).
It has been argued that standard machine learning tech-
niques such as sequence models are ill-suited to the seman-
tic processing of queries (Bendersky, Croft, and Smith 2011;
Manshadi and Li 2009; Guo et al. 2009; Shen et al. 2008).
However, we show that a standard CRF trained and tested
on in-domain data performs very well on queries. Our best
CREF classifier achieves an overall entity-level F1 score of



86.4% on a held-out test set, outperforming a baseline score
of 82.0% for a CRF with standard features.

The remainder of the paper is structured as follows. We
discuss related work in Section 2. In Section 3, we motivate
the need for a probabilistic approach to NER in the travel
domain. Section 4 describes the CRF model and features,
and the data sets we use for training and evaluation. In Sec-
tion 5, we report experimental results, and we conclude the
paper with contributions and future work in Section 6.

2 Related Work

In the past several years, search query processing has re-
ceived increasing attention as a step toward the understand-
ing of user-generated inputs to IR systems. The query pro-
cessing literature includes a handful of papers that investi-
gate solutions for NER in search queries. (Riid et al. 2011)
adapt a NE classifier trained on newswire to queries. Their
method involves submission of query terms to a search en-
gine to generate auxiliary textual evidence for the tagger. In
contrast, our approach involves training a discriminative tag-
ger directly on labeled query data. While we incur an offline
cost in manual labor, we avoid the online cost of search-
engine calls, making our solution more lightweight at test
time, which is critical for our travel search engine.

(Guo et al. 2009) apply weakly-supervised Latent Dirich-
let Allocation to query-based NER using partially-labeled
seed entities. Similarly, (Pasca 2007) investigates a weakly-
supervised method for extracting named entities from
queries using a small number of seed instances per class.
These approaches are similar to other work on semi-
supervised methods for NE discovery (Riloff and Jones
1999), but instead of sentences from edited texts, the doc-
ument base originates from query logs. An advantage of a
weakly-supervised or semi-supervised approach compared
to a supervised one is that the labeling effort is extremely
limited. However, in general these approaches also require a
much larger set of unlabeled data than we had access to for
this work.

Finally, (Shen et al. 2008) design an algorithm for de-
ciding whether a query is a personal name. Like ours, this
work is an attempt to identify a class of named entities di-
rectly without supplemental calls to a search engine. The au-
thors build probabilistic name-term dictionaries in an offline
stage, and do probabilistic classification of queries using the
dictionaries in an online stage.

Semantic tagging in queries is another research area
closely related to this paper. The goal of the semantic tag-
ging task is to classify each token in the input query into a
predetermined set of classes. The main differences between
this and NER are that (1) in semantic tagging, the relation-
ship between two adjacent tokens with the same tag is not
clear, and (2) the definition of the classes is generally looser
than what is typically considered a named entity. (Li, Wang,
and Acero 2009) experiment with semantic tagging of user
queries in the product domain. They use a supervised CRF,
as well as various semi-supervised CRFs that leverage labels
derived from click stream data and product databases. The
amount of supervised data used is more extensive than what
we use in this paper. (Manshadi and Li 2009) address the
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semantic tagging task by inferring a semantic parse of web
search queries using a PCFG that generates bags of words.
A major drawback to this approach is its exponential time
complexity. Though queries are generally short, the online
cost would be prohibitively expensive for us.

In addition to work specifically on NER and semantic tag-
ging, a few other efforts are worth mentioning. (Bendersky,
Croft, and Smith 2011; 2010) propose a supervised approach
to the joint annotation of capitalization, POS tags, and
named entity segmentation in queries that employs search-
engine features in the same vein as (Riid et al. 2011). (Pan-
tel and Fuxman 2011) associate query substrings directly
with entities from a database. (Bergsma and Wang 2007) de-
velop a probabilistic classifier for query segmentation using
a hand-labeled data set.

Lastly, there are a few papers that elucidate the underly-
ing linguistic structure of queries (Li 2010; Barr, Jones, and
Regelson 2008), which may help to explain why standard
machine learning models can in fact work well on queries.
Indeed, there is a common assumption throughout the liter-
ature that standard approaches to NLP are not applicable to
search-query processing. In this paper, we show that a stan-
dard NLP technique can be used successfully for NER in
queries within in a restricted domain.

3 Motivation for Probabilistic NER in the
Travel Domain

The goal of our team at Expedia is to implement a high-
quality system for the identification and classification of
travel-related entities in search queries. Our team devel-
ops and maintains a language understanding module that
takes a user-generated query such as hotel in mountain view
with pool, and produces a semantic frame (see Figure 1)
that represents the meaning of the input with respect to
the travel domain. The primary use case for the semantic
frame is to provide a natural-language interface to travel
search engines. The frame identifies important spans of text
in the input and classifies them as one of several travel-
related concepts, including LOCATION, AMENITY, NAME,
BRAND, STAR-RATING, PRICE, DATE, and DURATION.
Currently, our understanding module provides support for
14 distinct travel concepts. In addition to segmenting and
classifying substrings of the input, it normalizes certain con-
cepts: for example, it maps the string 4th of july to a date/
time span in standardized UTC format, and it maps ameni-
ties to objects in Expedia database tables.

We have developed a probabilistic named entity recog-
nizer for a subset (LOCATION, NAME, and AMENITY) of
the travel entities we model. For these entities, the machine-
learned approach is used in place of one based on a combina-
tion of pattern matching against domain-specific lists of en-
tities, and heuristic disambiguation rules. The rules include,
for example, manually-constructed lists of terms excluded
from automatic membership in certain classes (e.g., nice is
excluded from the LOCATION class to prevent it from be-
ing automatically tagged as a location in queries like nice
room in san francisco). It also includes hand-written rules
for resolving entity class ambiguity (e.g., If a query sub-



Query:  “hotel in mountain view with pool 4th of july”
Concepts:{ Type: HOTEL STRUCTURE
Text:  “hotel”
Span: 10,0] }
{ Type: LOCATION
Text:  “mountain view”
Span:  [2,3] }
{ Type: AMENITY
Text:  “pool”
Span: [5,5] }
{ Type: RELATIVE DATE
Text:  “4th of july”
Span:  [6,8]
Start:  2015-07-04T00:00:00
End:  2015-07-05T00:00:00 }

Figure 1: Semantic frame produced for the query hotel in
mountain view with pool 4th of july

string matches a term in the LOCATION list and a term in
the NAME list, then it is a LOCAT ION). The heuristic pattern-
matching approach is still used to model the other 11 con-
cepts supported by the understanding module.

We targeted the LOCATION, AMENITY, and NAME
classes — defined in Table 1 — for replacement with a proba-
bilistic approach. These classes are highly salient to the do-
main and well-represented in our data sets. For example, in
our development set, 83% of the queries contain a location,
30% contain a travel-related name or brand, and 3% con-
tain an amenity. The correct identification of these classes
is crucial to the selection of an appropriate set of responses
by any downstream travel search engine. Additionally, in our
experience, these three entity classes have proven difficult to
model using regular-expression-based patterns. The heuris-
tic rules we developed to handle them had complex interac-
tions that were difficult to maintain for arbitrary natural lan-
guage query inputs. In contrast, we have found other entity
classes like dates and times to be much more amenable to
modeling with patterns and rules. The probabilistic NER ap-
proach handles many difficult cases like (hotel in [LocaTioN
mountain view] vs hotel with [ amentTY Mountain view)) that
were difficult to handle with hard constraints.

4 Model, Features, and Data

We use a first-order, linear-chain CRF model (Lafferty, Mc-
Callum, and Pereira 2001) to implement NER in travel-
domain queries. The CRF is an undirected graphical model
that can be used to calculate the conditional probability of an
output sequence y = (y1, ..., yr) given an input sequence
X = (Z1, ..., T7):

1 T K
Py = Zexpy D> Mfilweve-r,x) (1)

t=1 k=1

3937

Here, Z is a normalization factor over state sequences. For
our NER task, the input x is a sequence of tokens in a travel-
domain query. The output y is a sequence of labels that en-
code segmentation and class information (e.g., B-LOC to
represent the beginning of a LOCATION entity). Ay is the
value of the learned weight associated with feature fj,. The
weights in the parameter vector A = (\q,..., \x) are set
to maximize the conditional log-likelihood of the labeled
sequences in a training set. There are a range of optimiza-
tion procedures (conjugate gradient, quasi-Newton, etc.) that
may be used to learn the weights.

Features depend on pairs of adjacent output tags at time ¢
and t—1, as well as the entire input sequence x. For example,
a simple binary feature for our task might be defined as

1 ify, = B-AMEN, ;1 = O,y = “spa”
0 otherwise

Vi

This feature fires when the current class label is the begin-
ning of an amenity, the previous class label is not part of
any named entity, and the current token is spa. This feature
should have a positive weight since the token spa is likely
to be an amenity as long as the previous token is not part of
a name (e.g., The Webbington Hotel and Spa). A negative-
weight feature would look like

Fop = 1 ifyy = B-AMEN, y;_; = B-LOC, z; = “city”
%70 otherwise

since it’s far more likely for the token city to be part of a
city name than an amenity when the preceding token is the
beginning of a location. The ability of a CRF to incorporate
arbitrary features of the input and output is one of its most
appealing properties. Another highly appealing property of
a linear-chain CREF is that inference can be done efficiently
using dynamic programming.

We adapt the Stanford NLP Toolkit’s CRF implementa-
tion (Finkel, Grenager, and Manning 2005) for our NER sys-
tem and use a subset of the provided feature templates to de-
fine our baseline. Table 2 contains a comprehensive list of
our experimental feature templates, grouped into sets. The
BASE set contains our baseline features. Though standard
for formal, edited text, we do not include word shape fea-
tures in any of our feature sets since case-based features are
unsuited to our data. The POS set contains part-of-speech
tag features; WC contains word cluster features; and GAZ
contains gazetteer features.

To our knowledge, there is no publicly-available labeled
data set for NER in the travel domain. We developed our
own data sets by extracting and annotating 3,500 random
examples from user logs. Our data sets are available to the
public for research purposes by request to the authors. Fig-
ure 2 shows a few tagged examples from our training set.
The queries originated from two sources:

1. External search engines: Queries entered into various ex-
ternal search engines by users who ultimately completed
a transaction on our site.



ENTITY DESCRIPTION EXAMPLES

geo-political entities, points of interest, puerto rico, french riviera, space

LOCATION . L n s
airports, locational modifiers needle, pdx, o’hare, beach, downtown
hotel names and brands, car vendors, howard johnson, jet blue, hawksbill
NAME .. . .
and airlines beach resort all inclusive, budget
. . non-smoking, family friendly,
AMENITY modifiers and descriptors of raveler swimming pool, all inclusive, ski,

intent R
romantic, beach

Table 1: The three entity classes for the travel domain targeted for probabilistic NER. There is often ambiguity between classes,
for example beach can be LOCATION, AMENITY, or part of a NAME. budget can be a name or outside of any entity, for example,
tokyo budget hotel. In the latter case, budget would be identified as a PRICE by the heuristic pattern-match recognition system.

2. Internal search engine: Queries entered into an internal
travel search engine used by company employees.

SET FEATURE DESCRIPTION

WORD  curr word 700 training examples, 500 development examples, and 300
#  prefix/suffix substrings of len 6 test examples were randomly selected from around 120K ex-
DISJP  each of the prev 4 words ternal search engine queries from June 2013. Another 700
DISIN  each of the next 4 words training examples, 300 development examples, and 300 test

W-PW  curr word + prev word

BASE W-NW  curr word + next word examples were random'ly selected from around 170K inter-
PSEQ prev class nal search engine queries from August through November
PSEQW  curr word + prev class 2013. The method for acquiring the remaining 700 training
PSEQW2  prev word + curr word + prev class examples is described below.
PSEQpW__ prev word + prev class One challenge we faced when creating the data sets was
TAG  POS-tag(curr word) the low representation of queries containing amenities. For
POS PTAG  POS-tag(prev word) example, in our development set, 83% of the queries con-
NTAG _ POS-tag(next word) tain a location, 30% contain a travel-related name or brand,
DISTSIM  word-cluster(curr word) and only 3% contain an amenity. To address this problem,
PDISTSIM  word-cluster(prev word) we used a semi-supervised NER engine based on the work
wc  NDISTSIM - word-cluster(next word) in (Riloff and Jones 1999) to discover queries containing
PSEQcDS  word-cluster(curr word) + prev class S . .
PSEQpDS  word-cluster(prev word) + prev class amenities in an auxiliary set of 100K external search engine
PSEQpcDS  word-cluster(prev word) + word- queries. We started with a seed set containing the 232 ameni-
cluster(curr word) + prev class ties in our amenity gazette, and ran the semi-supervised en-
GAZc  curr word matches a gazette entry gine for one full iteration (i.e., find examples containing
GAZ GAZpC  curr V\iord matches a gazette entry + seeds, extract patterns, find new exemplars). We used 700
GAZbe E{l‘: fvg‘rss matches a gazette entry of queries obtained in th1§ manner to supplemept our training
len # data. As a result, the distribution of classes in our training
GAZ#pC  curr word matches a gazette entry of set differs from that in our development and test sets (see
len # + prev class Table 3).!
Prior to annotation, we performed basic tokenization, and
Table 2: Baseline set of feature templates from the Stanford we lower-cased all of the data due to inconsistency in cas-
NLP Toolkit (BASE) and experimental feature templates: ing. Four of the authors wrote annotation guidelines and
POS = part of speech tag features, WC = word cluster fea- tagged the data. Annotators marked any ambiguous or un-
tures, GAZ = gazette features. Each feature is also conjoined interpretable queries or parts of queries with the special
with the value of the current class. A bias feature containing tag “UNK” for unknown. These queries were subsequently
the current class alone is not listed but is also present in the eliminated from the data sets. There are 2,084 queries (8,720
baseline set of feature templates. tokens) in the resulting training set, 790 queries (2,924 to-
kens) in the dev set, and 589 queries (2,177 tokens) in the
test set. On average, there are 1.8 entities per query in the
training set (1.6 in dev). The average number of tokens per
query in the training set is 4.2 (3.7 in dev). To obtain a
Data set | Location | Name | Amenity measure of inter-annotator agreement, one of the annotators
Train 81% 28% 25% tagged 200 examples originally tagged by two different an-
Dev 83% 30% 3% notators. The resulting agreement was 91.9% using Cohen’s

. - . K statistic.
Table 3: Percentage of queries containing each of the entity classes

in the development and training sets. "Empirically, we have found that classifiers trained on this data
do not overpredict amenities.
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maui|U-loc vacation|O packages|O
london|U-loc hotels|O

cheap|O hotels|O

kyoto|U-loc hotels|O

car|O rental|O

san|B-loc diego|L-loc,|O seaworld|U-loc
nyc|U-loc 10|O burington|U-loc ,|O vt|U-loc
cape|B-loc may|I-loc courthouse|L-loc motels|O
hotels|O green|B-loc river|L-loc utah|U-loc
saint|B-loc martin|L-loc all|B-amen inclusive|L-amen resorts|O

downstream|B-name casino|L-name oklahoma|U-loc

tachi|B-name palace|l-name hotel|l-name and|I-name casino|L-name ,|O california|U-loc
dreams|B-name riviera|I-name cancun|L-name

hotels|O near|O pratunam|B-loc market|L-loc

comfort|B-name suites|I-name at|I-name royal|l-name ridges|L-name

Figure 2: Tagged examples from our training set.

5 Experiments

We use the data sets described in Section 4 for our experi-
ments. To evaluate each recognizer’s ability to identify en-
tities in travel queries, we report the F1 score. We use the
standard definitions of precision and recall, and we compute
F1 as their harmonic mean. All metrics are reported at the
entity level as opposed to the conventional CoNLL phrase-
level reporting (Sang and Meulder 2003). We use the BIO
(Beginning Inside QOutside) representation scheme in all of
our reported experiments. Despite evidence to the contrary
(Ratinov and Roth 2009), we found empirically that on our
data sets, a BIO-tag classifier produced higher scores than
BILOU, which adds two additional prefixes to represent the
Last token in an entity and Unit-length entities. Presumably,
our BILOU tagset was too large relative to the size of the
training set, leading to sparse statistics, though we have not
tested this hypothesis. For optimization of the CRF weights,
we use the quasi-Newton implementation in the Stanford
toolkit with the default settings.

Table 4 shows experimental results using several feature
sets on both development and test data. We report the over-
all F1 score as well as the F1 score of each entity class.
The highest score in each column is shown in bold face.
Scores that are statistically different from the baseline at the
0.01 significance level, according to the sign test, are marked
with an asterisk. The first row shows results with our base-
line set of features as defined in Table 2. Subsequent rows
add various combinations of feature sets on top of the base-
line. The feature sets are described in detail in Table 2. In
order to provide part-of-speech tags for the POS features,
we run our data sets through an in-house, domain-specific
POS tagger. The tagger is a standard maximum entropy se-
quence model tagger trained with hand-labeled, in-domain
data that achieves a measured tag-level accuracy of 94.0%.
For the word cluster features (WC), we use Brown cluster-
ing (Brown et al. 1992) to induce word clusters from a set
of 231K unlabeled user queries entered into our company’s
internal travel search engine. In particular, we use the im-
plementation of Brown clustering described in (Liang 2005)
and set the number of clusters to 10.> For the GAZ features,

2We used the software implementation of Brown clustering
available on Liang’s website.
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we use proprietary lists of domain-specific entities. Though
neither comprehensive nor noise-free, they offer good cov-
erage: there are around 1K airline names, 120 car vendors,
200 hotel attributes, 900 hotel brands, 200K hotel names,
and 175K locations.

In addition to various feature sets, we experiment with
several hybrid models that make use of heuristic informa-
tion (HEUR) from the pattern-matching NER system de-
scribed in Section 3. The hybrid models are shown in the
last four rows in Table 4. The primary source of heuris-
tics are manually-constructed disambiguation rules. Cru-
cially, whereas in previous instantiations of our system these
heuristics were applied as hard constraints, the discrimina-
tive CRF allows us to easily incorporate them as soft con-
straints by including them as features.

Finally, we investigate the use of aliases, abbrevia-
tions, and spell correction (AAS). Our manually-curated
lists of aliases, created during the development of the
pattern-matching NER system, are generally common mis-
spellings in the domain data (like marriot instead of mar-
riott). Manually-curated abbreviations include, for example,
dtwn for downtown. Spelling correction is carried out by
a domain-specific, probabilistic classifier developed by our
group. These three components — aliases, abbreviations, and
spelling — are considered together in Table 4 since the best
performance on the development set arose when using them
in conjunction. Aliases and abbreviations are added to the
gazettes prior to the extraction of features, and spelling cor-
rection is applied as a preprocessing step.

Table 4 clearly shows that we are able to improve on a
strong baseline for NER in the travel domain. Overall, we
achieve an F1 score of 86.4% on our test set, up from a
baseline score of 82.0%. We see a similar trend on the de-
velopment set. Our highest-performing classifiers on both
evaluation sets are those that make use of information from
a variety of sources, some automatically generated and some
manually curated. That said, it is interesting to note that the
boost due to manually-curated information over the best-
performing classifier without heuristics (86.1% to 86.4%)
is not statistically significant on the test set. In fact, it ap-
pears that the addition of extensive in-domain gazette infor-
mation together with word clusters derived from a moderate
amount of unsupervised data (WC GAZ in the table) gener-



Development Test
Model ALL | LOC | NAME | AMEN || ALL | LOC | NAME | AMEN
BASE 81.5 84.1 68.1 85.7 82.0 85.5 64.7 73.1
POS 81.9 84.5 68.8 84.2 81.4 85.0 63.6 74.5
wC 84.7*% | 87.3* 72.7 85.7 83.2 86.7 66.7 74.5
GAZ 84.6*% | 87.5* 71.6 82.1 84.2 87.8 66.0 73.5
WC GAZ 84.7*% | 87.6* 72.5 80.7 86.0% | 89.8* 68.5 72.0
WC GAZ POS 85.2*% | 88.1* 72.8 80.7 86.1*% | 89.4* 70.2 76.0
WC GAZ HEUR 86.3*% | 89.1* 74.2 84.8 86.0% | 89.6* 69.6 70.6
WC GAZ HEUR AAS 86.9* | 89.6* 75.1 83.3 85.5% | 88.8 70.5 70.6
WC GAZ POS HEUR 86.4% | 89.0* 75.2 86.7 86.0*% | 89.2% 70.4 78.4
WC GAZ POS HEUR AAS | 86.4* | 89.3* 76.2 85.3 86.4*% | 89.3*% 72.4 78.4

Table 4: Results on development and test data. Scores in bold face are the highest achieved for the column. Scores that are statistically
different from the baseline at the 0.01 significance level are marked with an asterisk.

100

90

80

F1 (%)

70

0 250 500 750 1000 1250 1500 1750 2000

Number of Examples

Figure 3: F1 as a function of the size of the training set.

ates the best performance with the least amount of manual
effort. Notably, the inclusion of a domain-specific POS tag-
ger does not appear to improve F1 in a statistically signifi-
cant way. As a general trend, the performance of the various
classifiers in the recovery of NAME entities tends to be lower
than for LOCATIONs and AMENITYs. We have noticed that
NAMEs tend to be longer than the other entity types and are
less likely to match gazette entries in the NAME gazette due
to aliasing. For example, the query aegean international ho-
tel will not match the corresponding entry aegean intl hotel
hot spring & spa in the NAME gazette. The requirement of
an exact gazette match diminishes the value of the NAME
gazette and may be too strict. We leave further investigation
of this problem to future work.

Because our training set is relatively small, it is natural
to wonder how much improvement we might see by adding
more examples. The learning curve in Figure 3 shows that
at around 2,000 training examples, the baseline classifier’s
performance gain starts to taper off. This suggests that in
order to get equal gains in performance, we would need to
supplement our training set with increasingly larger amounts
of data. We leave the addition of supplemental data to future
work as well.
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6 Contributions and Future Work

In this paper, we have demonstrated the efficacy of applying
a probabilistic sequence classifier to NER for travel-domain
queries. We have shown that we can achieve high-quality
extraction by labeling a relatively small amount of data and
using features derived from in-domain dictionaries and word
clusters, without reliance on clues from capitalization. Fur-
thermore, our results show that inclusion of gazette and word
cluster features in addition to a strong baseline set of features
diminish dependence on labor-intensive heuristic rules de-
veloped over several years of work on a rule-based pattern-
matching system. The resulting probabilistic NER classifier
is both highly accurate and efficient, and has been success-
fully embedded in a real-life travel search engine.

There are several paths for additional work that we in-
tend to address in the future. Investigating ways to target
improved performance for the NAME entity class is a high
priority. We plan to investigate the inclusion of phrase-based
cluster features to help with longer NAME entities, and to
look into methods for better gazette matching. For example,
we would like to make use of a large list of search-engine
validated aliases for hotel names. Another important area for
future research is to evaluate the use of additional training
data. The size of our training set is small, and our experi-
ments suggest we may see additional gains with more exam-
ples. Moreover, as our language understanding module and
the travel search engine in which it is embedded move into
the public realm, we anticipate a need for acquiring fresh la-
beled data sets that don’t require as much manual effort on
our behalf. For these reasons, we are looking into ways of
generating labeled training sets using crowdsourcing.
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