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Abstract
Hail causes billions of dollars in losses by damaging
buildings, vehicles, and crops. Improving the spatial
and temporal accuracy of hail forecasts would allow
people to mitigate hail damage. We have developed
an approach to forecasting hail that identifies poten-
tial hail storms in storm-scale numerical weather pre-
diction models and matches them with observed hail-
storms. Machine learning models, including random
forests, gradient boosting trees, and linear regression,
are used to predict the expected hail size from each fore-
cast storm. The individual hail size forecasts are merged
with a spatial neighborhood ensemble probability tech-
nique to produce a consensus probability of hail at least
25.4 mm in diameter. The system was evaluated dur-
ing the 2014 National Oceanic and Atmospheric Ad-
ministration Hazardous Weather Testbed Experimental
Forecast Program and compared with a physics-based
hail size model. The machine-learning-based technique
shows advantages in producing smaller size errors and
more reliable probability forecasts. The machine learn-
ing approaches correctly predicted the location and ex-
tent of a significant hail event in eastern Nebraska and a
marginal severe hail event in Colorado.

Introduction
Hail, or large spherical ice precipitation produced by thun-
derstorms, has caused billions of dollars in losses by dam-
aging buildings, vehicles, and crops (Changnon 2009). Eco-
nomic losses from hail have been increasing over the past
two decades as populations have increased and cities have
expanded in the hail-prone regions of the central United
States (Changnon et al. 2000). Some losses from hail could
be mitigated with accurate forecasts of severe hail potential
that give people and companies time to protect vehicles and
property from an incoming hailstorm.

Forecasting hail size and location is a challenging prob-
lem for meteorologists due to major uncertainties in both the
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forecasting and observing processes. Unlike more traditional
meteorological conditions such as temperature and rainfall,
hail size is not measured directly by automated instruments.
The primary source of empirical observations comes from
humans estimating the largest size found at their location,
and hail size estimated from radar is calibrated on those im-
perfect human observations. Within a storm, hail size can
vary dramatically and is generally not spatially contiguous.
Accurate hail forecasts require predictions about the char-
acteristics of potential hail-producing storms and the envi-
ronmental conditions surrounding them. Ensembles of nu-
merical weather prediction models can estimate the range
of possible atmospheric conditions and can partially resolve
the individual storm cells that produce hail up to a day
in advance (Clark et al. 2012). Current numerical models
do not produce explicit hail size forecasts. Hail potential
can be inferred indirectly through proxy variables related to
storm intensity (Clark et al. 2013) or more directly through a
physical (Brimelow et al. 2006) or machine learning model
(Manzato 2013) approach linking atmospheric conditions to
the largest possible hail size in a given area and time pe-
riod. While previous studies have focused on predicting hail
sizes over large areas and time period, this study investigates
how the latest high-resolution numerical weather prediction
model output can be integrated with machine learning mod-
els to predict hail potential over more specific areas and
times. Because of the much larger data volumes associated
with these models, this study adapted advanced techniques
from the image processing and machine learning fields to
make hail predictions in an operational setting.

The purpose of this paper is to describe and evaluate tech-
niques for producing day-ahead, hourly forecasts of hail
diameter using storm-scale numerical weather prediction
models, image processing, and machine learning. Forecasts
are produced for whether or not any hail will occur, the
maximum hail diameter produced from a particular storm,
and the probability of hail at least 25.4 mm (1 inch) in di-
ameter within 40 km of a point, which are the size cri-
teria for severe hail and the spatial verification threshold
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used by the National Weather Service. The goal is for the
machine-learning-based techniques to equal or exceed the
performance of a physics-based hail size model. Forecasts
from both machine-learning and physics-based techniques
were generated during the 2014 National Oceanic and
Atmospheric Administration (NOAA) Hazardous Weather
Testbed Experimental Forecast Program (EFP) and were
evaluated statistically and subjectively by teams of research
and operational meteorologists (Clark et al. 2012).

Hail Observations
Developing a machine learning model to predict hail re-
quires a reliable estimate of hail spatial coverage and di-
ameter. No automated network exists to detect hail at the
ground, so hail size observations come from either storm
spotter reports or estimates derived from NEXRAD radar.
Reports of hail at least 1 inch in diameter are collected by
the NOAA National Weather Service Storm Prediction Cen-
ter (SPC). The database is extensive and publicly available,
but it suffers from many limitations. The recorded hail diam-
eters are often estimated by comparing the stone to analog
objects, such as golf balls. This estimation technique results
in unnatural peaks in the hail size distribution (Jewell and
Brimelow 2009). The locations of hail in the dataset are also
biased toward population centers and major highways.

Radar-estimated hail size offers a solution to the pop-
ulation bias issue plaguing hail reports. This project uses
the NOAA NSSL Multiradar Multisensor (MRMS) gridded
Maximum Estimated Size of Hail (MESH), which derives a
maximum hailsize from gridded 3D radar reflectivity (Witt
et al. 1998). A multi-year comparison of MRMS MESH to
storm reports found that MESH was unbiased and had su-
perior spatial coverage to hail reports (Cintineo et al. 2012).
The native MESH data were interpolated to the model do-
main using cubic spline interpolation.

Storm-Scale Ensemble
This project uses output from the Center for Analysis and
Prediction of Storms (CAPS) Storm-Storm Scale Ensemble
Forecast (SSEF) system (Kong 2014), which was run in con-
junction with the NOAA Hazardous Weather Testbed Exper-
imental Forecast Program. The SSEF consists of an ensem-
ble of Weather Research and Forecasting (WRF) Advanced
Research WRF models with randomly perturbed initial and
boundary conditions. In addition, each ensemble member
used a different combination of microphysics (physics de-
scribing how water changes phase and grows into precipi-
tation), planetary boundary layer (atmosphere near the sur-
face), and land surface model (vegetation and soil processes)
parameterization schemes in order to increase the diversity
of model solutions. Each SSEF run was initialized at 00
UTC and produced hourly output during the period from late
April to early June. The 2013 SSEF was used to train and
validate the machine learning models while the 2014 SSEF
was used for testing. The 2013 SSEF consisted of 30 model
runs from 26 April to 7 June 2013, and the 2014 SSEF con-
sisted of 12 model runs between 15 May and 6 June 2014.
The 18 to 30 hour forecasts valid from 18 to 6 UTC are

Figure 1: In the first panel, the 1-hour maximum column-
summed graupel from a member of the SSEF at 22 UTC on
6 June 2014 is shown. The second panel shows the hailstorm
objects extracted from the column graupel grid by the en-
hanced watershed technique in solid colors. The connecting
lines indicate the matches between the forecasted hailstorms
and observed MESH (blue contours).

evaluated as they cover the time frame when hailstorms are
most likely and contain storms that were not present when
the SSEF initiated.

Machine Learning Framework
Hail size forecasts are derived from each ensemble mem-
ber by identifying forecast hailstorms, matching the forecast
storms with observed hailstorms, extracting data within the
storm areas, and then fitting a machine learning model be-
tween the atmospheric variables and the observed hail size.

Hailstorm Identification and Matching
Hail size prediction first requires determining the areas in
which hail is likely to occur. Model atmospheric condi-
tions related to hail should only occur in the areas where
the model produces ice-containing storms, so identifying
likely storm areas in the model both reduces the noise in
the training data and greatly reduces the required computa-
tional power. To find ice-containing storms, we examine the
1-hour maximum total column graupel field, which indicates
the maximum value over the previous hour of the total mass
of spherical ice particles in a column of air. For object iden-
tification, we use the enhanced watershed technique (Lak-
shmanan, Hondl, and Rabin 2009). As with the traditional
watershed, local maxima in the field are first identified, and
then objects are grown from the maxima in discrete steps un-
til stopping criteria are met. While the traditional watershed
uses a global lower threshold or maximum number of steps
as its stopping criteria, the enhanced watershed also includes

3955



Table 1: Input variables for the machine learning models
from the SSEF ensemble members. Storm variables (S) de-
scribe conditions within the storm and environment vari-
ables (E) describe the surrounding atmosphere.

Variable Description Units

Max Updraft Speed (S) Upward vertical wind speed m s−1

Max Downdraft Speed (S) Downward vertical wind speed m s−1

Max Updraft Helicity (S) Proxy for storm intensity m2 s−2

Radar Reflectivity (S) Simulated view of storm structure dBZ
Max Column Graupel (S) Total mass of ice particles kg m−2

0-5 km Total Graupel (S) Mass of ice particles in lower levels kg m−2

Storm Height (S) Height of the top of storm m
Bunker’s Storm Motion (S) Estimated storm speed and direction m s−1

Mean Layer CAPE (E) Mean instability J kg−1

Most Unstable CAPE (E) Highest possible instability J kg−1

Mean Layer CIN (E) Mean Inhibition J kg−1

Most Unstable CIN (E) Lowest possible inhibition J kg−1

Lifted Condensation Level (E) Estimated distance from ground to clouds m
Precipitable Water (E) Amount of water contained in column of air mm

0-6 km Wind Shear (E) Difference in winds at 6 km and surface m s−1

0-3 km Storm-Rel. Helicity (E) Estimate of horizontal localized rotation m2 s−2

0-3 km Lapse Rate (E) Change in temperature with height K km−1

850 mb Specific Humidity (E) Ratio of water vapor mass to total air mass g kg−1

a size criteria and buffer zones around local maxima. Prior
to applying the enhanced watershed to the data, a Gaussian
filter was applied to each grid in order to increase spatial
correlations and generate smoother objects.

The enhanced watershed is applied to both the model col-
umn graupel fields and the observed MESH field. The en-
hanced watershed was manually tuned to capture a wide
range of hail swath intensities while keeping neighbor-
ing swaths as separate objects. The object-based verifica-
tion approach matches forecast and observed objects itera-
tively based on spatial distance from closest to farthest away
within a 200 km radius. An example of the enhanced water-
shed and object matching being applied is shown in Fig. 1.
Since each observed hail object can only be matched with
one forecast hail object, some storms near isolated hail ob-
servations do not get matched.

Once storms are identified and matched, statistics describ-
ing different properties of the storm and atmosphere are ex-
tracted from each hailstorm object. These statistics include
the mean, standard deviation, minimum, and maximum of
WRF output variables describing the strength of the storm
as well as the conditions of the storm environment (Table
1). The forecast label is the maximum hail size within the
matched MESH object, or 0 if no match was found.

Hail Classification and Size Regression
Machine learning models first determine if a specific fore-
cast storm will produce any hail, and given that the storm
does produce hail, what size the hail will be. A classification
model was trained on all cases to produce a binary prediction
of whether or not the storm would produce hail, and a regres-
sion model was trained on only the storms that were matched
with an observed hail event. Three machine learning mod-
els are tested: random forest, gradient boosting regression
trees, and a combination of a logistic classification model
and ridge regression. Random forests (Breiman 2001) are
ensembles of decision trees that use resampling of the train-
ing data and random subsampling of attributes to increase

the diversity of the individual members and improve predic-
tive performance. This project used a 100 tree random forest
with default parameters. Gradient boosting trees (Friedman
1999) are an additive ensemble of decision trees that are it-
eratively trained and weighted based on their error charac-
teristics. We used 1000 trees, a learning rate of 5%, and a
max depth of 5. Both methods have produced strong predic-
tive performance in many domains and both can be analyzed
using variable importance measures and partial dependence
plots. A logistic model is a linear classifier that translates in-
put parameters into a probability through a logit transforma-
tion, and ridge regression is linear regression with a penalty
term to restrict the size of the coefficients and make the re-
gression more robust. All methods were implemented using
the Python scikit-learn library (Pedregosa et al. 2011). When
the predicted hail sizes were applied to the original forecast
grid, the storms producing no hail were removed from the
grid, and the predicted size values were applied to the grid
points within the area covered by each forecast hail storm.

HAILCAST
HAILCAST is a one-dimensional, physics-based coupled
cloud and hail model. HAILCAST grows a set of simu-
lated hail embryos based on the instability, wind shear, and
moisture in the local atmosphere. It has shown skill when
run with input from forecast and observed vertical atmo-
spheric profiles (Brimelow et al. 2006) in a wide range of
storm environments (Jewell and Brimelow 2009). The tech-
nique has been further refined to run during the integration of
a storm-scale numerical model (Adams-Selin, Ziegler, and
Clark 2014) and has been released publicly in WRF version
3.6. In addition to being run during the 2014 EFP, HAIL-
CAST has been incorporated into the operational Air Force
Weather Agency storm-scale ensemble. HAILCAST is run
at each SSEF member grid point with an updraft speed at
least 10 m s−1. The maximum HAILCAST hail size within
each forecast hailstorm object was used as the comparison
prediction with the machine learning methods because it
provided the most analogous estimate to the observed max-
imum hail size.

Neighborhood Ensemble Probability
The machine learning methods produce a calibrated hail
size forecast for each ensemble member and each time step.
These machine learning forecasts do not cover the full range
of possible hail sizes at every grid point because the SSEF
contains spatial and temporal errors in storm placement
and intensity and does not fully approximate internal storm
dynamics as well as the processes that govern precipita-
tion formation and thermodynamic changes associated with
them. These physics errors results in modeled storms that
do not form, move, and intensify at the same rate as the real
ones. One approach commonly used to account for this spa-
tial error is the neighborhood ensemble probability method
(Schwartz et al. 2010). Conditional probabilities of severe
hail are calculated by counting the number of grid points in
a local, circular neighborhood in which severe hail occurs
and dividing by the number of grid points in which any hail
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Figure 2: Heatmaps of the distributions of forecast errors for
each hail size model.

occurs. The probability from all ensemble members are av-
eraged together, and a Gaussian filter is applied to smooth
the edges of the non-zero probabilities. Since each model
forecast has been bias-corrected by the machine learning
regressions, the resulting probabilities should also be unbi-
ased. The size of the neighborhood can be adjusted to cap-
ture uncertainties at varying scales. Weather forecasters pre-
fer spatially smooth probabilities as they more closely match
human forecasts. The drawbacks of neighborhood ensem-
ble probabilities are that they weaken probability gradients
and can understate the threat of single isolated storms while
highlighting clusters of more widespread marginal storms.

Results
We statistically validated the hail size and probability fore-
casts based on 12 hail days from 15 May to 6 June 2014. The
predicted hail sizes were compared with the maximum hail
sizes within each matched observed hailstorm object. The
probability forecasts were compared at each grid point with
whether or not hail at least 25.4 mm in diameter was ob-
served within 40 km of that point, which are the evaluation
criteria used by the SPC.

Hail Size Forecasts
The machine learning and HAILCAST size forecasts
showed skill in predicting hail sizes up to 60 mm in di-
ameter, which account for the bulk of all hail events. Both
tree-based methods predicted that most severe hail would be
between 25 and 60 mm, and most of their predictions were
close to those values. Observed hail over 60 mm was also
predicted to be within the 25 to 60 mm range (Fig. 2). While
ridge regression and HAILCAST predicted hail sizes over
the full range of observed values, both methods tended to
overpredict the maximum hail diameter, especially HAIL-
CAST.

Examining the errors for each ensemble member reveals
some links between the error characteristics and the micro-

Figure 3: Comparison of the bootstrap 95% confidence in-
tervals by model and ensemble member. The microphysics
scheme used in each ensemble member is indicated below
the name of the member.

physics parameterization scheme used by each member (Fig.
3). HAILCAST performed statistically significantly (boot-
strap 95% confidence intervals) worse than any of the ma-
chine learning methods, and the error was greatest in en-
semble members using the Thompson microphysics scheme.
The Thompson scheme assumes a relatively larger graupel
density compared to the other schemes, which HAILCAST
used as the basis for growing its hailstones. The Milbrandt
and Yau (MY) scheme has separate graupel and hail densi-
ties, and HAILCAST performed best in the members using
that scheme. The machine learning models performed sim-
ilarly across most ensemble members, and gradient boost-
ing trees performed statistically significantly better than the
other models for most members. The hail occurrence pre-
dictions also showed similar skill among all machine learn-
ing methods and ensemble members (Fig. 4). A performance
diagram (Roebber 2009) displays the relationships among
four binary contingency table scores: probability of detec-
tion (y-axis), false alarm ratio (x-axis), frequency bias (dot-
ted diagonal lines), and critical success index (solid curved
lines). Performance is best in the upper right corner of the
diagram and along the diagonal where the frequency bias is
1. The machine learning methods had similar success ratios,
but there was a wider range in the percentage of hailstorms
detected. HAILCAST was the best at distinguishing which
storms produced hail. Some of the performance issues stem
from the enhanced watershed parameters fitting storms from
some models better than others due to differences in micro-
physics.

Neighborhood Probability Forecasts
Since the machine learning approaches produced hail fore-
casts with little bias, the resulting neighborhood probabili-
ties tended to be more reliable, or occurring at the frequency
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Figure 4: A performance diagram measures the ability of
each method and ensemble member to match forecast and
observed hail storms spatially.

given by the probability, than the corresponding HAILCAST
forecasts. For probabilities ranging from 0 to 20%, gradi-
ent boosting trees are nearly reliable and the other methods
are slightly overconfident while HAILCAST is more over-
confident (Fig. 5). At higher probabilities, there was over-
confidence from all methods. From subjective verification
of the different hail forecasts, this overconfidence is linked
to a spatial displacement of the highest neighborhood proba-
bilities away from where severe hail fell at a particular time.

Case Studies
The worst hail event during the experiment occurred on
3 June 2014 in Nebraska. Multiple rounds of storms pro-
duced wind-driven baseball to softball sized hail that left
large dents and holes in cars, crops, and the sides and roofs
of houses. Each model generated a neighborhood proba-
bility prediction for each hour from 18 to 00 UTC. The
maximum 1-hour probabilities during that time period are
displayed in Fig. 6. All models encompassed the full ob-
served area of 25 mm or greater hail with nonzero probabil-
ities and have their highest confidence in eastern Nebraska
where the largest hail was observed. All models also dis-
played enhanced probabilities in western Nebraska where
isolated storms also produced severe hail. Random forest
produced the subjectively best forecast of the machine learn-
ing methods because its maximum overlapped the 75 mm
hail most closely and because it had relatively lower prob-
abilities for the western Nebraska storms. HAILCAST pro-
duced the most confident forecast, but it had high probabili-
ties well outside the area where 25 mm hail was observed.

A more marginal but widespread hail event occurred on
21 May 2014 in Colorado, Kansas, Oklahoma, and Texas.
An isolated hailstorm dropped severe hail and caused flood-
ing in downtown Denver, and additional storms dropped hail
across eastern Colorado. The ensemble means of the hail
size forecasts are shown in Fig. 7. HAILCAST and ridge
regression generally overestimated the maximum hail sizes

Figure 5: Attributes diagram that compares the forecast
probabilities of each model with their corresponding ob-
served relative frequencies. Points in the gray area have posi-
tive skill, and points outside the gray area have negative skill.
The inset indicates the observed frequency of each probabil-
ity forecast.

for the day with widespread areas of over 50 mm hail. Ran-
dom forest and gradient boosting produced hail sizes closer
to what occurred, and gradient boosting also had a wider
range of hail sizes than random forest. The most intense por-
tions of the forecast hail swaths were shifted northeast of
the observed hail swaths, so while the general character of
the event is correctly forecast, downtown Denver was fore-
cast to receive no hail in 3 of the 4 models. The neighbor-
hood probabilities in Fig. 8 account for this spatial error and
show non-zero probabilities over Denver. The random for-
est neighborhood probabilities capture the Colorado hail the
best by showing two areas of high hail potential and by hav-
ing non-zero probabilities of hail over Denver.

Discussion
Generating and validating daily hail forecasts with a group
of experienced meteorologists provided insights about the
good qualities of the forecasts and what needed improve-
ments. The machine-learning neighborhood probabilities
were useful because the bias-correction reduced the false
alarm area compared to HAILCAST. The probability fore-
casts were closer to the best forecast from a trained mete-
orologist given the same information. Further improvement
to machine learning model performance is constrained by
the model storm information. The storm representation can
be improved with better resolution, model physics, and ini-
tial conditions, but it will always contain uncertainties and
errors because we cannot fully observe the atmosphere, the
physical models contain approximations, and computational
power is limited. While the different machine learning mod-
els were not able to predict hail above 60 mm in diameter,
this was largely because there was very little training data
at these sizes. HAILCAST, on the other hand, predicted hail
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Figure 6: Maximum neighborhood ensemble probabilities between 18 and 00 UTC on 3 June 2014. The blue contour indicates
the areas that were within 40 km of 25 mm diameter hail, and the green contour indicates the same distance from 75 mm
diameter hail.

Figure 7: Ensemble mean hail sizes from each model for 21
May 2014 from 22 to 02 UTC. Blue contours indicate ob-
served hail sizes of at least 5 mm and green contours indicate
hail sizes of at least 25 mm.

over 60 mm almost every day during the experiment and was
not trusted by the meteorologists because of that issue. This
was also the first operational test for both models, and the
forecaster feedback has been valuable for introducing im-
provements to both systems.

Additional modifications will be applied to provide better
performance in an operational setting. Because the choice
of numerical weather prediction model parameters affects

the characteristics of the storms, the storm-finding system
should be tuned to each SSEF ensemble member. Predicted
hail size should be associated with storm intensity, and the
weaker connections in this dataset may be due to not in-
cluding intensity in the matching criteria between forecast
and observed hail areas. Forecast and observed storms have
also shown tendencies to be offset in time as well as space,
and this time offset may also be responsible for the inten-
sity mismatches. The approach will also be applied to other
storm-scale models that are being run operationally, such as
the High Resolution Rapid Refresh, the NSSL WRF, and
the Air Force Weather Agency storm-scale ensemble. The
updated modeling approaches will be evaluated by forecast-
ers in the Spring 2015 Hazardous Weather Testbed Experi-
mental Forecast Program. Past and future hail forecasts are
viewable at http://cs.ou.edu/∼djgagne.

Conclusions
Hail is a dangerous severe weather phenomenon that causes
increasingly extensive economic damage each year. Improv-
ing hail prediction with more accurate information about ex-
pected hail locations and intensity will allow people to mit-
igate some of the potential impact of hail. We have demon-
strated in an operational setting a hail prediction system that
applies machine learning and image processing techniques
to storm-scale numerical model ensembles. The approach
shows accuracy in predicting hail location and in discrim-
inating its severity with lead times of up to a day in advance
of a hailstorm. The machine learning approaches demon-
strated some advantages over physics-based hail size calcu-
lations. Improvements to the numerical models and machine
learning approaches should lead to increasingly accurate hail
size and location forecasts.
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Figure 8: Neighborhood ensemble probability of severe hail
from each model for 21 May 2014 from 22 to 02 UTC. Blue
contours indicate hail sizes of at least 25 mm and green con-
tours indicate hail sizes of at least 75 mm.
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