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Abstract

In previous work, we described G2I2, a system that adjusts
the cost function used by an off-road route planning system
in order to more closely mimic the route choices made by hu-
mans. In this paper, we report on an extension to G2I2, called
GUIDE, which adds significant new capabilities. GUIDE
has the ability to induce a cost function starting with a set
of historical tracks used as training input, with no require-
ment that these tracks be even close to cost-optimal. Given
a cost function, either induced as above or provided from
elsewhere, GUIDE can then compare planned routes with
the actual tracks executed to adjust that cost function as ei-
ther the environment or human preferences change over time.
The features used by GUIDE in both the initial induction of
the cost function and subsequent tuning include time-varying
meta-data such as the temperature and precipitation at the
time a given track was executed. We present results show-
ing that, even when presented with tracks that are very far
from cost-optimal, GUIDE can learn a set of preferences that
closely mimics terrain choices made by humans.

1 Introduction
For the past several years, we have been working to improve
map-based route planners for human route traversal. The
applications of interest include off-road terrain, so our maps
are grids of pixels, rather than more general graphs.

Our objective is to improve the performance of these route
planners in several ways. The planners should be tolerant of
errors in the maps used in planning, adaptable to reduce mis-
matches between (possibly hand-coded) cost functions and
actual human preferences, evolvable over time as the map,
mission, or human preferences change. The planning deci-
sions made by these systems should be explainable in terms
that make sense to the user of such a system, not just the
implementer. They should be capable of integrating multi-
ple data sources, both sources of data regarding the area in
which the route is to be planned, and alternative dimensions
of preference or cost for a given route. Finally, these systems
should perform these marvels largely independent of explicit
human input. For example, users should not be asked to ex-
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plain why their choices in executing a route differed from
the route planned by the system.

In this paper, we describe our progress to date in address-
ing the requirements of this application, currently imple-
mented in a system called GUIDE. In Section 2 we present
this motivating application in more detail, showing how
problem features have guided our design decisions. We
also summarize our previous work on a predecessor sys-
tem called G2I2 (Gohde, Boddy, and Shackleton 2013),
and describe new capabilities and improvements captured in
GUIDE. Subsequent sections present the two different forms
of learning performed by GUIDE, induction of an initial cost
function based on a training set of historical tracks (Sec-
tion 3), and tuning of that cost function based on pairwise
differences between planned routes and the tracks as exe-
cuted, based on those routes (Section 4). We then present
some experiments demonstrating the current performance of
the system (Section 5), discuss some relevant previous work
by others in this area (Section 6), and conclude with a dis-
cussion of our results and some future work, in Section 7.

2 Off-Road Route Planning for Human
Execution

As discussed above, we are primarily concerned with im-
proving the behavior of off-road route-planning systems
from the point of view of the users of those systems. We
are interested in systems that generate novel routes between
specified start and end points, rather than systems that work
by retrieving and combining previously-executed segments,
and so focus on planning systems doing some form of cost-
based heuristic search. There are several axes along which
these systems might be improved, all related in one way or
another to the model of movement cost used by the plan-
ner. There may be errors in the underlying map, for example
roads that should be present that are not represented. The
cost function(s) relating map features to human preferences
may not model those preferences sufficiently closely. There
may be features not appearing in the maps at all, which af-
fect human route choices.

Further complicating the problem is the fact that pref-
erences, the relevant features, and the map itself may all
change over time. Personnel may rotate in and out of a
particular organization. Seasonal changes in ground cover
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and soil moisture can drastically affect preferences for areas
to traverse. And the map may change through the addition
or removal of map features. For example, Figure 1 shows
a set of GPS tracks in Olathe, KS, gathered over a period
of several months. On the left, there is a straight, vertical
track through the center of the map, showing the presence
of tracks that took that route. The right shows the same area
and the same data, with tracks filtered to exclude those be-
fore a specified date. In this figure, the vertical feature is
missing. The explanation is visible in the satellite image on
which the tracks are overlaid: there is a curving road through
the area in question, which was only recently completed.
Previously, the road ran straight north and south.

Figure 1: Left: Older GPS tracks along a straight road.
Right: Tracks filtered by time, removing older tracks.

In (Gohde, Boddy, and Shackleton 2013), we presented
G2I2, a system that improves the routes generated by an off-
road planner by altering a movement cost function based on
map features of terrain type and slope. G2I2 can also alter
costs on the map at given coordinates, rather than based on
annotated features. These “local features” can be used to
make coordinate-based alterations to the cost function, for
example based on errors in the map such as a bridge that has
been washed out. The signal used by G2I2 for making these
adjustments come from comparing planned routes and the
tracks resulting from execution based on those plans.

Figure 2: A cost function is induced from historical tracks,
then updated by comparing routes generated with it to those
taken by human route executors.

GUIDE extends G2I2 in several ways. Most notably,
GUIDE includes time-varying features such as temperature
and precipitation. In a large database of tracks gathered
from real users, there is a very clear indication that these
features do affect their routing preferences. GUIDE also
adds the ability to induce a cost function based on historical

track data, rather than just adjusting an existing cost func-
tion based on comparing planned routes and the resulting
tracks. A tuning capability based on these comparisons has
also been included in GUIDE, re-implemented as required
by the different form of cost functions used by GUIDE. Fig-
ure 2 shows how the cost function is used and altered. In the
rest of this paper, we describe in more detail how GUIDE
functions and present some results on system performance.

3 Inducing a Cost Function

Figure 4: Preferences vary with increasing precipitation

Starting with a set of tracks and a map describing the
area traversed, GUIDE induces a movement cost function
over the map. This cost function is based on features as-
sociated with map locations, rather than with the locations
themselves. Consequently, the resulting cost functions can
be used to plan routes over parts of the map that were not
traversed by any of the tracks used in training.

Induction of this cost function is a two-step process. First,
GUIDE computes the relative amount of a given terrain type
present in each track, compared to the prevalance of that
terrain type in the area around the route, resulting in a nu-
meric value between -1 (the terrain is only present in the
track, and comprises the entire track), and 1 (the terrain is
only present in the surrounding area, and comprises the en-
tire surrounding area). This value is mapped via a sigmoid
function to a value between 0 and 255, so as to provide a
proxy cost (inverse preference) for that type of terrain un-
der the prevailing conditions (slope, speed, temperature, and
precipitation). We chose a sigmoid over a linear mapping
for better separation around 0 in the comparison above. Few
comparisons result in values close to -1 or 1.

Terrain type is the only discrete feature GUIDE uses.
Consequently, the cost function induced is represented as
a set of functions over continuous variables, one for each
terrain type. Each of these cost functions is computed as
follows. For each track in the training set, GUIDE per-
forms a linear regression over a combination of the proxy
cost and a quadratic combination of the continuous features
listed above. The result is a set of linear coefficients over the
features and feature combinations, defining a cost function
for the given terrain type.

The use of a quadratic kernel function is motivated by the
insight that preferences are not well represented by a cost
computed as a linear combination of features. There are de-
pendencies: terrain preferences can flip, based on things like
the current temperature, or whether it is raining, or a combi-
nation of the two. Figure 3 shows the cost of traversing three

3962



Figure 3: Relative cost to traverse terrains with varying temperature and precipitation

different terrain types with varying temperatures and precip-
itation with all other feature values in the induced cost func-
tion held constant. These values are relative: the decrease
in cost for agriculture as precipitation increases at a temper-
ature of 10 degrees indicates that agriculture becomes more
preferable in relation to other terrain types as precipitation
increases.

The resulting effect on relative costs is shown in shown
in Figure 4. In those maps, redder is more costly, greener is
less costly (i.e., more preferred). It can clearly be seen that
time-varying conditions are significant: there is a clearly in-
creased preference for roads once there is any precipitation.

4 Tuning by Pairwise Comparison
In our previous work on G2I2, we implemented a function
for learning cost updates from the differences between a
planned route and the track as executed, based on that plan.
Again, the objective is to use the cost function as a proxy for
human preferences, and the assumption is that divergences
between the planned route and the executed track represent
errors in modeling those preferences. GUIDE includes the
same capability, modified to account for the fact that GUIDE
uses a different form of cost function than G2I2. Similar to
the process of inducing a cost function described in the pre-
vious section, terrain types over-represented in the planned
route (compared in this case to the executed track, not the
surrounding area) have their costs increased in those con-
ditions, while those under-represented have their costs de-
creased in those conditions. Updates may be local, affect-
ing a specific region on the map, or global, where costs for
traversing all instances of a terrain type are altered.

Among the reasons that G2I2’s approach to tuning cost
functions will not work in GUIDE is the large increase in
the number of dimensions in the cost function: in addition to
adding new features, we have added quadratic combinations
of all features, both new and old. Consequently, tuning up-
dates in GUIDE are localized, adjusting the cost function at
and around a specific combination of feature values, rather
than making a more global update. For example, because
the update is localized, changes based on routes executed in
cold weather do not affect the values calculated by the cost
function in warm weather. This local adjustment is accom-
plished by adding or subtracting a bell-shaped function the
magnitude of which is scaled by the difference in the pro-

portion of the terrain type, centered on the feature values for
those conditions. The width of the bell is scaled along each
feature proportional to the span of the data found in that fea-
ture.

The function used in GUIDE for local adjustments is

e
− 1

2 (
(C1−U1)2

(span1/100)2
+...+

(Cn−Un)2

(spann/100)2
)

C is the set of current feature values, U is the set of fea-
ture values from the route that produced the update, and
span is the span of the data for that feature (i.e., along a
given dimension of the cost function). Each update (one
per route/track comparison) is added to the cost function for
each terrain type, scaled as described above by the relative
terrain type proportions.

Figure 5 shows a cost function limited to varying temper-
ature, with two cost updates, one increasing cost around 10F,
one decreasing cost around 80F. In practice, GUIDE accu-
mulates updates over numerous comparisons, making small
local adjustments for each one. Over time, the cost function
changes to reflect the route executor’s preferences.

Figure 5: Single feature cost function with learned updates

5 Experiments
For all of the experiments reported in this section, the route
planner being used was Primordial’s Ground Guidance off-
road route planning system1. We evaluated GUIDE’s ef-

1http://www.primordial.com/index.php/products/ground-
guidance
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Cost Induction Mean Quartile
1st 2nd 3rd

Terrain Error 4.0% 0.1% 0.5% 4.0%
Absolute Cost Error 1.6% 0.1% 0.2% 0.7%
Cost Error / distance 4.3% 0.1% 0.4% 2.7%

Pairwise Tuning Mean Quartile
1st 2nd 3rd

Terrain Error 3.4% 0.0% 0.3% 2.8%
Absolute Cost Error 2.6% 0.1% 0.2% 1.2%
Cost Error / distance 3.9% 0.2% 0.8% 3.1%

Table 1: Learning a cost function from cost-optimal routes

fect on routes generated by Ground Guidance in experiments
with two different datasets. The first is a set of 15,000 cost-
optimal routes produced according to a known cost func-
tion. These routes were generated using random start and
end points for each route, up to 1.5 kilometers apart, within
an area of roughly 11,000 km2.

The objective for experimenting with this dataset was to
determine the accuracy with which GUIDE can reconstruct
a cost function from a set of routes produced using that cost
function. The second dataset consisted of 17,000 tracks cap-
tured by human route executors using GPS devices. These
routes are very far from optimal: the tracks include such
things as people running around a school track, or trac-
ing a path through their neighborhood on an evening walk.
The objective in this case was to evaluate GUIDE’s abil-
ity to learn a cost function that captures human preferences,
even in presence of serious sub-optimality. For each dataset,
90% of the routes are used as a training set to induce a cost
function, with 10% withheld for evaluation. Subsequently,
roughly 10% of the training set are used for further tuning
of the cost function through pairwise comparison of planned
and actual routes for a given source and destination, evalu-
ated using the same evaluation set.

In evaluating the cost function, we use three metrics. The
first is terrain error, measuring the difference in proportion
of terrain types between a route planned by the cost function
with the same start and end points as an evaluation route. For
example, a planned route traversing 60% trail and 40% resi-
dential roads compared to an evaluation route that traversed
40% trail and 60% residential roads has an error of 20%.
The second is cost difference between the planned route and
evaluation route. The third is cost per unit distance.

Table 1 shows the results for the first dataset, consisting
of cost-optimal routes. For initial induction of the cost func-
tion from the tracks in the training set, terrain error is low.
Differences in total cost and cost per unit distance between
planned and actual routes in the evaluation set are also small.
In all three cases, the median error (shown as the 2nd Quar-
tile value) is much lower than the mean error, showing the
results are strongly skewed toward lower error, with a few
outliers with higher errors. With the addition of tuning using
pairwise comparisons, mean terrain error and cost per unit
distance improve while absolute cost error worsens. This in-
dicates that the pairwise learning is successfully adapting the
cost function to mimic the terrain type choice, but has pro-

Cost Induction Mean Quartile
1st 2nd 3rd

Terrain Error 27.2% 17.3% 25.5% 36.3%
Absolute Cost 81.7% 32.0% 53.4% 95.3%
Error
Cost Error / 24.1% 9.0% 19.4% 33.6%
distance

Pairwise Tuning Mean Quartile
1st 2nd 3rd

Terrain Error 26.6% 16.3% 24.9% 36.4%
Absolute Cost 60.7% 22.1% 38.85% 75.54%
Error
Cost Error / 8.6% 2.3% 5.9% 10.8%
distance

Table 2: Learning a cost function from historical tracks

duced slightly longer routes to do so. The change in cost per
unit distance is small, with a minor decrease in mean and
increase in median error. Median error was less than 1%
across all metrics, indicating GUIDE was able to faithfully
reconstruct the output from the cost-optimal cost function.

In the second set of experiments, we tested GUIDE
against routes produced by human route executors, as cap-
tured by GPS devices. Table 2 shows the results of inducing
a cost function and of tuning using pairwise comparisons
against that induced cost function. The results differ con-
siderably from the first set of experiments. One problem
was that the track data itself is noisy, with numerous GPS
registration errors large enough to displace tracks from one
terrain type (e.g., a road) to another (such as a nearby field),
and map errors, such as missing roads. Figure 6 shows ex-
amples of these sorts of errors. In order to perform a more
accurate evaluation, we corrected most of the GPS registra-
tion errors in the evaluation set. The training set was left
unmodified, as a test of GUIDE’s robustness (and because
real data is likely to have similar problems).

Figure 6: Left: GPS registration errors between plan (yel-
low/top) and actual (white/bottom). Top Right: Terrain map
missing roads. Bottom Right: Aerial imagery with roads.

Several additional aspects of this dataset make learning a
cost function more difficult. First is that many of the routes
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are not even close to cost optimal. Many routes have start
and end points that are nearly identical, such as when some-
body goes out jogging. While the historical track may be a 1
kilometer loop, a cost optimal planner will produce a short,
direct route of a few meters. To combat this, we created
a waypoint at each quarter of the distance along the track,
forcing the planner to find paths to points along the loop.
Some of the tracks were even worse than loops. For exam-
ple, the track shown in Figure 7, drawn from this dataset,
loops back on itself in such a way that adding waypoints
based on distance along the track does not help.

We also found that people appeared to be making route
choices based on features that do not appear in the map.
For example, someone might take a road away from their
starting point, then return to it along a nearby trail, appar-
ently preferring the novelty of not retracing their steps to
sticking to which of road or trail would otherwise be prefer-
able. Adding a cost for retracing a route in this way requires
changes to the route planning algorithm itself, not just the
cost map, and so is outside GUIDE’s scope, at least for now.
The result of this behavior is that GUIDE will induce very
similar costs for road and trail, since they appear to be equi-
preferable in some cases. These equivalences mean that the
terrain error metric is not indicative of how well GUIDE has
performed in this set, because very small differences in cost
can lead to large differences in terrain choice, where those
differences are not in fact very important to the human user.

Figure 7: Route with loops that produces large cost error.
Stars show automatically added waypoints.

The second metric, absolute cost error, is also not an ef-
fective way to measure the performance of GUIDE against
this set. As stated, the historical routes are not cost optimal.
Instead, many of the routes may be trying to travel a specific
distance or for a set amount of time, as is often the case in
walking or running for health or pleasure. Again, reflecting
these objectives in planned routes will require modifying the
behavior of the planner, not just the cost function.

The third metric, cost per unit distance, compensates for
both terrain equivalences and lack of route optimality. Thus,
even if a historical track consists of walking multiple circuits
of a loop along both roads and trails, the error will be low

Terrain Type Track Min Max Mean SD
Presence Cost Cost

Trail 25% 34.1 49.9 38.4 1.9
Res. Road 18% 32.0 50.2 42.5 2.0
Arterial Road 12% 34.5 42.0 40.2 0.7
Herb, Short 17% 55.4 73.4 59.8 1.8
Dev., Low 15% 54.6 79.8 60.6 3.9

Table 3: Common terrain types with presence and costs.

if the cost function has correctly assigned costs to the ter-
rain types and produces a route covering terrain types in the
equivalence class. GUIDE produces errors even with this
metric with only the induced cost function, but these errors
are greatly reduced after performing pairwise updates.

One potential confound for this metric would be if all of
the terrain types commonly occuring in tracks had very sim-
ilar costs (i.e., were all roughly equi-preferable). Table 3
show the costs found for common terrain types and the pro-
portion of historical routes they make up. Each terrain type
has a range of costs, because those costs vary depending on
conditions. There are still clear dominance relations among
them in terms of cost. Clearly, people are making choices
to traverse terrain with significantly different costs. Coupled
with the information in Table 3, the results in Table 2 in-
dicate that the routes planned with GUIDE’s adjusted cost
function are making very similar terrain choices to those
found in the training dataset of tracks.

Figure 8: The cost function learned by GUIDE produces dif-
ferent routes in cold, snowy weather (yellow/top) than hot,
rainy weather while the route planner’s default cost function
produces one route in all conditions (pink/bottom).

Finally, we showed in Section 3 that the cost functions in-
duced by GUIDE include a significant influence from time-
varying features such as temperature and precipitation. Fig-
ure 8 shows that this influence does in fact lead to the gener-
ation of significantly different routes by the route planner.

6 Related Work
There is a great deal of previous work on route planning for
humans and robots, on-road and off-road, in static and dy-
namic environments. The work in this area that is relevant
to GUIDE is that which seeks to learn or adjust the nature
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of the routes returned. David Silver and others have devel-
oped theory and tools for learning cost models for robots
moving through configuration spaces, including but not lim-
ited to map traversal, through the application of inverse op-
timal control (Ratliff, Bagnell, and Zinkevich 2006), (Silver,
Bagnell, and Stentz 2008) (Silver 2010). This work is very
relevant to GUIDE as a source of techniques for analyzing
and improving performance. However, these approaches as-
sume a cost-optimal or near cost-optimal route to learn from
and do not take into account time-varying features such as
weather. In (Kavraki et al. 1996), probabilistic roadmaps
are used to address a related problem, but with a different
emphasis. In that work, the objective is to find collision-
free movement paths in configuration space for holonomic
robots with several degrees of freedom. Finally, our work
can be differentiated from previous work on map learning
such as SLAM2 in several ways. Notably, we start with a
map, albeit one that may contain errors of various kinds, and
localization is not part of the problem.

There has also been previous work on systems that at-
tempt to learn some form of model to better reflect human
preferences. (Quercia, Schifanella, and Aiello 2014) and
(Skoumas et al. 2014) describe methods for modifying gen-
erated routes that trade off distance and emotional compo-
nents of the route as reported by previous travelers, such as
beauty, quietness, or happiness. Waze is a community ori-
ented application that tracks human route executors via their
cell phone, updating traffic conditions by monitoring speed
and location, and recalculating routes to avoid congestion.3
(Rogers, Fiechter, and Langley 1995) describes an on-road
navigation system that models the user’s preference for dif-
ferent road classes, such as highway, freeway, arterial roads,
and local roads, along with other route features such as driv-
ing time, distance, and number of turns and intersections.
The modeled preferences are adjusted based upon compar-
ison between proposed routes accepted or rejected by the
user. In (Letchner, Krumm, and Horvitz 2006), a route plan-
ner called TRIP is described that uses previously executed
plans in the form of GPS tracks to inform future route gener-
ation. This information is used to update speed information
along roads for the time at which the trip was recorded. Ad-
ditionally a user’s inefficiencies (deviation from the fastest
route) are bundled into a preference factor for non-optimal
routes. TRIP then plans over route segments, discounting
previously-taken segments by the preference factor.

7 Discussion and Future Work
In this paper, we have described the problem of providing
effective route planning for humans, especially in complex
and dynamic off-road domains. We presented GUIDE, a
system that learns and iteratively tunes movement cost mod-
els for route-planners, so as to more closely match human
preferences in a variety of applications, using data that is
both noisy and very far from cost-optimal.

A GUIDE-augmented route planner is doing a form of “it-
erative planning,” in which planning performance improves

2Simultaneous Localization And Mapping
3https://www.waze.com/

over time specifically because of the results of executing pre-
vious plans (Smith 2012). There are other ways in which we
can usefully view plans as objects subject to manipulation
and analysis. In work left out of this paper for reasons of
both space and focus, we have implemented a capability for
generating multiple plans, either as a set of options roughly
following a Pareto frontier in a multi-attribute value space,
or in the generation of interestingly different plans against
the same objective function.

At present, we are working to integrate GUIDE with op-
erational route planning systems. In addition to providing a
more detailed validation of where GUIDE will be most use-
ful, this integration will almost certainly impose additional
requirements in the form of new features, preferences, or
behaviors to be modeled. Finally, having demonstrated the
effectiveness of this approach, we are also planning to put
it on a somewhat firmer analytical foundation, for example
using some of the techniques developed in (Silver 2010).
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