
Leveraging Ontologies to Improve Model
Generalization Automatically with Online Data Sources

Sasin Janpuangtong and Dylan A. Shell
Department of Computer Science and Engineering

Texas A&M University
College Station, TX 77843

sasin324@tamu.edu and dshell@cse.tamu.edu

Abstract

This paper describes an end-to-end learning framework
that allows a novice to create a model from data eas-
ily by helping structure the model building process and
capturing extended aspects of domain knowledge. By
treating the whole modeling process interactively and
exploiting high-level knowledge in the form of an on-
tology, the framework is able to aid the user in a num-
ber of ways, including in helping to avoid pitfalls such
as data dredging. Prudence must be exercised to avoid
these hazards: certain conclusions may be supported by
extra knowledge if, for example, there are reasons to
trust a particular narrower set of hypotheses. This pa-
per adopts the solution of using higher-level knowledge
in order to allow this sort of domain knowledge to be
inferred automatically, thereby selecting only relevant
input attributes and thence constraining the hypothesis
space. We describe how the framework automatically
exploits structured knowledge in an ontology to identify
relevant concepts, and how a data extraction component
can make use of online data sources to find measure-
ments of those concepts so that their relevance can be
evaluated. To validate our approach, models of four dif-
ferent problem domains were built using our implemen-
tation of the framework. Prediction error on unseen ex-
amples of these models show that our framework, mak-
ing use of the ontology, helps to improve model gener-
alization.

Introduction
A variety of well-established supervised learning methods
produce a model from a set of examples. Despite the matu-
rity of these algorithms, decisions that result from models
are unlikely to be correct if data have been used indiscrim-
inately; in the so-called data dredging problem, specious
models may actually overfit and generalize poorly, and cor-
relations might even be misinterpreted as causation. With-
out the capacity to distinguish real and spurious correlations,
learning methods are prone to pick up regularity particular to
a given dataset [Tukey, 1977]. An understanding of the pro-
cesses that underlie and/or generated the data usually avoids
these dangers, but the onus to be judicious ultimately falls
on the person building the model.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The increased availability of data and the existence of
easy-to-use procedures for regression and classification in
commodity software allows inexperienced users to search
for correlations amongst a large set of variables, with scant
regard for their meaning. Indeed, data dredging has been
democratized and anyone may use seemingly sophisticated
tools to arrive at fallacious conclusions. To help avoid these
pitfalls, we developed a software framework that treats the
whole modeling process rather than merely the model fit-
ting stage. We describe a learning framework that exploits
structural relationships in an ontology to automatically find
concepts that are relevant to a given input query. We also in-
troduce a data extraction component to help find and retrieve
measurements related to ontological concepts from existing
data sources.

The key idea in this paper is that knowledge in ontologies
allows software to be cognizant of problem domain struc-
ture while choosing attributes for the learning algorithm.
Since ontologies are precise machine manipulable represen-
tation of a priori structured relationships among concepts in
a problem domain, they also enable a machine to explore
the knowledge in an ordered manner to determine the rele-
vance of domain concepts. Such concepts are then used to
construct an hypothesis space, and data are used to find the
best model in this space using a learning method.

This paper attempts to bridge the gap between informa-
tion extraction (IE) and learning from data, helping a user
easily accomplish the learning task but also ensuring an ac-
curate model is built. The IE task automatically extracts
structured information from unstructured/semi-structured
data sources so that a machine can semantically interpret and
automatically make use of those data [Etzioni et al., 2008].
Linking these two tasks through semantic relationships un-
derlying the data enables a machine to automatically build
a model of the domain. Using such relationships to inter-
pret and evaluate attribute relevance helps impose structure
on the model to reduce overfitting. Thus, the framework is
a way to make use of existing data and allow inexperienced
users to cope with the data deluge.

Learning Framework
We propose an end-to-end learning framework (see Fig. 1)
that employs knowledge at two levels, high-level concepts
and their relationships in an ontology, and low-level data

Proceedings of the Twenty-Seventh Conference on Innovative Applications of Artificial Intelligence

3981

Data sourcesOntology

Learning
library

User

Finding an
ontological

concept

✏
Finding
relevant

ontological
concepts

of ✏

Relevant
Concepts(⇥)

Realizing
ontological
concepts
with data

Scraping
agents

Measurements

Dataset

Learning

Query string (`)
Examples (gray)
and output data
(yellow) in tabular
format

Data source and scraper

Recommended
measurements

Measurement

Model

Learning method

Call

AccessSPARQL SPARQL

1

Figure 1: The proposed learning
framework incorporates both an ex-
isting ontology and data sources to
build a model from data. Knowl-
edge in the ontology is used to con-
struct an initial model that is com-
posed of relevant ontological con-
cepts and data, the latter being as-
sociated with the concepts and re-
trieved from existing data sources.
The model is built and validated on
the data using a selected learning
method.

from existing data sources. The following is a sample sce-
nario. A political scientist aims to understand civil nuclear
proliferation, and so he builds a model that predicts the us-
age of nuclear power in a given country (cf. [Nelson and
Sprecher, 2008]). He inputs a query string “Nuclear power”
that will be the output of the model, representing the quan-
tity he aims to predict. The software searches for a suitable
concept in an ontology (which we assume is given) to rep-
resent the query. Denote the closest concept by ε. Next, the
software uses structured relationships in the ontology to au-
tomatically retrieve a set of concepts relevant to ε, which we
denote Θ.

So far, the model has only captures relationships at a high-
level between concepts. To evaluate its predictive value, data
corresponding to the concepts in Θ must be collected. The
framework includes tools for the user to associate (i) el-
ements from the list of examples (countries) and (ii) ele-
ments of data relating to that concept (nuclear power use
of a country). For each concept in Θ, a data source (e.g.
a webpage, excel file) that provides measurements or val-
ues is specified. The user selects a suitable scraping mod-
ule (e.g. table scraping, list scraping) to extract contents. If
one of the concepts is “Coal”, representing the energy re-
source, then the scientist may provide the Wikipedia article
http://en.wikipedia.org/wiki/Coal, which contains several ta-
bles with data related to this concept. He selects the table
scraping tool to extract all tables, and then chooses a table
(the one providing coal reserves). This table has six columns
(e.g. SubBituminous, Lignite, Total, etc.) containing data re-
lated to different aspects of coal reserves. He selects one of
these columns. This links the high-level concept of “Coal”
to low-level data used in the learning process. The user then
selects a learning method (e.g., regression, decision tree) and
selected method is called from an existing library (e.g. scikit-
learn, R). The model is returned to the scientist so he can use
it for predictions, and determine (e.g., from coefficients) the
relative importance of the various concepts. He might con-
clude, for instance, that large coal reserves reduce the likeli-
hood of a country building a nuclear power station.

The framework exploits an existing relationship between
three components: a concept in an ontology, existing data
sources, and measurements of the concept and the given ex-
amples. The following sections describe how the compo-
nents minimize the human effort required.

Finding Relevant Concepts from an Ontology
Given a query string and an ontology O containing knowl-
edge encoded within an RDF data model, we retrieve and
rank concepts from O by using three general relationships
among elements: (i) relationships between concepts, (ii) re-
lationships between categories and concepts, (iii) relation-
ships between categories. These are broadly applicable rela-
tionships, useful across many ontologies. We use SPARQL,
the query language for RDF data, queries to acquire neces-
sary knowledge from O without any preprocessing effort.

We adopt the ideas of the Hyperlink Induced Topic
Search (HITS) algorithm [J.M.Kleinberg, 1999], originally
for searching and ranking relevant web documents on a
given topic by considering two different notions of rele-
vance: hubs and authorities. Representing ontological cate-
gories as hubs and concepts as authorities, HITS can be em-
ployed on the ontology to find and rank relevant concepts for
a given input query. Since an ontological element is explic-
itly defined either as a category or concept, it has only one
score associated with it (i.e., the hub score for a category and
the authority score for a concept), which also means that the
scoring computation from HITS can avoid iterative updates.

Scoring schemes
Two separate scoring schemes are used to quantify the rel-
evance and utility of finding other related information for
categories and concepts. Both schemes are the product of
two components: voting and frequency. The voting captures
the relationships between categories and concepts, while fre-
quency tracks how often categories or concepts reappear
during execution of the algorithm.
Category scoring: A category scores well if it links to many
rare concepts that are relevant to an input query. Thus, cat-
egory c’s score comes from voting from concepts in c and
how many relevant concepts appear in c so that

Score(c) =
∑
i∈IR

IF (i, c)×
∑
i∈IR

IV ote(i, c), (1)

where IR denotes a set of relevant concepts, IF (i, c) is a
function with value 1 if a concept i ∈ c or otherwise 0.
IV ote(i, c) gives the vote based on rarity of a concept i,
such that

IV ote(i, c) =

{
1/|categories that contain i| if i ∈ c,
0 otherwise.

3982

Algorithm 1: Find and rank relevant ontological concepts
input: ` = Query string from user, O = SPARQL endpoint of

ontology, n = Number of categories, m = Maximum
concepts in category, min = Minimum sub-categories,
max = Maximum sub-categories

Output: Θ = A set of ranked relevant concepts

1 ε← getConceptFromStr(`, O)
2 Out← FindOutLink(ε, O)
3 In← FindInLink(ε, O)
4 IR ← ε ∪Out ∪ In
5 foreach i ∈ IR do
6 Cats← getCategories(i, O)
7 vote← 1/Length(Cats)
8 foreach c ∈ Cats do
9 Cvote[c]← Cvote[c] + vote

10 Cf [c]← Cf [c] + 1
11 foreach c ∈ Cvote do Cscore[c]← Cvote[c]× Cf [c]
12 ;
13 Cscore sort ← SORT(Cscore)
14 while k < t do
15 c← Cscore sort[k]
16 mb← CountConcepts(c, O)
17 sb← CountSubCategories(c, O)
18 if mb < m AND (min < sb < max) then Add(CR, c)
19 ;
20 k ← k + 1
21 foreach i ∈ IR do If [i]← 1
22 ;
23 foreach c ∈ CR do
24 Cons← getConcepts(c, O)
25 foreach i ∈ Cons do
26 Ivote[i]← Ivote[i] + Cscore[c]
27 If [i]← If [i] + 1
28 foreach i ∈ Ivote do Iscore[i]← Ivote[i]× If [i]
29 ;
30 Θ← SORT(Iscore)
31 Return Θ

The IV ote function states that if i appears in many cate-
gories, it is not a rare concept and its vote is shared among
the many categories, so a category containing many com-
mon concepts is penalized.
Concept scoring: A concept scores well if it is linked by
many relevant categories. Thus, concept i’s score comes
from the votes of categories containing i, and how many rel-
evant categories i appears in, such that

Score(i) =
∑
c∈CR

CF (i, c)×
∑
c∈CR

CV ote(i, c), (2)

where CR denotes a set of relevant categories, CF (i, c) is 1
if i ∈ category c or otherwise 0, and CV ote(i, c) returns the
score of category c as:

CV ote(i, c) =
{
Score(c) if i ∈ c,
0 otherwise.

Algorithm
The algorithm performs three steps to find and rank concepts
that are relevant to the input query ` in O. Details appear in
Algorithm 1. In each step, the algorithm grows the graph as

�

1

(a)

�

1

(b)

�

1

(c)

�

1

(d)

1

Figure 2: The graph shown at each step of Algorithm 1: (a) A seed
node representing ε. (b) Outlinks and inlinks of ε (red filled circles)
are added to the graph. (c) Categories of each added concept are
discovered. Relevant categories (filled rectangles) are selected to
add to the graph. (d) Extra concepts from the added categories are
retrieved and then added.

illustrated in Figure 2. The algorithm starts by finding a con-
cept ε, whose label matches (textually) `. If more than one
concept is found, the first is selected. Next, all concepts that
link to (inlinks of) or receive a link from (outlinks of) ε are
retrieved from O to construct a set of initial relevant con-
cepts, IR.

Finding a set of relevant categories is performed in the
second step (lines 5–24). For each concept in IR, its cat-
egories are discovered and scores calculated using (1). The
categories are sorted by score and the top n selected. Heuris-
tics are used to further select categories from these top cat-
egories, finding those that (i) contain few concepts (i.e.,
discarding categories which list names of films, animals,
or scientists), (ii) contain neither very few nor many sub-
categories (i.e., categories that are too specific or too gen-
eral). The resulting set is denoted by CR. Input parameters
m,min, and max are used to adjust this behavior. Suitable
values depend on the ontology and problem domain.

The final step (lines 25–34) retrieves all concepts from
each category in CR, scoring each with (2). All concepts are
sorted by score before being returned as the output.

Implementation: DBPedia and WikiPedia
Our implementation leverages an existing ontology and on-
line data sources; some details are worth discussion. We
used DBPedia [Bizer et al., 2009], the ontology counter-
part of Wikipedia, as a source of background knowledge
and used Wikipedia articles as data sources for correspond-
ing DBPedia concepts. The vast amount of general knowl-
edge in this ontology allowed testing on multiple case stud-
ies. Moreover, each DBPedia concept has a corresponding
Wikipedia article often containing information associated
with that concept. Our implementation exploits this connec-
tion to automatically collect data from an article, allowing
the system to build a model with minimal human effort, as
highlighted in the sequence in Figure 3.

Finding relevant concepts from DBPedia
There are three important points when implementing Al-
gorithm 1 with DBPedia. Firstly, internal links among
wikipedia articles are used to find inlinks and outlinks of the
concept ε. DBPedia already contains these internal links as
RDF triples via the wikiPageWikiLink predicate. Secondly,
suitable values parameters n andm for DBPedia were found
to be in the ranges 200–250 and 120–200, respectively, de-
pending on a problem domain. While, the value of min and
max is 6 and 30, respectively. Lastly, we added an heuristic

3983

User System DBPedia Wikipedia Learning Library

Query string

SPARQL

DBPedia concepts

Examples and
output data

Request articles

HTML data

Learning method

Call

Model

Model

1

Figure 3: A diagram showing a use case interaction with our DB-
Pedia and Wikipedia implementation. It shows how a model can
be built with little human effort. Green rectangles indicate opera-
tions that are done automatically and purple ones show where user
intervention is required.

method to the end of the algorithm to further select only con-
cepts whose name (after removing all prefixes) starts with
the term List of. We found that corresponding articles for
these concepts usually have tables providing data about a
specific aspect of the concept. Focusing on these types of
concept allows our implementation to automatically find and
collect data as needed. For instance, the Wikipedia article
List of countries by GDP has a table that contains data for
GDP by countries (a fits the preceding example). The sample
results obtained via this implementation using input queries:
Poverty are shown in Table 1.

Collecting Data from Wikipedia Tables
Algorithm 2 automatically extracts data from a table on
a Wikipedia page. Data extraction from tables is advanta-
geous since each table often encapsulates a complete, non-
redundant set of facts [Bhagavatula, Noraset, and Downey,
2013], and tables structure data for easy automatic interpre-
tation and extraction. For each concept in Θ, this algorithm
starts by eliminating the concept that is redundant with ε by
checking whether the string ` appears in the concept’s la-
bel. It then acquires the URL of a Wikipedia article associ-
ated with the concept from DBPedia, requests the article in
HTML, and extracts all tables from the result.

Heuristics are used to select a table that (i) has one col-
umn, we call an “example column,” that partially matches to
objects of the domain of the model (countries in the nuclear
example) (ii) has this “example column” appearing in the
first or second column. If no table is selected, the concept is
discarded. The algorithm seeks columns in the selected table
that contain numerical data. The numerical column closest
to the example column is selected; if no numerical column
is found, the example column is used to construct a new col-
umn that contains binary data.

Evaluation
We conducted an evaluation by building models of four
different problem domains: Nuclear power, Gross Do-

Table 1: Relevant List of concepts of Poverty, where n = 250
and m = 150 (top 20 of 27 results are shown)

countries by percentage of population
living in poverty (498.98)
countries by unemployment rate (123.24)
countries by employment rate (123.24)
countries by Sen social welfare function (50.95)
permaculture projects (48.58)
sovereign states and dependent territories
by fertility rate (38.46)
global manpower fit for military service (19.43)
wars and anthropogenic disasters by death toll (19.43)
countries by sex ratio (19.43)
countries by infant mortality rate (19.43)
countries by life expectancy (19.43)
sovereign states and dependent territories
by death rate (19.43)
countries by distribution of wealth (14.48)
countries by income equality (14.48)
socialist economists (7.58)
Australian states and territories by
gross state product (5.46)
sovereign states by external assets (5.46)
freedom indices (5.46)
countries by economic freedom (5.46)
countries by refugee population (5.33)

Algorithm 2: Extracting data from Wikipedia article
input: Θ = Output from Algorithm 1, ` = Query from

Algorithm 1, O = DBPedia’s SPARQL endpoint, t0 =
Examples and output values in tabular format

Output: A dataset t in tabular format

1 t← t0
2 foreach i ∈ Θ do
3 if Contain(i, `) then continue
4 ;
5 e idx← 100
6 p← GetWikiArticle(i, O)
7 T ← ExtractTables(p)
8 foreach τ ∈ T do
9 c idx← GetExampleCol(τ , t0[0])

10 if c idx 6= −1 AND c idx < e idx then
11 tb ← τ
12 e idx← c idx
13 n idx← FindNCol(tb, e idx)
14 if n idx = −1 then colnew ← BCol(tb[e idx], t0[0])
15 ;
16 else colnew ← NCol(tb, e idx, n idx, t0[0])
17 ;
18 t← AddCol(t, colnew)
19 Return t

mestic Product (GDP), Poverty, and Homelessness. The
elements over which the model is applied are: coun-
tries for the first three; U.S. states for the last one. For
each problem domain, we formed two datasets in order
to build two different models for comparison. The first
dataset is constructed using our implementation as de-
scribed in the preceding section. We denote this dataset
by tont. The second baseline dataset, denoted tbase, was
constructed by processing a URL of a Wikipedia category

3984

page containing links to many articles about the examples
(e.g., http://en.wikipedia.org/wiki/Category:Lists of countries for countries).
We visit every article in the category that has the term
List of (countries/U.S. states) by appearing in its URL and
has not yet been visited when constructing tont. Algorithm
2 is executed on these articles to create a temporary dataset
denoted by ttemp. The dataset tbase is then constructed by
concatenating all columns from tont and ttemp.

Before using tont and tbase for learning, the issue of miss-
ing data in these datasets has to be addressed. For each prob-
lem domain, we examined tbase to remove any columns (ex-
cept columns from tont) and rows where 70% of their data
are missing. We also removed the same set of examples
from tont. Then, we manually filled in the remaining miss-
ing data for each column in both datasets by using an average
value of data in that column. Finally, we invoked a learning
method from the Scikit-learn library to build models from
tont and tbase for each problem domain. The mean square
error (MSE) is used to assess the quality of these models.
The framework was evaluated in two ways as follows.

1E12

1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tree Depth

M
S
E

GDP

1E8

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Tree Depth

M
S
E

Homelessness

tbase training error
tbase test error
tont training error
tont test error

1 2 3 4 5 6 7
0

20

40

60

80

100

120

Tree Depth

M
S
E

Nuclear power

1 2 3 4 5 6 7
0

50

100

150

200

250

300

350

400

Tree Depth

M
S
E

Poverty

1

Figure 4: For each problem domain, decision trees with different
depths were built using data from tont and tbase. Average MSE
values from 10-fold cross validation when testing these trees on
training and test sets are shown for each depth. The models built
from tbase show the occurrence of overfitting, while generalization
of learned models from tont is improved.

Improving Generalization of a Model
Using knowledge in the ontology to select input attributes
for learning could help improve generalization beyond given
examples if the ranking incorporates (either implicitly or ex-
plicitly) causal and/or independence assumptions. To test
this claim, the datasets tont and tbase of each problem do-
main were divided into training (80% of examples) and test
sets. Training sets from tont and tbase contained the same
set of examples (i.e. both test sets also contain identical in-
stances in the rows, but tont has strictly fewer columns). Two
decision trees for regression were learned from these train-
ing sets and then each tree was tested with the correspond-
ing training and test sets to calculate MSE values. Finally,

1E12

1 2 3 4 5 6 7
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Model Complexity
(Tree Depth/Regression Attributes)

M
S
E

GDP, n=8

1E8

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Model Complexity
(Tree Depth/Regression Attributes)

M
S
E

Homelessness, n=5

Tree from Top-n of tont

Tree from Top-n of tbase

Regression from Top-n of tont

Regression from Top-n of tbase

1 2 3 4 5 6 7
0

20

40

60

80

100

120

Model Complexity
(Tree Depth/Regression Attributes)

M
S
E

Nuclear power, n=5

1 2 3 4 5 6 7
0

50

100

150

200

250

300

350

400

Model Complexity
(Tree Depth/Regression Attributes)

M
S
E

Poverty, n=5

1

Figure 5: This figure compares test set prediction errors of mod-
els learned from top-n attributes from tont and tbase on the four
problem domains. The models were constructed by using decision
tree and linear regression methods. The results from both methods
show that selecting attributes for learning by using prior domain
knowledge helps improve generalization of the learned model.

10-fold cross validation was used to find the average MSE.
We performed this evaluation repeatedly while increasing
the depth of both trees, so as to examine the overfitting phe-
nomenon.

From the results in Figure 4, we observe that in all prob-
lem domains trees learned using tbase are prone to overfit-
ting (i.e., when the complexity of the tree increases, predic-
tion error of the tree on the training set decreases rapidly,
but increases on the test set), whereas the learned trees from
tont produce lower prediction errors on test sets when ex-
amining comparable depth. The results show that the frame-
work helps improve generalization of a learned model so it
predicts more accurately on unseen examples.

Quality of the Top Ranked Attributes
We conducted a further experiment to show that the at-
tributes automatically selected using the ontology’s back-
ground knowledge are superior to attributes selected by cor-
relations in a dataset. For each problem domain, we con-
structed two new datasets to carry out this experiment. The
first dataset copies the first-n columns from tont, where n
= 5 for all domains except GDP where n = 8 is used. Since
each column in tont is ordered based on ranking of its corre-
sponding concepts, this dataset captures the top-n concepts
from our algorithm. The second dataset is constructed by
using a univariate feature selection technique that selects
columns based on correlations in the dataset to select the
top-n columns from tbase. Then, we performed the same
evaluations as before to assess performance of trees built
from these new datasets. The results in Figure 5 show that
trees learned by using top-n columns from tont produced
prediction errors on test sets lower than trees learned by
using top-n columns from tbase in all problem domains.
These results suggest that selecting input attributes by using
prior knowledge helps improve generalization of the learned

3985

model.
We also examined linear regression models. For each

problem domain, we constructed two datasets. The first con-
tained the first-n columns of tont. The second dataset is
constructed by building a linear model from all attributes
in tbase, ranking attributes based on absolute value of their
coefficient (from high to low), and then selecting the top-n
attributes. Linear models with different complexities were
built by limiting the number of attributes used. We started
with all attributes in the dataset and iteratively removed the
lowest ranked attribute. The results in Figure 5, especially in
Nuclear power and Poverty domains, support the same con-
clusion as the decision tree results.

We note that GDP and Homelessness domains are chal-
lenging domains, and the learned models all have high pre-
diction errors (MSE×1012 and 108, respectively). These er-
rors indicate that current attributes fail to capture the com-
plexity of these problem domains. Improving our framework
to enhance the quality of these models is part of future work.

Related Work

Several learning algorithms, such as Knowledge-Based Ar-
tificial Neural Network [Shavlik and Towell, 1989] and
Bayesian belief networks [Pearl, 1988; Russell and Norvig,
2010], employ background knowledge to form an initial
model and then use data to validate that model. Even though
these algorithms have been demonstrated to outperform
purely inductive learning [Mitchell, 1997], the main limi-
tation of them is that they can accommodate only to a spe-
cific knowledge representation and learning method. In this
work we present a framework that makes use of existing
knowledge bases and data sources to build models of dif-
ferent problem domains. Also, this framework is designed
to be independent of the learning method itself.

Semantic Web technology provides data models for pub-
lishing background knowledge in a structured format so that
a machine can automatically interpret and make use of the
knowledge. Searching for elements that are relevant to a
given query from structured knowledge is one of the main
topics in the field of Information Retrieval [Franz et al.,
2009; Cheng et al., 2008; Blanco, Mika, and Vigna, 2011].
Most of these works, however, require some preprocessing
effort. Unlike this paper, none of those works are specifi-
cally concerned with finding relevant ontological concepts
to select attributes for learning.

Google Fusion Tables [Sarma et al., 2012] and WikiTables
[Bhagavatula, Noraset, and Downey, 2013] include an oper-
ation termed “Relevant Join” which uses of data published
in tabular format and aims to find suitable columns from dif-
ferent tables for joining to a given table. Our work can be
viewed as a system that automatically performs a Relevant
Join to construct a dataset for learning. The main difference
in our approach is that relevance of a column is justified by
using prior domain knowledge rather than context in a table.
Our system, moreover, need not be limited to data appearing
in tabular format. Data in another format, such as list, text,
or query results, can also be used in the framework.

Summary and Conclusion
This paper describes a learning framework that automati-
cally constructs a model using relevant ontological concepts
and data attributes corresponding to those concepts. The at-
tributes used in learning are selected by exploiting high-level
knowledge separate from correlations within the data itself.
As a consequence, the learned model is expected to gener-
alize better than standard feature selection approaches. We
implemented this framework with DBPedia and Wikipedia
and then used the implementation to build four models from
four different problem domains. Prediction errors on unseen
examples from these models are shown to validate our claim.
Moreover, the implementation helped build the models with
very little human involvement.

What we present in this work is an attempt to address the
changing needs of science: making it easier to produce mod-
els opens up vistas for inexperienced users, and helping au-
tomate the process of making sense of —and providing new
interpretations for— existing data is one way to tame the
deluge of data.

References
Bhagavatula, C. S.; Noraset, T.; and Downey, D. 2013. Meth-
ods for exploring and mining tables on wikipedia. In Proc.
of Interactive Data Exploration and Analytics (IDEA). ACM
SIGKDD.
Bizer, C.; Lehmann, J.; Kobilarov, G.; Auer, S.; Becker, C.; Cy-
ganiak, R.; and Hellmann, S. 2009. Dbpedia - a crystallization
point for the web of data. Web Semantics: Science, Services
and Agents on the World Wide Web 7:154–165.
Blanco, R.; Mika, P.; and Vigna, S. 2011. Effective and effi-
cient entity search in rdf data. In ISWC, 83–97.
Cheng, G.; Ge, W.; Wu, H.; and Qu, Y. 2008. Searching se-
mantic web objects based on class hierarchies. In LDOW.
Etzioni, O.; Banko, M.; Soderland, S.; and Weld, D. 2008.
Open information extraction from the web. CACM 51(12):68–
74.
Franz, T.; Schultz, A.; Sizov, S.; and Staab, S. 2009. Tripler-
ank: Ranking semantic web data by tensor decomposition. In
ISWC, 213–228.
J.M.Kleinberg. 1999. Authoritative sources in a hyperlinked
environment. J. ACM 46(5):604–632.
Mitchell, T. M. 1997. Machine Learning. McGraw-Hill.
Nelson, P., and Sprecher, C. M. 2008. What determines the ex-
tent of national reliance on civil nuclear power. In Proceedings
of the INMM 49th Annual Meeting.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan-Kaufmann.
Russell, S., and Norvig, P. 2010. Artificial Intelligence: A
modern approach. Prentice Hall.
Sarma, A. D.; Fang, L.; Gupta, N.; Halevy, A.; Lee, H.; F.Wu;
Xin, R.; and Yu, C. 2012. Finding related tables. In ACM
SIGMOD.
Shavlik, J., and Towell, G. 1989. An approach to combining
explanation-based and neural learning algorithms. Connection
Science 1(3):233–255.
Tukey, J. 1977. Exploratory Data Analysis. Addison-Wesley.

3986

