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Abstract

Loss of Control (LOC) is the most common precursor to air-
craft accidents. This paper presents a Flight Safety Assess-
ment and Management (FSAM) decision system to reduce
in-flight LOC risk. FSAM nominally serves as a monitor to
detect conditions that pose LOC risk, automatically activating
the appropriate control authority if necessary to prevent LOC
and restore a safe operational state. This paper contributes
an efficient Markov Decision Process (MDP) formulation for
FSAM. The state features capture risk associated with aircraft
dynamics, configuration, health, pilot behavior and weather.
The reward function trades cost of inaction against the cost
of overriding the current control authority. A sparse sam-
pling algorithm obtains a near-optimal solution for the MDP
online. This approach enables the FSAM MDP to incorpo-
rate dynamically changing flight envelope and environment
constraints into decision-making. Case studies based on real-
world aviation incidents are presented.

Introduction
Fly-by-wire systems have improved aviation safety. The
flight control computer reliably maintains a trimmed flight
condition, navigates using instruments, and makes required
corrections to stay on course. Triply-redundant avionics pro-
vide statistical guarantees that avionics and power systems
will function reliably. Most flight segments are flown by on-
board automation with flight crew monitoring instruments
and making high-level decisions. Despite automation aids,
Loss Of Control (LOC) accidents still occur. LOC is a con-
dition where an unusual attitude, rate of change of attitude,
or aerodynamic state violate normal operating constraints
causing deviation outside the normal flight envelope (Bel-
castro and Jacobson 2010). Most LOC accidents are a result
of inappropriate pilot inputs, bad weather, and/or onboard
system failures (Belcastro and Jacobson 2010).

Envelope protection systems are available today, prevent-
ing specific constraint violations including minimum air-
speed and maximum bank angle (Traverse 2015). How-
ever, modern aircraft accidents typically involve multiple
factors such as bad weather and aircraft health issues that re-
sult in envelope protection features disengaging leaving the
crew to suddenly make difficult decisions in a high-stress,
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high-workload environment. The likelihood of inappropri-
ate crew inputs increases as stress and workload increase and
situational awareness degrades.

Adaptive control (Gregory et al. 2009), system iden-
tification (Yu et al. 2014), envelope estimation (Mc-
Donough, Kolmanovsky, and Atkins 2014) and path plan-
ning (Meuleau et al. 2009) can augment a conventional flight
management system with control authorities capable of han-
dling many LOC risk scenarios by adapting to on-board fail-
ures, constructing realistic emergency landing plans, and
navigating the airplane to a safe landing. Such capabilities
have not yet migrated into commercial flight management
systems. Challenges in certifying adaptive systems have mo-
tivated use of such technologies as a backup to nominal au-
tomation rather than a replacement for it.

This paper investigates an efficient formulation of a Flight
Safety Assessment and Management (FSAM) capability to
rapidly recognize an imminent LOC scenario and automati-
cally switch to an alternate control authority that can handle
the high-risk scenario without experiencing a LOC event.
FSAM is formulated as an MDP that integrates a novel state,
action and reward formulation enabling broad consideration
across the suite of factors that might contribute to LOC, an
advance over the subsystem-level envelope protection capa-
bilities now available. A sparse sampling MDP solver is ap-
plied to enable FSAM to build or modify policies online to
account for unanticipated degradations in aircraft flight en-
velope constraints due to weather (e.g. winds, icing), dam-
age and failures, etc. Accident-motivated case studies are
presented to illustrate FSAM operation.

Related Work
Temporal logic planning has contributed to correct-by-
construction software for safety-critical decision making
(Liu et al. 2013). These techniques facilitate verification,
validation and certification. However, the resulting systems
are deterministic and difficult to scale making them diffi-
cult to extend across all possible anomalous and emergency
situations that increase LOC risk. Geometric and search-
based methods have been widely used for emergency flight
or landing planning (Meuleau et al. 2009). Markov Decision
Processes (MDP) or Partially Observable Markov Decision
Processes (POMDP) have been used to design alerting sys-
tems that could warn the flight crew about imminent colli-

Proceedings of the Twenty-Eighth AAAI Conference on Innovative Applications (IAAI-16)

3991



sion conflicts with other aircraft and issue conflict resolution
advisories (Kochenderfer and Chryssanthacopoulos 2010).
These systems always leave decision-making authority with
the crew regardless of their responses. Our previous work
(Balachandran and Atkins 2015) used a constrained MDP
framework to address takeoff related LOC events. How-
ever, this formulation did not provide a comprehensive state-
space or reward formulation nor did it consider computa-
tional complexity tradeoffs.

Several architectures for automation aids that minimize
LOC risk have been introduced (Belcastro and Jacobson
2010; Balachandran and Atkins 2014). These architectures
integrate various modules to identify and adapt to changes in
aircraft dynamics and flight envelopes, dynamically gener-
ate safe landing plans, and issue control authority overrides
to avoid LOC. The decision making modules in these archi-
tectures can benefit from the formulation presented in this
paper.

Background
Markov Decision Processes
A Markov Decision Process (MDP) (Puterman 1994) is de-
fined by tuple (S,A,P,R), where S represents states, A
represents actions, P : S ×A× S → [0, 1] represents tran-
sition probabilities, and R : S×A → R represents a reward
function for each state-action pair. Actions are chosen to
maximize an expected cumulative discounted reward func-
tion

V(sn) = E

[ ∞∑
n=0

γnR(sn, an)
]

(1)

Here, an ∈ A is the action selected for current state sn ∈ S
and γ ∈ (0, 1] is a discount factor. A policy is defined as the
mapping π : S → A. The optimal policy (π∗) is given by:

π∗ = argmax
a

{
R(s, a) + γ

∑
s′

P(s′|s, a)V∗(s′)
}

(2)

V∗(s) is the optimal value of state s. The optimal policy
can be obtained using algorithms such as value iteration,
policy iteration or linear programming (Puterman 1994).
Such algorithms explicitly enumerate all MDP states. This
can be prohibitively expensive for large state-spaces, so ap-
proximate methods to find near-optimal solutions have been
developed, including value function approximation, policy
search methods and Monte Carlo tree search methods (Sut-
ton and Barto 1998). In this work, we apply a sparsely sam-
pled Monte Carlo tree search algorithm (Kearns, Mansour,
and Ng 2002) to construct an approximate solution for the
FSAM MDP.

Online Sparse Sampling for Large MDPs
Sparse sampling for large state-space MDPs was originally
introduced by Kearns et al. (Kearns, Mansour, and Ng
2002). Given a generative model G of an MDP1, the sparse
sampling algorithm executes the following steps:

1A generative model takes as input a state-action pair (s, a) and
outputs R(s, a) and a state s′, where s′ is randomly drawn from the
next state distribution P(s′|s, a).

1. For each action a, the generative model computes R(s, a)
and independently samples Sa of C states from next-state
distribution P(s′|s, a).

2. For each state in Sa, Step 1 is repeated until horizon H to
construct a finite-look ahead tree (Fig 1).

3. The estimate of optimal value V∗(s) is given by:

V̂∗
H(s) = max

a

{
R(s, a) + γ

1

C

∑
s′∈Sa

V̂∗
H−1(s)

}
(3)

Note that Eqn (3) computes V̂∗
H(s) recursively from

V̂∗
0 (s) = 0.

4. The optimal action is then given by:

argmax
a

{
R(s, a) + γ

1

C

∑
s′∈Sa

V̂∗
H−1(s)

}
(4)

Branching factor C and horizon length H can be chosen to
manage approximation error (i.e. ||V∗(s) − V̂∗(s)||) as de-
scribed in (Kearns, Mansour, and Ng 2002). Note that this
algorithm does not require enumeration of all MDP states,
and it can be applied when the MDP state-space is discrete,
continuous, or mixed. Computation time can be reduced by
independently evaluating each branch at the root node using
multi-core processors or GPUs.

FSAM MDP Formulation
State features
The FSAM state must contain all attributes required to ap-
propriately assess LOC risk and in turn make appropriate
crew override decisions. Each state s of the MDP formula-
tion is represented by the composition of four main features:

s = [F1, F2, F3, F4] (5)

F1, F2, F3, F4 describe aircraft dynamics and controls, air-
craft health, flight crew characteristics and environmental
characteristics respectively. This diverse set of state features
has never before been integrated for manned or unmanned
flight control authority decision making.

Aircraft dynamics and control state F1 represents the
evolution of the continuous dynamics of the aircraft and is
viewed as the composition of the following sub-features:

F1 = [F11, F12, F13, F14]

F11 = [u, v, w, p, q, r, φ, θ, ψ, x, y, h]

F12 = [δe, δa, δr, δt] (6)
F13 = [cg, cf , cp]

F14 = [M,N, T ]

Here F11 describes traditional aircraft physical state
(Stevens and Lewis 2003). u, v, w describe aircraft veloc-
ity, p, q, r are the body axis angular rates, φ, θ, ψ represent
Euler angle attitude, and x, y, h denote 3-D position. F12 de-
scribes fixed-wing control inputs elevator (δe), aileron (δa),
rudder (δr), and throttle (δt). F13 describes the configura-
tion of the aircraft in terms of flaps (cf ), spoilers (cp) and
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landing gears (cg). F14 specifies current control mode M ,
the number of override directives previously issued N , and
time elapsed in the current control mode T . F11 and F12

contain continuous-valued variables, F13 takes discrete val-
ues. M,N in F14 are discrete, and T is continuous. All F1

parameters are observable from onboard sensors.

Aircraft health state F2 describes the health status of var-
ious subsystems onboard the aircraft:

F2 = [fsys, heng, hact, hsys] (7)

fsys = (fs1 , . . . , fsn) are flags that denote the on/off
status of various flight systems with potential to in-
fluence LOC risk. heng = (he1 , . . . , hen) are flags
that denote engine operational state (nominal/inoperative),
hact = (ha1 , . . . , han) denote control surface actuator status
(nominal/jammed/free-floating), and hsys = (hs1 , . . . , hsn)
denote the status (nominal/failed) of onboard support sys-
tems such as cabin pressurization, heating, fuel pumps,
power systems, anti-icing. All F2 features are discrete and
observable from sensor and health monitoring subsystems.

Pilot characteristics Flight crew state can play an impor-
tant factor in an FSAM override decision. A simple pilot
state abstraction F3 is proposed:

F3 = [F31, F32, F33] (8)

F31 ⊂ {CP,FO} indicates who is present in the cock-
pit, with Captain (CP ) and First Officer (FO) repre-
sented as an example. F32 = (hCP , hFO) where
hCP , hFO ∈ {nominal, unconscious, fatigued} com-
pactly classify crew health. F33 ∈ {nominal, abnormal}
classifies cockpit activity. All F3 attributes are discrete.
While this paper does not claim progress in translating sen-
sor observations to “human state estimates”, research has
shown that such observers are feasible (Busso et al. 2004).

Environmental characteristics Both flight controller and
crew performance can be influenced by the environment,
most critically atmospheric conditions F4:

F4 = [fwinds, fvisibility, ftemp, fprecip] (9)

where fwinds ∈ R
3 represents the wind vector, fvisibility ∈

R is visibility, ftemp ∈ R is surrounding air temperature,
and fprecip ∈ {none, rain, snow, hail, storm} denotes
precipitation. fwind, fvisibility, ftemp are continuous while
fprecip is discrete in this formulation. Wind, visibility and
temperature can be estimated from onboard sensors includ-
ing weather radar plus meteorological reports.

Actions
FSAM is a high-level supervisory module that passively
monitors MDP state for elevated LOC risk. If the flight crew
mitigates the LOC risk, FSAM continues to passively moni-
tor. FSAM only overrides when LOC risk is substantial and
switching to an alternate control authority statistically en-
sures LOC prevention or recovery. The FSAM MDP there-
fore has two fundamental actions, i.e. NOOP (no operation)
and TOGL (toggle). FSAM remains passive and continues
to monitor if NOOP is chosen. TOGL is chosen to switch to

Depth (H)

sn

a1 a2 a2 a2a1 a1

a1

a1

a2

a2

a1=NOOP
a2=TOGL

Figure 1: Sparse sampled look-ahead tree with two actions
and a branching factor of three

a different control authority. Note that there could be multi-
ple toggle actions if there are many control authorities.

a ∈ {NOOP, TOGL} (10)

Reward formulation
The FSAM reward function is a “cost” (negative reward)
function that penalizes unsafe aircraft states but discour-
ages routine override directives. A weighted additive reward
function is proposed for FSAM:

R =

n∑
i=0

wiRi (11)

The Ri’s penalize unsafe states and unnecessary override
actions while wi’s represent tunable weighting parameters
that may vary depending as a function of flight condition.
For example, the penalty for violating the stall constraint at
high altitude can be lower than the stall penalty at low al-
titude due to the availability of ample altitude to recover.
Appropriate choice of weighting parameters may also be
learned from accident flight data. The reward functions used
in this work are discontinuous. 2

This paper proposes ten reward/cost terms. R1 penal-
izes excursion outside the valid airspeed envelope defined by
stall speed Vmin and never-exceed speed Vmax above which
structural over-stressing can occur.

R1 =

{−1 if (V ≤ Vmin) ∨ (V ≥ Vmax)

0 otherwise
(12)

R2 imposes a penalty on unusual or out-of-envelope bank
attitude, where φmin, φmax indicate acceptable bank limits.

R2 =

{−1 if (φ ≤ φmin) ∨ (φ ≥ φmax)

0 otherwise
(13)

R3 penalizes altitude constraint violations. Factors such as
filed flight plan, terrain, flight ceiling, engine failure, and
cabin de-pressurization impose altitude constraints.

R3 =

{−1 if (h ≤ hmin) ∨ (h ≥ hmax)

0 otherwise
(14)

2For continuous valued variables, rewards may become contin-
uous barrier functions that prevent constraint violations.
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R4 penalizes deviations from the prescribed flight plan.

R4 =

{−1 if ||X −X0|| > 0

0 otherwise
(15)

Here ||X−X0|| denotes position deviation from the nominal
flight plan. X = [x, y, h] is the position of the aircraft.

The following terms penalize unsafe pilot states. R5 pe-
nalizes the absence of the required crew in the cockpit:

R5 =

⎧⎨
⎩
−1 if (M = P ) ∧ (F31 = {∅})
−c1 if (M = P ) ∧ (F31 = {CP} ∨ {FO})
0 otherwise

(16)
where 0 < c1 < 1. R6 penalizes states in which the pilot
may not be capable of flying the aircraft, thus encouraging
the selection of a control authority that can maintain appro-
priate control of the aircraft.

R6 =

⎧⎨
⎩
−1 if (M = P ) ∧ (F32 = unconscious)

−c2 if (M = P ) ∧ (F32 = fatigued)

0 otherwise

(17)
where 0 < c2 < 1. R7 penalizes unusual cockpit activity.

R7 =

{−1 if (M = P ) ∧ (F33 = abnormal)

0 otherwise
(18)

To ensure override actions are not issued by FSAM un-
necessarily, R8 imposes a penalty on choosing an override
action. R9 prevents repeated switching between control au-
thorities by imposing a penalty for an override that is in-
versely proportional to the duration since the last override.
R10 penalizes the total number of overrides.

R8 =

⎧⎨
⎩
−1 if (M = P ) ∧ (a 
= NOOP )

∧(F32, F33 = nominal)

0 otherwise

(19)

R9 =

{− 1
T if(T > 0) ∧ (a = TOGL)

0 otherwise
(20)

R10 = −NTOGL (21)

Generative model
The generative model is a function that takes as inputs the
current state sn, action an and outputs the reward R(sn, an)
and the next state sn+1 chosen according to the state dis-
tribution P(sn+1|sn, an). The next state distribution is ex-
pressed in terms of the state features as follows:

P(sn+1|sn, an) =
P(Fn+1

1 , Fn+1
2 ,Fn+1

3 , Fn+1
4 |Fn

1 , F
n
2 , F

n
3 , F

n
4 , a

n) (22)
The conditional independence among the state features can
be exploited to simplify Eqn (22):

P(sn+1|sn, an) = P1(F
n+1
1 |Fn

1 , F
n
2 , F

n
3 , F

n
4 , a

n)×
P2(F

n+1
2 |Fn

1 , F
n
2 , F

n
3 , F

n
4 )×

P3(F
n+1
3 |Fn

1 , F
n
2 , F

n
3 , F

n
4 )×

P4(F
n+1
4 |Fn

4 ) (23)

Note that the features at future time steps (n + 1) depend
only on the current features (n) due to the Markov assump-
tion. Here P1 represents the transition dynamics of the air-
craft states and is modeled with aircraft equations of motion
(Stevens and Lewis 2003). P2, P3 and P4 represent the tran-
sition probabilities associated with the health, pilot charac-
teristics and environment. Models representing these distri-
butions may be constructed from flight data, weather reports,
observations of pilot behaviors etc. The environmental fea-
ture F4 is independent of other state features. Each feature F
in Eqn (23) is composed of sub-features and hence the terms
in Eqn (23) can be further expanded by considering the con-
ditional independence relations among the sub-features.

Case Study
This section illustrates example policy construction for the
special case where F2, F3 and F4 remain constant, i.e. all
systems and crew function nominally, the weather is clear,
and winds are calm, such that distributions P2, P3 and P4

need not be modeled. P1 is simplified as follows:

P11(F
n+1
11 |Fn

11, F
n
12, F

n
13)P12(F

n+1
12 |Fn+1

11 , Fn
12, F

n
13, a

n)×
P13(F

n+1
13 |Fn

13, F
n
14)P14(F

n+1
14 |Fn

14, a
n)

(24)

P11 represents the aircraft state transition model. Samples
are drawn from P11 using a stochastic model of the aircraft
dynamics as follows:

Xn+1 = Xn + F(Xn, Un)Δt+Wn (25)

where F represents the equations of motion. A Twin-Otter
aircraft model (Grauer and Morelli 2014) is used in Eqn
(25). X = F11 is aircraft physical state, U = F12 repre-
sents physical control inputs and W is a state disturbance
vector with Gaussian noise. Δt is the discretization time.
P12 describes the control input distribution. We as-

sume there are two control authorities, a pilot/crew and
an envelope-aware safety controller. Pilot control inputs
are modeled as human operator transfer functions (McRuer
and Krendel 1974) with parameters chosen according to a
user-specified distribution. The envelope-aware controller
is modelled as a Linear Quadratic Regulator (LQR) control
law (Kirk 1970) designed by linearizing the aircraft dynam-
ics about a steady, level flight trim-condition at a specific
airspeed (55 m/s) and altitude (2500 m) for this study.

P13 represents transitions in aircraft configuration. For
cruise flight the configuration is constant at no flaps, gears
up, no spoilers. P14 represents transitions in control mode.
A transition from one control authority to another occurs
when an = TOGL.

The reward terms used are Ri=1,2,3,8,9,10. The weights
wi on these reward terms are 1000, 1000, 1000, 10, 5, 0.8 re-
spectively. The discount factor γ is 0.7. The parameters
required to construct the sparse look-ahead tree are branch-
ing factor C, look-ahead horizon H and time-step (decision
epoch) ΔT . Branching factor varies as a function of tree
depth m as Cm = γ2mC to reduce computation time while
maintaining a good approximation of the optimal solution
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Table 1: Computation times with a fixed decision epoch

Δt H C = 40 C = 64 C = 80

5 (5s) 0.041s 0.176s 0.4242s
0.1 10 (10s) 0.623s 5.950s 21.636s

15 (15s) > 25s > 25s > 25s
5 (5s) 0.007s 0.033s 0.129s

0.5 10 (10s) 0.113s 1.130s 3.690s
15 (15s) 3.460s > 25s > 25s

Table 2: Computation times with variable decision epoch

Δt H C = 40 C = 64 C = 80

5 (15s) 0.119s 0.693s 2.455s
0.1 10 (55s) 7.239s > 25s > 25s

5 (15s) 0.018s 0.130s 0.388s
0.5 10 (55s) 1.272s 12.672s > 25s

(Kearns, Mansour, and Ng 2002). Parameter values and their
effects on computation time are shown in Tables 1 and 2.

Consider a scenario where the aircraft is prohibited from
flying below 2400m (i.e. hmin = 2400m) due to terrain
hazards. Suppose the pilot pushes the elevator down to ini-
tiate a dive with altitude loss. The red plot in Fig 2 in-
dicates the aircraft’s response without FSAM intervention.
FSAM remains passive until the airplane is near the enve-
lope boundary then overrides the pilot to prevent attitude
constraint violation. Control is restored to the pilot after the
envelope-aware controller recovers and climbs to 2500m.
Note that hmin and the other parameters in R may vary de-
pending on the flight phase, surrounding terrain, environ-
mental conditions and airplane performance. Thus, appro-
priate policies can be constructed for different flight con-
ditions. For example, in a landing phase MDP policy, hmin

would be defined based on the surrounding terrain and there-
fore the policy would not override the pilot unless collision
with surrounding terrain was imminent.

Policy behavior can be changed by tuning Eqn (11)
weights. For example, varying the weight on R9 in Eqn (11)
controls the duration the envelope-aware controller stays ac-
tive after overriding the pilot. Similarly, the weight on R10

controls the number of overrides issued. Thus, if the pilot
behaves inappropriately by repeating the above nose-down
pitch inputs continuously, control will be eventually trans-
ferred to the envelope-aware controller and not returned to
the pilot.

Fig 3 illustrates a scenario where the policy prevents aero-
dynamic stall. FSAM overrides for this case when the air-
speed approaches the stall speed. The envelope-aware con-
troller then increases the airspeed to prevent the stall. The
optimal policy was computed on a desktop with a 3.6 GHz,
8 core-Intel Xeon processor and 8 GB RAM. Each search
tree branch is independent so the expansion of the branches
can be parallelized to reduce the computation time (see root
parallelization in (Chaslot, Winands, and van Den Herik
2008)). In this work, the computations were distributed

Figure 2: Altitude recovery

Figure 3: Stall recovery

across 8 cores. Table 1 lists the time taken to compute
the sparse look-ahead solution for different tree parameters
and model complexities. Δt denotes the discretization time
used to forward propagate the aircraft dynamics in Eqn (25).
Thus, the decision epoch ΔT must be an integer multiple
of discretization time-step Δt (i.e. ΔT = nΔt). Conse-
quently, the generative model needs to be forward propa-
gated n times to reach the next decision epoch. Table 1
shows results for a fixed decision epoch ΔT = 1s. As
expected, computation time decreases as the complexity of
generative model decreases (i.e. Δt approaches ΔT ). With
a fixed decision epoch, real-time execution requires that only
a short horizon be used for the finite-look ahead search. This
is sufficient to avoid LOC events with fast dynamics. To ad-
dress events such as controlled flight into terrain, a longer
horizon may be preferable. Table 2 illustrates results ob-
tained using a variable decision epoch. Here ΔT = m
where m denotes the current depth in the tree. Note that with
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a variable decision epoch, it is possible to increase horizon
without substantial computation penalty.

Conclusions and Discussion
This paper contributes a decision-theoretic framework for
a Flight Safety Assessment and Management system. A
comprehensive, integrated state feature set enables FSAM
to base its decisions on system-wide information describing
the aircraft (vehicle), people, and environment. The pre-
sented list can be expanded in future work. The applied
sparse sampling algorithm develops near-optimal solutions
efficiently by eliminating the need to explicitly enumerate
the state space. Though run time doesn’t depend on state-
space size, it does depend on horizon length and look-ahead
tree branching factor.

The use of a linearized aircraft model to generate state dis-
tributions reduces computation times significantly in com-
parison to a detailed non-linear aircraft model with aerody-
namic look-up tables. The online sparse sampling algorithm
supports interleaved planning and execution which facili-
tates online model updates. System identification techniques
can be used to update models based on real-time flight data.
Observations of pilot behavior can be used to update the hu-
man transfer function model and predict pilot intentions.

The MDP formulation can be simplified via state and
reward formulations specific to a phase of flight (takeoff,
climb, cruise, descent, landing). State feature time scale
separation can also be exploited to decompose the MDP into
several simpler MDPs. Control authority switching might be
specified with finite state machines but manually generating
state machines can be cumbersome and error-prone.

This paper’s case study focused on aircraft dynamics and
controls while assuming remaining state features are con-
stant. Models describing the transitions (dynamics) of the
remaining features must be developed in future work. Rec-
ognizing scenarios where the underlying assumptions of a
given MDP formulation fail is also essential to ensure FSAM
policies don’t pose new risk in LOC scenarios. Future re-
search directions will formally analyze such scenarios and
develop strategies to ensure that the actions of FSAM will
not jeopardize nominal aircraft operations.
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